2022年高压快充行业研究报告

news2024/12/26 0:10:02

第一章 行业概况

高压快充即为快速充电,衡量单位可用充电倍率(C)表示。充电倍率越大,充电时间越短。依据公式,电池充电的倍率(C)=充电电流(mA)/电池额定容量(mAh)。例如,电池容量为4000mAh,充电电流达到了8000mAh,则充电倍率为8000/4000=2C。

高倍率充电并不是0%-100%的电量都通过大电流充入完成。合理的充电模式共分三个阶段:

  • 阶段一:预充电状态,起到对电芯的保护作用

  • 阶段二:大电流恒流充电,就是我们所说的高倍率充电阶段,这个过程的电量区间往往在20%-80%

  • 阶段三:恒压充电,目的是限压,防止电芯的电压过高,破坏电池结构

图:电池充电运行模式

资料来源:资产信息网 千际投行

快充本质是提升充电端功率和电池充放电倍率。电动车主要有两种充电方式,直流快充和交流慢充。

(1)交流慢充

对应在家或者小区停车场的充电场景,充电功率较小从几千瓦到几十千瓦不等,通常需要8-10小时充满电。交流慢充直接使用电网的220V交流电,通过车载充电器OBC内部的AC/DC转换器将交流电转换成直流电供给电动车电池。由于充电功率较低,车载OBC内置AC/DC转换器功率一般较低,成本较低。

(2)直流快充

一般对应高速公路上/长途旅程中的充电补能场景,功率达到上百千瓦,仅需1-2小时充满电。直流快充本质是把大功率AC/DC转移到快充充电桩,直流充电桩内部通过整流器将电网的交流电转换成大功率的直流电直接给车载电池充电。快充的峰值功率能达到350kW甚至480kW,超级快充时间有望降低到30分钟以下,未来或将压缩到十分钟以下。

图:800V平台车端产业链

资料来源:资产信息网 千际投行 东方证券

国内外车企纷纷将发展方向对准800V高电压平台背后的逻辑是,主力电动车型续航普遍突破600km后,缩短充电时间是提升电动车使用体验的主要诉求之一。目前换电、大容量电池、快充都是为实现电动车更快捷的补能,而对比三种方案,快充或为较优补能方案。

图 三种方案对比

资料来源:资产信息网 千际投行 兴业证券

国内自主品牌纷纷于2021-2022年开始积极布局800V平台,2022年有多个车型量产。中短期内车企针对800V推出价位在20-50万元的中高端车型,以中大型轿车和SUV为主。

图 国内自主品牌布局

资料来源:资产信息网 千际投行 东方证券

海外主流车企、国内传统自主品牌以及新势力纷纷加速布局800V高压平台,更多800V车型将陆续上市。

图 国外车企布局

资料来源:资产信息网 千际投行 东方证券

第二章 商业模式和技术发展

2.1 产业链

中国电池高压快充上游包括充电桩设备零部件、高压快充材料端以及相关零部件;中游分别为直流充电桩、快充型动力电池、高电压平台;下游应用于新能源汽车充电。

图 中国高压快充产业链

资料来源:资产信息网 千际投行

2.1.1 上游

充电桩设备零部件

(1)成本结构

直流充电桩,俗称“快充”,功率高、充电快,但技术复杂且成本高昂,适用于专业化集中运维的场景,如大巴、公交车、出租车等。目前直流充电桩构成成本中,充电模块和充电器、线占比较多,分别为41%和21%。其次分别为外壳、主控板、接触器、继电器、电表,占比分别为14%、7%、2%、2%、1%。

资料来源:资产信息网 千际投行 充电桩管家

(2)直流充电桩功率模块

随着充电桩行业的不断发展,充电设备技术逐渐完善、规模持续扩大,带动直流充电桩模块的最低生产价格不断降低。数据显示,2019年直流充电桩的充电模块的成本价格最低降至0.4元/W,2020年约为0.38元/W。预计2022年直流充电桩的充电模块的成本价格最低可达0.35元/W。

资料来源:资产信息网 千际投行 中商情报网

高压快充材料端

(1)碳化硅功率器件

高压动力电池快充的电压系统对功率半导体要求严苛。为了满足800V高压平台的需求,需要把原先的硅基IGBT切换成碳化硅材料(SiC),因为碳化硅为材料做出的功率半导体耐高压,耐高温,热损耗低。

受益于新能源汽车及光伏领域需求量的高速增长,预计2024年全球SiC功率半导体市场规模预计将达26.6亿美元,年均复合增长率达到24.5%。

资料来源:资产信息网 千际投行 Omdia

(2)负极材料

随着动力电池快充需求的扩大,有望加速硅基负极材料的产业化趋势。虽然目前硅基负极的发展处于初期,但未来将不断扩大。2020年出货量激增,达0.9万吨,同比增长143.24%,预计2022年将达1.5万吨。

2.1.2 中游

直流充电桩

(1)公共直流充电桩数量

近年来,直流充电桩数量一直保持增长趋势。2021年中国公共直流充电桩数量为47万台,同比增长52.1%。预计2022年公共直流充电桩76.8万台。

资料来源:资产信息网 千际投行 中国充电联盟

(2)快充桩占比情况

随着动力电池快充需求的不断扩大,公共快充桩占比稳步提升。2017-2020年全球公共快充桩占比整体成长稳步提升的趋势。提高电动车充电速度是行业发展趋势,未来快充桩占比仍有望逐步提高。预计2022年公共快充桩占比将达33%。

资料来源:资产信息网 千际投行

(3)企业分析

2021年中国公共直流桩数量较多企业有特来电、国家电网及星星充电等,其中特来电直流桩数量为151537台;2021年中国公共交流桩数量较多企业有国家电网、星星充电、云快充,分别有89338台、68233台、61321台。

资料来源:资产信息网 千际投行 中国充电联盟

快充型动力电池

目前广泛应用于大巴的新型快充动力电池主要由两个材料体系构成:磷酸铁锂电池与钛酸锂电池,但是该两个材料体系无论是材料本身的容量比,还是因为为了提升倍率特性而优化电芯结构设计的原因,快充型锂电池能量密度普遍较低。

(1)磷酸铁锂电池

从出货量来看,2021年磷酸铁锂电池的出货量呈现大幅度增长,出货量达117.10GW,同比增长404.74%。预计到2022年出货量将进一步增长至225.42GW。

资料来源:资产信息网 千际投行 中国汽车动力电池产业创新联盟

(2)钛酸锂电池

钛酸锂离子电池虽然倍率性能较差,能量密度不够高,但其具有快充的优势。随着其价格日趋合理,充电设施配套日益完善,未来钛酸锂离子电池有望在动力锂电池领域占据重要的一席之地。

(3)企业布局

龙头企业纷纷入场高电压平台,华为推出首个AI闪充全栈动力域高压平台解决方案,2021年落地的FC1闪充方案,充电15min可实现30%-80%SOC;保时捷于2019年推出首款搭载800V电压平台的纯电动量产车;比亚迪发布e平台3.0,搭载800V高压闪充技术;广汽发布超级快充电池技术,其中3C快充电池系统充电16min可完成0%-80%SOC,预计今年9月投产;吉利发布极氪001,搭载800V高电压平台;长城旗下蜂巢能源发布蜂速快充电池,其中第二代蜂速快充电池支持800V的高压电气架构,充电倍率达到4C。

2.1.3 下游

2022年上半年,新能源汽车产销分别完成266.1万辆和260万辆,同比均增长1.2倍,市场占有率达到21.6%。其中,新能源乘用车销量占乘用车总销量比重达到24.0%,中国品牌乘用车中新能源汽车占比已达到39.8%。上半年新能源汽车产销尽管也受疫情影响,但各企业高度重视新能源汽车产品,供应链资源优先向新能源汽车集中,从目前发展态势来看,整体产销完成情况超出预期。

资料来源:资产信息网 千际投行 中汽协

2.2 商业模式

按经营主体划分,高压快充主流的盈利模式包括充电运营商主导、车企主导以及第三方充电服务平台主导三种模式。盈利来源方面,主要有:财政补贴、电费差价、广告投放、车位经营、维修保养、配套娱乐等。

图 高压快充商业模式

资料来源:资产信息网 千际投行

(1)运营商主导模式:是现阶段主要运营模式,收入来源较单一,模式需完善

运营商主导模式指由运营商自主完成充电桩业务的投资建设和运营维护,为用户提供充电服务的运营管理模式,是充电桩行业现阶段的主要运营模式。

充电运营商一般具备雄厚的资本,前期对场地、充电桩等基础设施进行大量投资。采用充电运营商主导模式的充电桩,大部分为公用充电桩和专用充电桩。由于行业竞争激烈、用户对充电费用很敏感,充电服务费提升较为困难,因此充电运营商都致力于提高单桩利用率,来提升盈利能力,桩体广告费、增值服务费等占比较小。

由于参与者较多,部分运营能力较弱的运营商逐渐退出。在300多家运营商中,运营超过1000个充电桩的企业仅15家,一些小企业已停止运营,少量头部运营商目前主导充电桩市场。

(2)车企主导模式:车企自建桩与合作建桩模式并存

车企为提供更优质的服务,将充电桩作为售后服务提供给车主更优质的充电体验,主要适用于较为成熟的电动汽车企业当中,对于资金和用户数量有较高要求。采用车企主导模式的充电桩,大部分为公用充电桩,以及私用充电桩。

但充电桩的实际需求不断增加,车企在能源供给与技术方面相对运营商而言较为匮乏,很难解决建桩成本和车主服务之间的矛盾,同时资金压力较大,部分车企开始从自建充电桩逐渐转变到与运营商合作运营的模式。

(3)第三方充电服务平台主导模式:充电资源分配更优,单桩利用率提升

第三方充电平台一般不直接参与充电桩的投资建设,通过自身的资源整合能力将 各大运营商的充电桩接入自家 SaaS 平台,以智能管理为依托提供商业价值,其独特的流量优势使其他企业短期内难以复制。以平台为主导的运营模式可打通不同运营商 之间的互联互通,为用户提供更便捷的一站式充电体验。

此种模式的收益来源于与运营商的服务费分成和以大数据挖掘为基础的增值服务,因此与运营商之间会存在部分利益冲突,一旦头部运营商退出合作第三方平台的价值将难以体现,因此需建立完善的相互依存、互惠互利的机制。

图:主流充电模式代表企业

资料来源:资产信息网 千际投行 国联证券

2.3 技术发展

对国内高压快充产业的各个专利申请人的专利数量进行统计,排名前十的公司依次为:许继电气、沃尔核材、道通科技、特锐德、欣锐科技、得润电子、积成电子、银河电子、星云股份、双杰电气等。

图 上市公司专利数量

资料来源:资产信息网 千际投行

目前市场有多种快充方案。充电时间由电压和电流共同决定,对于充电桩而言:充电时间(h)=电池能量(kWh)/充电功率(kW)。因此,增大充电功率可以缩短充电时长,而充电功率由电压和电流共同决定:功率(kW)=电压(V)*电流(A)。所以想要缩短充电时间,有两种方法:大电流、高电压。

图 快充方案

资料来源:资产信息网 千际投行

大电流模式

目前推广程度低,特斯拉是代表。大电流充电过程中产生的热量大幅增加,对汽车的散热系统有更高的要求,且能量损失严重、转化效率低,且需要使用更粗的线束。此外,大电流模式仅在10%-20%SOC(荷电状态,指电池剩余可用电量占总容量的百分比,是电池管理系统中最为重要状态之一)进行最大功率充电,其他区间充电功率也有明显下降。

高电压模式

是车厂普遍采用的模式,除减少能耗、提高续航里程外,还有减少重量、节省空间等优点。高电压系统下,电流变小使得整个系统的功率损耗减小,提高效率。若电流不变,汽车的电机驱动效率则会提升,从而增加续航里程、降低电池成本。高电压模式的优点还包括降低高压线束重量,同功率情况下,电压等级的提高可减少高压线束上的电流,使得线束变细,从而降低线束重量、节省安装空间。

图:保时捷的800V高压线束截面积仅为400V一半,减重4千克

资料来源:资产信息网 千际投行 保时捷

由于大电流快充方式的劣势明显,目前高电压成为了快充主要趋势。高电压架构主要分为三类,纯800V高压快充成为主流。

(1)纯800V电压平台:电池包、电机以及充电接口均达到800V,车中只有800V和12V两种电压级别的器件,OBC、空调压缩机、DCDC以及PTC均重新适配以满足800V高电压平台。

纯800V电压平台,优势在于电机电控迭代升级,能量转换效率高;劣势在于电驱的功率芯片需要用SiC全面替代IGBT,零部件成本高。

(2)双400V电池组串并联组合:利用电池管理系统将电池组在串联、并联之间转换,在充电时,两个电池组可串联成800V平台高电压快充;在放电时,两个电池组并联成400V平台供汽车运行时使用,直接使用原有400V的高压部件。

(3)纯800V电压平台+额外DCDC:整车搭载一个800V电池组,在电池组和其他高压部件之间增加一个额外的DCDC将800V电压降至400V,车上其他高压部件仍采用400V电压平台。

图 高电压架构

资料来源:资产信息网 千际投行 GGII

但是高压快充的负面效应需要材料和器件升级。国外研究报告显示,当电池进行大功率充电时,会发生三类负面效应:

(1)热效应:高电压只是针对充电桩减小了电流,但对于单体电芯而言,电芯仍要承受电流增大带来的发热问题。在快充条件下,电池内外部的温度差超过10摄氏度,不均匀的热分布以及过高的温度将引发一系列问题:粘结剂解体、电解液分解、SEI钝化膜的损耗以及锂枝晶等。直接导致的危害有:电池循环寿命降低、热失控引发的安全问题。因此,热效应对电池材料体系以及BMS管控系统提出了更高的要求。

(2)锂析出效应:锂离子电池运作的本质就是锂离子在正负极之间的脱嵌运动,然而在高充电倍率下,嵌锂的过程是不均匀的,锂离子会因无法及时嵌入负极石墨层而选择在负极表面沉积,形成锂金属。当锂金属不断沉积,就会形成我们经常听到的锂枝晶。随着充电倍率的增加,负极表面沉积的锂枝晶数量越多。锂枝晶的危害:负极表面锂枝晶的持续生长,可能会刺破隔膜,造成电池内部短路从而导致热失控;锂枝晶在生长过程中会不断消耗活性锂离子,并不可逆转,导致电池容量降低,降低电池使用寿命。

(3)机械效应:在快充条件下,锂离子快速从正极脱出,并嵌入负极,这会造成电池内部极高的锂离子浓度,其结果是活性颗粒之间的应力错配。当应力累积到一定值时,会造成活性颗粒、导电剂、粘结剂以及集流体之间的缝隙增大,并造成活性颗粒的微裂纹增加。直接影响:活性颗粒之间缝隙的增加会显著增加电池的内阻;颗粒微裂纹会降低了电池的循环寿命。为减小或解决上述负面效应,高压快充需要材料体系升级和相应器件升级。

2.4 政策监管

高压快充行业的行政监管部门为国家电网和发改委。

国家在政策层面极力推动高压快充技术的落地应用。2020年5月国务院发布《2020年政府工作报告》,首次提出“新基建”(新型基础设施建设)概念,将充电基础设施作为七大基础设施之一,纳入“新基建”。2021年中央经济工作会议指出,当前经济面临需求收缩、供给冲击、预期转弱三重压力,应坚持稳字当头,强化政策发力,充电桩作为新基建组成之一,在稳增长主线下,建设节奏或将加速。

2022年1月,国家发展改革委、国家能源局等出台《国家发展改革委等部门关于进一步提升电动汽车充电基础设施服务保障能力的实施意见》,提出到“十四五”末,我国电动汽车充电保障能力进一步提升,形成适度超前、布局均衡、智能高效的充电基础设施体系,能够满足超过2,000万辆电动汽车充电需求。多项政策落地,使得我国新能源充电桩行业的发展方向和发展目标逐渐清晰,为行业发展提供有益土壤。

政府补贴从补车转向补桩,从建设补贴拓展到运营补贴。2016年财政部等五部门出台《关于“十三五”新能源汽车充电基础设施奖励政策及加强新能源汽车推广应用的通知》,已对充电基础设施建设、运营给予财政奖补。2022年国家发展改革委等部门《关于进一步提升电动汽车充电基础设施服务保障能力的实施意见》明确提出加大财政金融支持力度,一是优化财政支持政策,二是提高金融服务能力。

此外各地方政府已明确出台充电桩建设补贴、充电运营补贴相关政策。可以发现政府财政补贴政策向供给侧倾斜,呈现出从“新能源汽车补贴”到“充电设施建设补贴”再逐渐转变为“充电设施建设补贴+充电设施运营补贴”。

充电枪充电桩发展助力高压快充行业。2022年各省份出台一系列政策推动新能源充电设施的建设,预计未来车桩比将逐步降低至2:1。根据中国充电联盟数据,截止2021年,我国新能源汽车保有量为784万辆,充电桩总数仅为261万座,其中公共桩数量为114.7万座,私人充电桩为147.1万座,车桩比约为3:1。

资料来源:资产信息网 千际投行 中信证券

第三章 行业估值、定价机制和全球龙头企业

3.1 行业综合财务分析和估值方法

图:指数表现

资料来源:资产信息网 千际投行 iFinD

高压快充行业估值方法可以选择市盈率估值法、PEG估值法、市净率估值法、市现率、P/S市销率估值法、EV企业价值法、EV/Sales市售率估值法、RNAV重估净资产估值法、EV/EBITDA估值法、DDM估值法、DCF现金流折现估值法、红利折现模型、股权自由现金流折现模型、无杠杆自由现金流折现模型、净资产价值法、经济增加值折现模型、调整现值法、NAV净资产价值估值法、账面价值法、清算价值法、成本重置法、实物期权、LTV/CAC(客户终身价值/客户获得成本)、P/GMV、P/C(customer)、梅特卡夫估值模型、PEV等。

图:均胜电子主营业务构成

资料来源:资产信息网 千际投行 iFinD

3.2 行业发展和驱动因子

政策驱动

2022年国家定调“稳增长”,充电桩、换电站的投资建设作为“新基建”系列,有望迎来风口。比如,近一点的,7月19日,交通运输部召开部务会,审议了《加快推进公路沿线充电基础设施建设行动方案》,将公路沿线充电基础设施划归到落实国务院稳住经济的一揽子政策措施之下。

北京是力争到2025年全市新能源汽车累计保有量力争达到200万辆,充电桩累计建成70万个;上海是计划到2025年满足125万辆以上电动汽车的充电需求,全市车桩比不高于2∶1。安徽力争到2025年汽车生产规模超300万辆,各类充电桩23.7万个,充电站4750座。政策层面早已吹响号角,高压快充的席卷而来势必也会引起产业层面一定程度的动荡与重塑。

汽车电动化的驱动

电动汽车发展步入高速增长阶段。EVTank数据显示,2021年,全球新能源汽车销量达到670万辆,同比大幅度增长102.4%,全球汽车电动化渗透率也由2015年0.8%增长到2021年的7.74%,预计2022年、2025年全球新能源汽车销量将分别超过850万辆、2200万辆。乘联会数据显示,9月新能源汽车零售渗透率达到31.8%,预计2022年、2025年我国新能源汽车销量将超过600万辆、1000万辆。

截至2022年9月底,新能源汽车保有量达1149万辆,前三季度新注册登记371.3万辆。2022年前三季度,全国新注册登记新能源汽车371.3万辆,同比增加184.2万辆,增长98.48%。预计到2025年国内新能源汽车保有量将达到4000万辆,保有量占比将达到10%。

核心部件升级驱动

高压快充导致整车高功率密度提升,运转负荷更大,整车高压系统零部件在性能和安全方面需要升级。除了动力电池电芯材料和设计升级,整车高压部分电气系统零部件需一并升级,主要体现在三个大的方面:

  • 全车热管理系统的总功率 提升、复杂度提高;

  • 针对电气系统的高负荷系统性升级,相关功率器件需要 降低损耗提高效率,其中最明显趋势是,大三电小三电中 SiC 基功率器件替换 Si 基功率器件(重点为电控逆变器中 SiC MOSFET 替代 Si IGBT);

  • 为保障高 负荷下汽车的安全性能,相关的器件比如数字隔离芯片、薄膜电容、连接器、熔断器、继电器等在数量和性能都有提升需求。

三个方面的升级相互关联,具有“连锁”反应。比如 Si 基 IGBT 替换成 SiC 基 MOSFET,工作的功率和频率提升,对应的隔离驱动需要一并升级,而薄膜电容的数量需要提升,才能达到电气系统相关安全性的要求。

资料来源:资产信息网 千际投行 英大证券

3.3 行业风险分析和风险管理

政策变化风险

行业所处的输配电及控制设备制造行业与国家宏观经济政策、产业政策以及国家电力规划有着密切联系。国民经济发展的周期波动、国家行业发展方向等方面政策变化可能对行业的生产经营造成影响,国家电力投资的力度直接影响输配电行业的发展规模。

市场竞争风险

行业部分细分市场领域的资金门槛和资质壁垒逐渐降低,导致电气机械和器材制造业市场竞争加剧,可能对行业的经营业绩造成一定的不利影响。

应对措施:行业内企业应通过持续自主创新,企业竞争力显著增强,市场开拓力度加大。

原材料价格波动风险

电力输配电及控制设备制造行业产品成本构成中,钢材、有色金属、非金属材料等原材料在总成本中占一定比重。原材料价格的波动将对行业盈利能力产生一定程度的影响。

应对措施:行业内企业将实行统一采购,提高规模效益,并及时关注价格变化趋势,采取灵活措施,规避价格风险。

人才引进风险

行业作为专注于电力、自动化和智能制造的高科技现代行业,高端人才对于行业的发展至关重要。

应对措施:业内企业应积极制定激励机制及人才培养制度,但新兴领域领军人才和复合型高端国际化人才储备不足。培养学科带头人,提升人才队伍整体水平是行业人才队伍建设的重点工作。

新兴领域和行业发展慢于预期的风险 

新能源汽车、智能座舱、智能驾驶等是整个行业的发展趋势,但仍存在行业整体商业化进度慢于预期的风险。

应对措施:未来,业内企业应当持续推进新兴领域产品系的布局和新客户的开拓,并利用业内企业在这些新兴业务领域的优势,与上下游公司广泛合作,共同推进汽车的新能源化和智能化。

3.4 竞争分析 - SWOT 模型

优势

高电压模式相较高电流模式,具有高效充电区间更大、充电功率天花板较高、技术难度更低等优势,有望成为现阶段快充主流路线。基于高电压的快充能够实现在更大区间SOC保持较高的充电功率;具备相同峰值充电功率的高电流模式,高效充电SOC区间较小,其他区间充电功率下降迅速。

特斯拉采取 400V 高电流路线,第四代快充电流将提升至 900A左右,电路中大电流会产生很高的热损失,包括连接器、电缆、电池的连接、母线排等电阻发热量呈平方级别增长,导致峰值充电功率虽然高,但平均功率不高,充电功率天花板相对高压路线更低。

劣势

快充系统主要由动力电池、动力电池高压线束、VCU、高压控制盒、快充口、直流快充桩等组成。其原理是使锂电池中的锂离子高速运动,瞬间嵌入到电池的负极,这样便是用大电流,在尽可能短的时间内快速给电池充电。

然而汽车使用快充也可能产生不良影响,长期使用快速充电,会因为总在瞬间向电池输入最大电流。会降低电池的还原能力,减少电池充放电的循环次数,也就缩短了电池的寿命。

机遇

85%的车主在公共充电场站平均单次充电时长在0.5-2小时之间,58.1%的车主认为充电排队耗时长。“补能时间长”成为新能源车主用车时遭遇的普遍难题。为缓解电动车用户的补能焦虑,智能电动车企业纷纷加码快充技术和服务的投入。其中,相较于换电模式,高压快充在成本、效率、技术难度方面优势相对明显。

值得一提的是,进入2022年以来,政策对充、换电基础设施建设的支持力度逐步增强,新能源汽车及其产业链相关行业均将获得无限发展空间。

威胁

充电时间的减少在给消费者带来更好体验的同时也给电池带来了考验,电池的充电速度主要取决于锂离子的脱嵌和迁移速率,当采用800V电压平台后,充电倍率最大可达6C(目前普遍为1C)。

但在高充电倍率下,锂离子脱嵌和迁移的速率加快,部分锂离子来不及进入正负极,只能形成一些副产物,导致活性物质损失,加速电池寿命衰减。且动力电池在快充条件下,析锂现象加剧,一方面将造成活性物质的损失,影响电池容量和寿命;另一方面,锂枝晶一旦刺穿隔膜,将导致电池内部短路,造成起火等安全风险。 

3.5 中国企业重要参与者

中国主要企业有中国宝安[000009.SZ]、均胜电子[600699.SH]、许继电气[000400.SZ]、道通科技[688208.SH]、特锐德[300001.SZ]、盛弘股份[300693.SZ]、沃尔核材[002130.SZ]、万祥科技[301180.SZ]、得润电子[002055.SZ]、银河电子[002519.SZ]等。

图 上市公司市值Top 10

资料来源:资产信息网 千际投行 iFinD

(1)均胜电子:宁波均胜电子股份有限公司(股票代码:600699)是一家全球汽车电子与汽车安全顶级供应商,总部位处中国浙江省宁波市,主要致力于智能座舱、智能驾驶、新能源管理和汽车安全系统等的研发与制造,在全球汽车电子和汽车安全市场居于领先地位。

(2)许继电气:是中国电力装备行业的领先企业,致力于为国民经济和社会发展提供能源电力高端技术装备,为清洁能源生产、传输、配送以及高效使用提供全面的技术、产品和服务支撑。公司聚焦特高压、智能电网、新能源、电动汽车充换电、轨道交通及工业智能化五大核心业务,综合能源服务、先进储能、智能运维、电力物联网等新兴业务,产品广泛应用于电力系统各环节。

(3)万祥科技:万祥科技股份有限公司创立于2004年,总部位于江苏省苏州市吴中经济开发区,注册资本4亿元人民币,下设重庆井上通、东莞万仕祥、常州微宙电子5家全资子公司,为拥有核心竞争力的消费电子零部件、新能源汽车电池零部件供应商,形成了包括热敏保护组件、数电传控集成组件、精密结构件、柔性功能零组件及微型锂离子电池等日益丰富的产品线。

3.6 全球重要竞争者

(1)奥迪-保时捷:保时捷下的TAYCAN使用的是J1平台虽然是一个过渡&兼容400+800V的平台,但的确是高压快充行业较早一批。并在2020年6月就量产了,使用LG的软包电芯,快充性能可以达到270kW峰值功率,达到5min 100km + 15 min 10-80%SOC。但之后应该专注于PPE (Premium Platform Electric, 高端电动平台)。

(2)奔驰:基于EVA2的车型(奔驰也叫EVA),目前就是EQS,虽然其还是400V系统,但是已经初步具有了大功率快充的能力。目前奔驰官宣的15min 250km充电能力的来源——这是目前已经量产的EQS旗舰的能力。

MMA平台将在24年左右登场,主要针对紧凑级车——应该就是取代现在的EQA/B/C的基于油改电的车型),然后种种信息表明,这会是奔驰第一款基于800V架构的平台,那期待其具有很高的充电倍率,200kW以上的快充基本就是顺理成章的推测了。再考虑到奔驰体系对电池一向的高要求,电芯达到高比能+3C左右的快充指标也将指日可待。

(3)特斯拉:为400V大电流路线代表,引领早期快充发展。特斯拉早在2012年推出超充V1,快充功率仅能达到 100kW,到2022年特斯拉的超充发展到第四代 V4,通过不断提升电流到900A,快充功率峰值能够达到 350kW,可供特斯拉全部车型使用。

第四章 未来展望

主流车企加速布局,2022 年迎快充元年

海外主流车企、国内传统自主品牌以及新势力纷纷加速布局800V高压平台,2022年更多800V车型将陆续上市,或成为高压快充元年。

海外以保时捷2019年投产的 Taycan 为代表的,充电功率达到 280kW,保时捷与奥迪联合开发的PPE 平台将在 2022 年达成 300kW 的峰值充电功率;韩国的现代起亚Ioniq-5一步到位从400V转型到800V,在2021年达到220kW的充电功率,第二代产品将在2023年达到 260kW;奔驰和宝马都从400V路线转型,奔驰的 MMA800V 平台预计 2024 年投入使用,宝马的 NK1 800V 平台预计 2025 年投入使用。

国内自主品牌纷纷于2021-2022 年开始积极布局 800V 平台,2022 年有多个车型量产。800V 高压平台相比 400V 高压平台的拓扑结构变化不大,或新增DC/DC 转换器升压兼容 400V 充电桩,国内企业后续将从 400V 电池串并联升级到完整 800V 架构,持续系统性升级,成本较高,中短期内车企针对 800V 推出价位在 20-50 万元的中高端车型,以中大型轿车和 SUV 为主。

资料来源:资产信息网 千际投行 兴业证券

我国有望于2025年在部分城市实现2-3C公共充电桩的初步覆盖

根据中国汽车工程学会发布的《中国电动车充电基础设施发展战略与路线图研究(2021-2035)》,我国将于2025年实现2-3C的充电桩在重点区域的城市和城际公共充电设施的初步覆盖;于2030年实现3C及以上公共快充网络在城乡区域与高速公路的基本覆盖;在于 2035 年实现 3C 及以上快充在各应用场景下的全面覆盖。充电标准方面,中国电力企业联合会正在加紧制定ChaoJi 标准,将尽快落地。

资料来源:资产信息网 千际投行 安信证券

Cover Photo by CHUTTERSNAP on Unsplash

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/75899.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python爬虫——Scrapy框架

Scrapy是用python实现的一个为了爬取网站数据,提取结构性数据而编写的应用框架。使用Twisted高效异步网络框架来处理网络通信。 Scrapy架构: ScrapyEngine:引擎。负责控制数据流在系统中所有组件中流动,并在相应动作发生时触发事…

西部广播电视杂志《西部广播电视》杂志社《西部广播电视》编辑部2022年第21期目录

特稿:乡村振兴战略下的媒体实践《西部广播电视》投稿:cnqikantg126.com 乡村振兴中广播电视角色定位研究 王菾; 1-4 对农宣传中广播电视传播功能研究 周艺培; 5-711 广播电视助力涉农产业发展 胡朗铭; 8-11 省级乡村频道发展的典型个案研…

答疑1209

1、在fmu v2中回传电压值 在comm task 里面有电压读取的任务,pool 电池的电压状态 这是上层会调用hal层,也就是adc.c里面的read函数 主要是fmu v2 里面没有写adc的驱动函数,也就是driver层,这里需要模仿v5上面的驱动来补充一下&a…

[附源码]计算机毕业设计交通事故档案管理系统Springboot程序

项目运行 环境配置: Jdk1.8 Tomcat7.0 Mysql HBuilderX(Webstorm也行) Eclispe(IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持)。 项目技术: SSM mybatis Maven Vue 等等组成,B/S模式 M…

Pytest框架批量安装插件解析

1、新建一个工程 使用新的环境变量 1.1.插件文件 新建一个txt的文件,将常用插件放在该文件中,如下图 文件名:requirements.txt 常用插件: pytest pytest-html pytest-xdist pytest-ordering pytest-rerunfailures allure-pyt…

探究菊花文的“密码”(文中转换器源码仅一行代码哦)

菊花文、方框文,看起来很神奇的样子。其实,也就是在字符串中插入了特殊字符,利用特殊字符的显示特性获得的混合显示效果而已。(文中转换器源码仅一行代码哦🤗) (本文获得CSDN质量评分【90】)【学习的细节是欢悦的历程】Python 官网…

Alpine安装Oracle JDK存在的问题

简介 前面我们提到了Alpine使用的不是正统的glibc,对于一些强依赖glibc的系统建议不要使用Alpine,比如使用了Oracle JDK的系统,建议在Alpine换成OpenJDK。 Alpine官方给出了Alpine的三大特征 Small、Simple、Secure,但其实我们知…

【论文阅读】 AdaptivePose: Human Parts as Adaptive Points

DOI:https://doi.org/10.1609/aaai.v36i3.20185 AAAI 2022 Published:2022-06-28 Others阅读/整理:翻译1、翻译2 Intro&Background 多人姿态估计方法 two-stage methods【图a】 这些方法使用绝对关键点位置,定位的…

顺时针打印矩阵

大概题意为: 第一步: 第二步: 第三步: 第四步 : 这样核心就设计好了,接下来设计剩余的东西 设计题目程序 1.题目要求我们返回一个地址,所以我们创造一个一维数组,它的元素个数为行…

华为机试_HJ61 放苹果【简单】【收藏】

目录 描述 输入描述: 输出描述: 解题过程 提交代码 递归方法 动态规划方法 学习代码 递归方法 动态规划方法 收藏点 描述 把m个同样的苹果放在n个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法&#xff…

Postman(七): postman应用实战

Postman(13): postman应用实战 postman应用实战 下面以微信公众平台举例: 第一步、先创建文件夹 第二步、打开postman,创建collections 第三步、设置环境变量,全局变量 设置环境变量;如下图: 设置全局变量&#xf…

银河麒麟V10 + 飞腾CPU编译安装 Qt5.9.9

一、准备工作 1. 下载Qt源码包 这里我们要编译的是Qt5.9.9,下载网址:https://download.qt.io/archive/qt/5.9/5.9.9/single/ 在任意空闲位置新建文件夹,并将源码包放到该目录下。(这里在/home目录下新建名为Qt_Source的文件夹&a…

Unity Animancer插件(二)精确控制

一、通过名称播放动画 前面我们讲的都是直接通过动画片段的引用播放动画,Animancer也提供了直接通过动画名称来播放动画的方法。但这并不是推荐的使用方式,因为通过字符串播放比通过引用播放效率略低,且更难维护。 首先我们需要在角色身上挂…

2022年ACM杰出会员名单公布:23位华人学者入选

12月7日,2022年度ACM杰出会员(Distinguished Member)名单公布! 本次评选设有三个奖项,分别表彰在计算机领域做出的教育贡献、工程贡献和科学贡献。 ACM创立于1947年,目前在全球130多个国家和地区拥有超过…

OceanBase 4.0 解读:降低分布式数据库使用门槛,谈谈我们对小型化的思考

关于作者 赵裕众 OceanBase 资深技术专家,2010 年加入支付宝后从事分布式事务框架的研发,2013 年加入 OceanBase 团队,目前负责存储引擎相关的研发工作。 近年来,随着应用场景多样化和数据量的增长,我们看到分布式数据…

判别分析-书后习题回顾总结

5-2 题目 理论基础 多总体的距离判别 马氏距离:dG2(x)(x−μ)2σ2d^{2}_{G}(x)\frac{(x-\mu)^{2}}{\sigma^{2}}dG2​(x)σ2(x−μ)2​ 取马氏距离最小的那一个,就属于这类。 贝叶斯判别准则 计算qtft(x)q_{t}\times f_{t}(x)qt​ft​(x) ft(x)12πσ…

001:Object-C介绍、创建第一个iOS工程、MVC架构

常见APP基础业务模块: 常见App类型:通信与存储、流媒体、直播技术、图片处理、内容展示、Web、组件化、IM类型、音视频、直播类型、摄影摄像类型、资讯类型、工具、购物类型。 App 展示界面动画:底部TabBar、Navigation、列表、图片ImageVi…

一文囊括Ceph所有利器(工具)

原文链接: 知乎专栏: 一文囊括Ceph所有利器(工具) - 知乎 前言 ceph的工具很多,包括集群管理与运维,还有性能分析等等。 所以本文期望应收尽收所有的工具,也当做自己的一个梳理与总结,当自己需要的时候知道有哪些利器可以使用…

一文搞懂SSL/TLS

SSL/TLS1. 概述2. 协议组成2.1 握手协议(Handshake protocol)2.2 记录协议(Record Protocol)2.3 警报协议(Alert Protocol)3. 密码套件与密钥生成1. 概述 安全套接字层(SSL,Secure …

使用 X2MindSpore 迁移 Pytorch 训练脚本mobileNet支持分布式训练

简介 MindSpore是华为昇腾开发的深度学习框架,旨在提供端边云全场景的AI框架。 Pytorch是由Facebook推出的AI框架。 本教程使用MindStudio中的X2MindSpore功能自动将Pytorch脚本转换为MindSpore脚本的案例。使用的模型是分类任务模型mobileNet,数据集是c…