ChatGPT开发【一】:打造与ChatGPT默契互动的绝佳输入格式

news2025/1/11 0:13:24

点击加入->【OpenAI-API开发】技术交流群
在这里插入图片描述

文章目录

  • 1. 导入openai库
  • 2.示例聊天API调用
  • 3.GPT-3.5-Turbo-0301的使用技巧
    • 系统消息
    • Few-show prompt
  • 4.计数Token数

Chatgpt由Openai最先进的型号 gpt-3.5-Turbogpt-4提供支持。我们可以使用OpenAI API使用 GPT-3.5-TurboGPT-4构建自己的应用程序。
聊天模型将一系列消息作为输入,然后返回AI写的消息作为输出。

本指南用一些示例API调用说明了聊天格式。

1. 导入openai库

# if needed, install and/or upgrade to the latest version of the OpenAI Python library
%pip install --upgrade openai
Requirement already satisfied: openai in /Users/linxi/anaconda3/envs/pytorch18/lib/python3.8/site-packages (0.27.8)
Requirement already satisfied: requests>=2.20 in /Users/linxi/anaconda3/envs/pytorch18/lib/python3.8/site-packages (from openai) (2.26.0)
Requirement already satisfied: tqdm in /Users/linxi/anaconda3/envs/pytorch18/lib/python3.8/site-packages (from openai) (4.62.3)
Requirement already satisfied: aiohttp in /Users/linxi/anaconda3/envs/pytorch18/lib/python3.8/site-packages (from openai) (3.8.4)
Requirement already satisfied: charset-normalizer~=2.0.0 in /Users/linxi/anaconda3/envs/pytorch18/lib/python3.8/site-packages (from requests>=2.20->openai) (2.0.7)
Requirement already satisfied: certifi>=2017.4.17 in /Users/linxi/anaconda3/envs/pytorch18/lib/python3.8/site-packages (from requests>=2.20->openai) (2022.12.7)
Requirement already satisfied: idna<4,>=2.5 in /Users/linxi/anaconda3/envs/pytorch18/lib/python3.8/site-packages (from requests>=2.20->openai) (3.3)
Requirement already satisfied: urllib3<1.27,>=1.21.1 in /Users/linxi/anaconda3/envs/pytorch18/lib/python3.8/site-packages (from requests>=2.20->openai) (1.26.7)
Requirement already satisfied: multidict<7.0,>=4.5 in /Users/linxi/anaconda3/envs/pytorch18/lib/python3.8/site-packages (from aiohttp->openai) (6.0.4)
Requirement already satisfied: frozenlist>=1.1.1 in /Users/linxi/anaconda3/envs/pytorch18/lib/python3.8/site-packages (from aiohttp->openai) (1.3.3)
Requirement already satisfied: aiosignal>=1.1.2 in /Users/linxi/anaconda3/envs/pytorch18/lib/python3.8/site-packages (from aiohttp->openai) (1.3.1)
Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /Users/linxi/anaconda3/envs/pytorch18/lib/python3.8/site-packages (from aiohttp->openai) (4.0.2)
Requirement already satisfied: yarl<2.0,>=1.0 in /Users/linxi/anaconda3/envs/pytorch18/lib/python3.8/site-packages (from aiohttp->openai) (1.8.2)
Requirement already satisfied: attrs>=17.3.0 in /Users/linxi/anaconda3/envs/pytorch18/lib/python3.8/site-packages (from aiohttp->openai) (22.2.0)
Note: you may need to restart the kernel to use updated packages.
# import the OpenAI Python library for calling the OpenAI API
import openai
# set openai api
openai.api_key = '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'
model_list = openai.Model.list() # 支持的model列表

# 列出和gpt相关的model list
for model in model_list['data']:
    if 'gpt' in model['id']:
        print(model['id'])
gpt-3.5-turbo-16k-0613
gpt-3.5-turbo-16k
gpt-3.5-turbo-0301
gpt-3.5-turbo
gpt-3.5-turbo-0613

2.示例聊天API调用

聊天API调用有两个必需的输入:

  • model:我们可以使用的模型的名称(例如,gpt-3.5-turbogpt-4gpt-3.5-turbo-0613gpt-3.5-turbo-16k--0613
  • messages:消息对象的列表,每个对象都有两个必需的字段:
    • role:Messenger的角色(system','user'或Assistain`的角色)
    • content:消息的内容(例如,给我写一首美丽的诗)

messages还可以包含可选的"name"字段,该字段为Messenger提供了名称。例如,example-userealiceblackbeardbot。名称可能不包含空格。

截至2023年6月,我们还可以使用一系列的“functions”,告诉GPT它是否可以生成JSON,输入到一个函数里面。有关详细信息,请参见[documentation](https://platform.openai.com/docs/guides/gpt/function-calling),[api参考](https://platform.openai.com/docs/api-reference/聊天), 或《openai cookbook》如何使用聊天模型调用函数。

通常,对话将从系统消息开始,该消息告诉Assistant如何做,然后是交替的用户和Assistant消息,但是我们不一定遵循此格式。

我们来看一个示例聊天API调用,以查看聊天格式在实践中的工作方式。

# Example OpenAI Python library request
MODEL = "gpt-3.5-turbo-16k-0613"
response = openai.ChatCompletion.create(
    model=MODEL,
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "Knock knock."},
        {"role": "assistant", "content": "Who's there?"},
        {"role": "user", "content": "Orange."},
    ],
    temperature=0,
)

response
<OpenAIObject chat.completion id=chatcmpl-7avh8y3M0d47CBJGYQxUXQZnisQYP at 0x7fcc3044ce50> JSON: {
  "id": "chatcmpl-7avh8y3M0d47CBJGYQxUXQZnisQYP",
  "object": "chat.completion",
  "created": 1689035942,
  "model": "gpt-3.5-turbo-16k-0613",
  "choices": [
    {
      "index": 0,
      "message": {
        "role": "assistant",
        "content": "Orange who?"
      },
      "finish_reason": "stop"
    }
  ],
  "usage": {
    "prompt_tokens": 35,
    "completion_tokens": 3,
    "total_tokens": 38
  }
}

响应对象有以下几个字段:

  • id:请求的ID
  • object:返回对象的类型(例如,chat.completion
  • created:请求的时间戳
  • model:用于生成响应的模型的全名
  • usage:用于生成答复,计数提示,完成和总计的token数
  • choices:完整对象的列表(只有一个,除非设置n大于1)
    • message:模型生成的消息对象,带有role(角色)和content
    • finish_reason:模型停止生成文本的原因(如果达到了max_tokens限制,则``停止’‘或`length’
    • 索引:选择列表中完成的索引

提取回复:

response['choices'][0]['message']['content']
'Orange who?'

我们可以使用非交流的任务,直接通过将指令放入第一个用户消息中作为聊天格式。

例如,要求模型以海盗黑人的风格解释异步编程,我们可以按以下方式进行对话:

# example with a system message
response = openai.ChatCompletion.create(
    model=MODEL,
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "Explain asynchronous programming in the style of the pirate Blackbeard."},
    ],
    temperature=0,
)

print(response['choices'][0]['message']['content'])
Arr, me matey! Let me tell ye a tale of asynchronous programming, in the style of the fearsome pirate Blackbeard!

Ye see, in the world of programming, there be times when ye need to perform tasks that take a long time to complete. These tasks might be fetchin' data from a faraway server, or performin' complex calculations. Now, in the olden days, programmers would wait patiently for these tasks to finish before movin' on to the next one. But that be a waste of time, me hearties!

Asynchronous programming be like havin' a crew of scallywags workin' on different tasks at the same time. Instead of waitin' for one task to finish before startin' the next, ye can set sail on multiple tasks at once! This be a mighty efficient way to get things done, especially when ye be dealin' with slow or unpredictable tasks.

In the land of JavaScript, we use a special technique called callbacks to achieve this. When ye start a task, ye pass along a callback function that be called once the task be completed. This way, ye can move on to other tasks while ye be waitin' for the first one to finish. It be like sendin' yer crewmates off on different missions, while ye be plannin' the next raid!

But beware, me mateys! Asynchronous programming can be a treacherous sea to navigate. Ye need to be careful with the order in which ye be executin' tasks, and make sure ye be handlin' any errors that might arise. It be a bit more complex than the traditional way of doin' things, but the rewards be worth it!

So, me hearties, if ye be lookin' to make yer programs faster and more efficient, give asynchronous programming a try. Just remember to keep a weather eye on yer code, and ye'll be sailin' the high seas of programming like a true pirate!
# example without a system message
response = openai.ChatCompletion.create(
    model=MODEL,
    messages=[
        {"role": "user", "content": "Explain asynchronous programming in the style of the pirate Blackbeard."},
    ],
    temperature=0,
)

print(response['choices'][0]['message']['content'])

Arr, me hearties! Gather 'round and listen up, for I be tellin' ye about the mysterious art of asynchronous programming, in the style of the fearsome pirate Blackbeard!

Now, ye see, in the world of programming, there be times when we need to perform tasks that take a mighty long time to complete. These tasks might involve fetchin' data from the depths of the internet, or performin' complex calculations that would make even Davy Jones scratch his head.

In the olden days, we pirates used to wait patiently for each task to finish afore movin' on to the next one. But that be a waste of precious time, me hearties! We be pirates, always lookin' for ways to be more efficient and plunder more booty!

That be where asynchronous programming comes in, me mateys. It be a way to tackle multiple tasks at once, without waitin' for each one to finish afore movin' on. It be like havin' a crew of scallywags workin' on different tasks simultaneously, while ye be overseein' the whole operation.

Ye see, in asynchronous programming, we be breakin' down our tasks into smaller chunks called "coroutines." Each coroutine be like a separate pirate, workin' on its own task. When a coroutine be startin' its work, it don't wait for the task to finish afore movin' on to the next one. Instead, it be movin' on to the next task, lettin' the first one continue in the background.

Now, ye might be wonderin', "But Blackbeard, how be we know when a task be finished if we don't be waitin' for it?" Ah, me hearties, that be where the magic of callbacks and promises come in!

When a coroutine be startin' its work, it be attachin' a callback or a promise to the task. This be like leavin' a message in a bottle, tellin' the task to send a signal when it be finished. Once the task be done, it be sendin' a signal to the callback or fulfillin' the promise, lettin' the coroutine know that it be time to handle the results.

This way, me mateys, we be able to keep our ship sailin' smoothly, with multiple tasks bein' worked on at the same time. We be avoidin' the dreaded "blocking" that be slowin' us down, and instead, we be makin' the most of our time on the high seas of programming.

So, me hearties, remember this: asynchronous programming be like havin' a crew of efficient pirates, workin' on different tasks at once. It be all about breakin' down tasks into smaller chunks, attachin' callbacks or promises to 'em, and lettin' 'em run in the background while ye be movin' on to the next adventure.

Now, go forth, me mateys, and embrace the power of asynchronous programming! May ye plunder the treasures of efficiency and sail the seas of productivity! Arrrr!

3.GPT-3.5-Turbo-0301的使用技巧

指导模型的最佳实践可能会因模型版本而异。以下建议适用于 gpt-3.5-turbo-0301 ,可能不适用于未来的型号。

系统消息

system消息可用于引导assistant,具有不同的性格和行为,比如我们常说的角色扮演,猫娘。

此处需注意,GPT-3.5-Turbo-0301通常不会像gpt-4-0314gpt-3.5-3.5-Turbo-0613一样对系统(system)消息那么关注。因此,对于GPT-3.5-Turbo-0301,我建议将重要信息,放在用户(user)消息中。一些开发人员发现在对话结束时不断将系统消息移动,以防止模型的注意力随着对话的越来越长而漂移。

# An example of a system message that primes the assistant to explain concepts in great depth
response = openai.ChatCompletion.create(
    model=MODEL,
    messages=[
        {"role": "system", "content": "You are a friendly and helpful teaching assistant. You explain concepts in great depth using simple terms, and you give examples to help people learn. At the end of each explanation, you ask a question to check for understanding"},
        {"role": "user", "content": "Can you explain how fractions work?"},
    ],
    temperature=0,
)

print(response["choices"][0]["message"]["content"])

Of course! Fractions are a way to represent parts of a whole. They are made up of two numbers: a numerator and a denominator. The numerator tells you how many parts you have, and the denominator tells you how many equal parts make up the whole.

Let's take an example to understand this better. Imagine you have a pizza that is divided into 8 equal slices. If you eat 3 slices, you can represent that as the fraction 3/8. Here, the numerator is 3 because you ate 3 slices, and the denominator is 8 because the whole pizza is divided into 8 slices.

Fractions can also be used to represent numbers less than 1. For example, if you eat half of a pizza, you can write it as 1/2. Here, the numerator is 1 because you ate one slice, and the denominator is 2 because the whole pizza is divided into 2 equal parts.

Now, let's practice! If you eat 4 out of 6 slices of a pizza, how would you write that as a fraction?
# An example of a system message that primes the assistant to give brief, to-the-point answers
response = openai.ChatCompletion.create(
    model=MODEL,
    messages=[
        {"role": "system", "content": "You are a laconic assistant. You reply with brief, to-the-point answers with no elaboration."},
        {"role": "user", "content": "Can you explain how fractions work?"},
    ],
    temperature=0,
)

print(response["choices"][0]["message"]["content"])

Fractions represent parts of a whole. They have a numerator (top number) and a denominator (bottom number).

Few-show prompt

在某些情况下,我们给几个实例,也就是few-shot,可以更容易获得我们想要的内容,相比直接告诉模型我们想要什么,最好给几个例子。

向模型展示您想要的内容的一种方法是,使用伪造的一些例子。

例如:

# An example of a faked few-shot conversation to prime the model into translating business jargon to simpler speech
response = openai.ChatCompletion.create(
    model=MODEL,
    messages=[
        {"role": "system", "content": "You are a helpful, pattern-following assistant."},
        {"role": "user", "content": "Help me translate the following corporate jargon into plain English."},
        {"role": "assistant", "content": "Sure, I'd be happy to!"},
        {"role": "user", "content": "New synergies will help drive top-line growth."},
        {"role": "assistant", "content": "Things working well together will increase revenue."},
        {"role": "user", "content": "Let's circle back when we have more bandwidth to touch base on opportunities for increased leverage."},
        {"role": "assistant", "content": "Let's talk later when we're less busy about how to do better."},
        {"role": "user", "content": "This late pivot means we don't have time to boil the ocean for the client deliverable."},
    ],
    temperature=0,
)

print(response["choices"][0]["message"]["content"])

This sudden change in direction means we don't have enough time to complete the entire project for the client.

为了帮助说明示例消息里面,并不是真实对话的一部分,不应该由模型引用,可以尝试将system系统的名称(name)字段置为 example_user 和 example_assistant 。

改变上面的几个示例,我们可以写:

# The business jargon translation example, but with example names for the example messages
response = openai.ChatCompletion.create(
    model=MODEL,
    messages=[
        {"role": "system", "content": "You are a helpful, pattern-following assistant that translates corporate jargon into plain English."},
        {"role": "system", "name":"example_user", "content": "New synergies will help drive top-line growth."},
        {"role": "system", "name": "example_assistant", "content": "Things working well together will increase revenue."},
        {"role": "system", "name":"example_user", "content": "Let's circle back when we have more bandwidth to touch base on opportunities for increased leverage."},
        {"role": "system", "name": "example_assistant", "content": "Let's talk later when we're less busy about how to do better."},
        {"role": "user", "content": "This late pivot means we don't have time to boil the ocean for the client deliverable."},
    ],
    temperature=0,
)

print(response["choices"][0]["message"]["content"])

This sudden change in direction means we don't have enough time to complete the entire project for the client.

并非每一次尝试对话的尝试都会一开始成功。

如果您的第一次尝试失败,请不要害怕尝试不同的启动或调理模型的方法。

例如,一位开发人员在插入一条用户消息时发现了准确性的提高,该消息说“到目前为止,这些工作很棒,这些都是完美的”,可以帮助您调节该模型提供更高质量的响应。

有关如何提高模型可靠性的更多想法,可以阅读有关[提高可靠性的技术的指南](…/ Techniques_to_to_improve_reliability.md)。它是为非聊天模型编写的,但其许多原则仍然适用。

4.计数Token数

提交请求时,API将消息转换为一系列Token,我们计费也是按照消耗的token数来计算。

所用令牌的数量影响:

  • 请求费用
  • 生成响应所需的时间
  • 当答复被切断时,击中了最大令牌限制(gpt-3.5-turbo`''或gpt-4`''gpt-4,192)

我们可以使用以下函数来计算将使用消息列表使用的令牌数量。

请注意,从消息中计数令牌的确切方式可能会因模型而变化。考虑以下功能的计数,而不是永恒的保证。

特别是,使用可选函数输入的请求将在以下估计值的基础上消耗额外的令牌。

阅读有关如何使用Tiktoken计数令牌中计数令牌的更多信息。我们需要使用tiktoken这个库,首先安装这个库。

!pip install --upgrade tiktoken
Collecting tiktoken
  Downloading tiktoken-0.4.0-cp38-cp38-macosx_10_9_x86_64.whl (798 kB)
[K     |████████████████████████████████| 798 kB 213 kB/s eta 0:00:01
[?25hRequirement already satisfied: regex>=2022.1.18 in /Users/linxi/anaconda3/envs/pytorch18/lib/python3.8/site-packages (from tiktoken) (2022.10.31)
Requirement already satisfied: requests>=2.26.0 in /Users/linxi/anaconda3/envs/pytorch18/lib/python3.8/site-packages (from tiktoken) (2.26.0)
Requirement already satisfied: idna<4,>=2.5 in /Users/linxi/anaconda3/envs/pytorch18/lib/python3.8/site-packages (from requests>=2.26.0->tiktoken) (3.3)
Requirement already satisfied: certifi>=2017.4.17 in /Users/linxi/anaconda3/envs/pytorch18/lib/python3.8/site-packages (from requests>=2.26.0->tiktoken) (2022.12.7)
Requirement already satisfied: urllib3<1.27,>=1.21.1 in /Users/linxi/anaconda3/envs/pytorch18/lib/python3.8/site-packages (from requests>=2.26.0->tiktoken) (1.26.7)
Requirement already satisfied: charset-normalizer~=2.0.0 in /Users/linxi/anaconda3/envs/pytorch18/lib/python3.8/site-packages (from requests>=2.26.0->tiktoken) (2.0.7)
Installing collected packages: tiktoken
Successfully installed tiktoken-0.4.0
import tiktoken


def num_tokens_from_messages(messages, model="gpt-3.5-turbo-0613"):
    """Return the number of tokens used by a list of messages."""
    try:
        encoding = tiktoken.encoding_for_model(model)
    except KeyError:
        print("Warning: model not found. Using cl100k_base encoding.")
        encoding = tiktoken.get_encoding("cl100k_base")
    if model in {
        "gpt-3.5-turbo-0613",
        "gpt-3.5-turbo-16k-0613",
        "gpt-4-0314",
        "gpt-4-32k-0314",
        "gpt-4-0613",
        "gpt-4-32k-0613",
        }:
        tokens_per_message = 3
        tokens_per_name = 1
    elif model == "gpt-3.5-turbo-0301":
        tokens_per_message = 4  # every message follows <|start|>{role/name}\n{content}<|end|>\n
        tokens_per_name = -1  # if there's a name, the role is omitted
    elif "gpt-3.5-turbo" in model:
        print("Warning: gpt-3.5-turbo may update over time. Returning num tokens assuming gpt-3.5-turbo-0613.")
        return num_tokens_from_messages(messages, model="gpt-3.5-turbo-0613")
    elif "gpt-4" in model:
        print("Warning: gpt-4 may update over time. Returning num tokens assuming gpt-4-0613.")
        return num_tokens_from_messages(messages, model="gpt-4-0613")
    else:
        raise NotImplementedError(
            f"""num_tokens_from_messages() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens."""
        )
    num_tokens = 0
    for message in messages:
        num_tokens += tokens_per_message
        for key, value in message.items():
            num_tokens += len(encoding.encode(value))
            if key == "name":
                num_tokens += tokens_per_name
    num_tokens += 3  # every reply is primed with <|start|>assistant<|message|>
    return num_tokens

接下里我们使用上述函数来计算,不同的模型对同样的输入,消耗的token数是多少。

# let's verify the function above matches the OpenAI API response

import openai

example_messages = [
    {
        "role": "system",
        "content": "You are a helpful, pattern-following assistant that translates corporate jargon into plain English.",
    },
    {
        "role": "system",
        "name": "example_user",
        "content": "New synergies will help drive top-line growth.",
    },
    {
        "role": "system",
        "name": "example_assistant",
        "content": "Things working well together will increase revenue.",
    },
    {
        "role": "system",
        "name": "example_user",
        "content": "Let's circle back when we have more bandwidth to touch base on opportunities for increased leverage.",
    },
    {
        "role": "system",
        "name": "example_assistant",
        "content": "Let's talk later when we're less busy about how to do better.",
    },
    {
        "role": "user",
        "content": "This late pivot means we don't have time to boil the ocean for the client deliverable.",
    },
]

for model in [
    "gpt-3.5-turbo-0301",
    "gpt-3.5-turbo-0613",
    "gpt-3.5-turbo",
    "gpt-4-0314",
    "gpt-4-0613",
    "gpt-4",
    ]:
    print(model)
    # example token count from the function defined above
    print(f"{num_tokens_from_messages(example_messages, model)} prompt tokens counted by num_tokens_from_messages().")
    # example token count from the OpenAI API
    try:
        response = openai.ChatCompletion.create(
            model=model,
            messages=example_messages,
            temperature=0,
            max_tokens=1,  # we're only counting input tokens here, so let's not waste tokens on the output
        )
        print(f'{response["usage"]["prompt_tokens"]} prompt tokens counted by the OpenAI API.')
        print()
    except openai.error.OpenAIError as e:
        print(e)
        print()
gpt-3.5-turbo-0301
127 prompt tokens counted by num_tokens_from_messages().
127 prompt tokens counted by the OpenAI API.

gpt-3.5-turbo-0613
129 prompt tokens counted by num_tokens_from_messages().
129 prompt tokens counted by the OpenAI API.

gpt-3.5-turbo
Warning: gpt-3.5-turbo may update over time. Returning num tokens assuming gpt-3.5-turbo-0613.
129 prompt tokens counted by num_tokens_from_messages().
129 prompt tokens counted by the OpenAI API.

gpt-4-0314
129 prompt tokens counted by num_tokens_from_messages().
The model: `gpt-4-0314` does not exist

gpt-4-0613
129 prompt tokens counted by num_tokens_from_messages().
The model: `gpt-4-0613` does not exist

gpt-4
Warning: gpt-4 may update over time. Returning num tokens assuming gpt-4-0613.
129 prompt tokens counted by num_tokens_from_messages().
The model: `gpt-4` does not exist

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/760495.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

谈谈在Bitcask中用读写锁实现并发控制的性能表现

背景 最近被问了几次nutsdb事务是怎么实现的&#xff0c;也就是并发控制是怎么做的。我说&#xff0c;用一把大的读写锁&#xff0c;写事务拿到写锁&#xff0c;读事务拿读锁&#xff0c;这样子做的。提问者先是震惊&#xff0c;接着说是有一点鄙夷&#xff0c;我感觉大概心里…

【踩坑指南】Django+channels WebSocket配置

目前我搜到网上所有配置Djangochannels的教程/博客中&#xff0c;都没有提及这一点。希望能帮助你 踩的坑必须写在最前面&#xff1a; 根据文档的步骤去配置&#xff0c;每次到执行python manage.py 的时,使用的是默认的development server&#xff0c;而不是我们想要的Star…

解决:.prettierrc 配置完后,自动保存并没有格式化代码

如果你也碰到了同样的问题&#xff0c;请先确保&#xff1a; .prettierrc 文件已正确配置&#xff0c;例如我的&#xff1a; {"semi": false,"singleQuote": true,"arrowParens": "always","trailingComma": "all&qu…

卷积神经网络参数量和计算量的计算方法

本文总结了标准卷积、分组卷积和全连接层参数量和计算量的计算方法&#xff0c;如有错误&#xff0c;麻烦大家指正 一、标准卷积 假设输入特征的shape为[, , ]&#xff0c;卷积核的shape为[, , , ]&#xff0c;输出特征的shape为[, , ]&#xff0c;则&#xff0c; 标准卷积运…

C++特殊类设计及类型转换

目录 一、特殊类的设计 1.不能被拷贝的类 2.只能在堆区构建对象的类 3.只能在栈区构建对象的类 4.不能被继承的类 二、单例模式 1.饿汉模式 2.懒汉模式 3.线程安全 4.单例的释放 三、C类型转换 1.C语言的类型转换 2.static_cast 3.reinterpret_cast 4.const_cas…

Python补充笔记1-字符串

目录 1.字符串的驻留机制​编辑 2.字符串查找 2.1字符串查询操作方法 3.字符串大小写转换 3.1字符串的大小写转换方法 4.字符串内容对齐 4.1字符串内容对齐操作方法 5.字符串的劈分 5.1字符串劈分操作的方法​编辑 6.字符串判断 6.1判断字符串操作的方法​编辑 6.2字符串替换和…

虚拟化技术及实时虚拟化概述

版权声明&#xff1a;本文为本文为博主原创文章&#xff0c;未经本人同意&#xff0c;禁止转载。如有问题&#xff0c;欢迎指正。博客地址&#xff1a;https://www.cnblogs.com/wsg1100/ 实时虚拟化技术是一种针对实时应用场景的虚拟化技术&#xff0c;它要求在保证虚拟化优势…

STM32 ws2812b 最快点灯cubemx

文章目录 前言一、cubemx配置二、代码1.ws2812b.c/ws2812b.h2.主函数 前言 吐槽 想用stm32控制一下ws2812b的灯珠&#xff0c;结果发下没有一个好用的。 emmm&#xff01;&#xff01;&#xff01; 自己来吧&#xff01;&#xff01;&#xff01;&#xff01; 本篇基本不讲原理…

6、传输层TCP28

TCP协议&#xff1a;传输控制协议 1、协议实现 16位源端端口&16位对端端口&#xff1a;描述通信俩端进程32位序号&#xff1a;告诉接收端&#xff0c;这条数据在整体数据中的排序&#xff0c;接收端根据序号进行排序32位确认序号&#xff1a;向发送端进行回复确定&#xff…

pytest-html报告修改与汉化

目录 前言 生成报告 测试代码 原始报告 修改Environment 修改后的效果 修改Summary 修改后的效果 修改Results 优化Test 解决中文乱码 删除多余部分 修改后的效果 删除Links 修改后的效果 增加失败截图与用例描述 完整的conftest.py代码 汉化报告 修改plugin…

ClickHouse进阶

一、Explain查看执行计划 在 clickhouse 20.6 版本之前要查看 SQL 语句的执行计划需要设置日志级别为 trace 才能可以看到&#xff0c;并且只能真正执行 sql&#xff0c;在执行日志里面查看。 在 20.6 版本引入了原生的执行计划的语法。在 20.6.3 版本成为正式版本的功能。 …

常见的JS内置对象——字符串、数学、日期

二、字符串&#xff08;string&#xff09; 创建 一般使用第一种方式 2&#xff09;字符串的遍历 注意&#xff1a;没有foreach方法 3&#xff09;字符串的常见方法 substr()和substring()&#xff1a; substr()参数是从哪个位置开始&#xff0c;截多长 substring()参数是从…

完美匹配:一种简单的神经网络反事实推理学习表示方法

英文题目&#xff1a;Perfect Match: A Simple Method for Learning Representations For Counterfactual Inference With Neural Networks 翻译&#xff1a;完美匹配&#xff1a;一种简单的神经网络反事实推理学习表示方法 单位&#xff1a; 论文链接&#xff1a;https://a…

【状态估计】基于FOMIAUKF、分数阶模块、模型估计、多新息系数的电池SOC估计研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

C++ 创建共享内存

共享内存用于实现进程间大量的数据传输&#xff0c;共享内存是在内存中单独开辟一段内存空间&#xff0c;这段内存空间有自己特有的数据结构&#xff0c;包括访问权限、大小和最近访问时间等。 1、shmget函数 #include <sys/ipc.h> #include <sys/shm.h> int shm…

c++——多态(补充)

优先查看&#xff1a;c——多态_Hiland.的博客-CSDN博客 目录 菱形虚拟继承子类的重写问题 菱形虚拟继承中的偏移量补充 逆向思维——汇编查看多态中被重写的虚函数 菱形虚拟继承子类的重写问题 继承环节时&#xff0c;菱形虚拟继承解决了菱形继承的数据冗余和二义性问题。…

C# Modbus通信从入门到精通(11)——Modbus RTU(调试软件Modbus Slave和Modbus Poll的使用)

前言 我们在开发Modbus程序的时候,会需要测试以下我们写的Modbus程序有没有问题,这时候就需要使用到Modbus Slave和Modbus Poll这两个软件,Modbus Slave是模拟Modbus从站,Modbus Poll是模拟Modbus从站主站的, 1、Modbus Slave 一般情况下我们开发的嗾使Modbus主站程序,…

性能测试(Jemeter)

1.性能指标 响应时间&#xff1a;一次请求的往返时间tps&#xff1a;每秒系统能够处理的事务数&#xff0c;比如订单中的下单操作&#xff0c;下单后续有很多操作&#xff0c;比如创建订单&#xff0c;扣除库存&#xff0c;清算库存等&#xff0c;这个完整操作就是一个完整的事…

【数据分享】1929-2022年全球站点的逐日最大持续风速数据(Shp\Excel\12000个站点)

气象数据是在各项研究中都经常使用的数据&#xff0c;气象指标包括气温、风速、降水、能见度等指标&#xff0c;说到气象数据&#xff0c;最详细的气象数据是具体到气象监测站点的数据&#xff01; 对于具体到监测站点的气象数据&#xff0c;之前我们分享过1929-2022年全球气象…

Qt添加第三方字体

最近开发项目时&#xff0c;据说不能用系统自带的微软雅黑字体&#xff0c;于是找一个开源的字体&#xff0c;思源黑体&#xff0c;这个是google和Adobe公司合力开发的可以免费使用。本篇记录一下Qt使用第三方字体的方式。字体从下载之家下载http://www.downza.cn/soft/266042.…