一、BP网络
1.1 单层感知机
单层感知机,就是只有一层神经元,它的模型结构如下1:
对于权重 w w w的更新,我们采用如下公式:
w i = w i + Δ w i Δ w i = η ( y − y ^ ) x i (1) w_i=w_i+\Delta w_i \\ \Delta w_i=\eta(y-\hat{y})x_i\tag{1} wi=wi+ΔwiΔwi=η(y−y^)xi(1)
其中, y y y 为标签, y ^ \hat{y} y^ 为模型输出值, η \eta η 为学习率, x i x_i xi 为模型输入。
这样我们就实现了对一层感知机的参数调整。
但是,单层感知机由于是线性的,拟合能力很有限,对于非线性可分的问题(比如异或)都是无法处理的。
1.2 多层感知机
如果是多层感知机,参数调整复杂一些,需要采用误差逆向传播算法。网络结构如图,这里假设我们只考虑包含一个隐含层的神经网络:
网络的具体参数如上图所示。
其在第k个样例上的误差为:
E k = 1 2 ∑ j = 1 l ( y ^ j k − y j k ) E_k=\frac{1}{2}\sum_{j=1}^l(\hat{y}_j^k-y_j^k) Ek=21j=1∑l(y^jk−yjk)
对于任意参数更新:
v
=
v
+
Δ
v
v=v+\Delta v
v=v+Δv
对于参数 w w w,
Δ w h j = − η ∂ E k ∂ w h j \Delta w_{hj}=-\eta \frac{\partial E_k}{\partial w_{hj}} Δwhj=−η∂whj∂Ek
∂ E k ∂ w h j = ∂ E k ∂ y ^ j k ⋅ ∂ y ^ j k ∂ β j ⋅ ∂ β j ∂ w h j \frac{\partial E_k}{\partial w_{hj}}=\frac{\partial E_k}{\partial \hat{y}_j^k} \cdot \frac{\partial \hat{y}_j^k}{\partial \beta_j} \cdot \frac{\partial \beta_j}{\partial w_{hj}} ∂whj∂Ek=∂y^jk∂Ek⋅∂βj∂y^jk⋅∂whj∂βj
β i \beta_i βi为输出层的输入,根据其定义,
∂ β j ∂ w h j = b h \frac{\partial \beta_j}{\partial w_{hj}}=b_h ∂whj∂βj=bh
其中 b h b_h bh为隐含层的输出。
因为每一层要经过一个激活函数,这里我们采用的是sigmoid函数,他有一个很好的性质:
f ′ ( x ) = f ( x ) ( 1 − f ( x ) ) f'(x)=f(x)(1-f(x)) f′(x)=f(x)(1−f(x))
于是就有:
g j = − ∂ E k ∂ y ^ j k ⋅ ∂ y ^ j k ∂ β j = − ( y ^ j k − y j k ) f ′ ( β j − θ j ) = y ^ j k ( 1 − y ^ j k ) ( y j k − y ^ j k ) \begin{aligned} g_j=& -\frac{\partial E_k}{\partial \hat{y}_j^k} \cdot \frac{\partial \hat{y}_j^k}{\partial \beta_j} \\ =&-(\hat{y}_j^k-y_j^k)f'(\beta_j-\theta_j)\\ =&\hat{y}_j^k(1-\hat{y}_j^k)(y_j^k-\hat{y}_j^k) \end{aligned} gj===−∂y^jk∂Ek⋅∂βj∂y^jk−(y^jk−yjk)f′(βj−θj)y^jk(1−y^jk)(yjk−y^jk)
其中, θ j \theta_j θj 为第j个输出神经元的 bias。
这样,我们就得到了 w w w的更新量(注意:这里不需要加负号了,因为我们已经在 g j g_j gj中添加过了),
Δ w h j = η g j b h \Delta w_{hj}=\eta g_j b_h Δwhj=ηgjbh
Δ θ j = − η g j Δ v i h = η e h x i Δ γ h = − η e h \Delta \theta_j=-\eta g_j\\ \Delta v_{ih}=\eta e_h x_i \\ \Delta \gamma_h=-\eta e_h Δθj=−ηgjΔvih=ηehxiΔγh=−ηeh
在BP算法中,假设我们的只有3层网络,1个输入层、一个隐含层、一个输出层,那么参数的数量为 d × q + q × l + q + l d\times q+q\times l+q+l d×q+q×l+q+l(其中,d,q,l分别为输入层、隐藏层、输出层的神经元数量),我们根据上面的公式就可以进行参数的迭代计算了。
而根据不同的输入数据,隐藏层神经元的数量如何设置呢?我这里采用了一个经验公式,参考自bp隐含层节点数经验公式。
文中指出:
q = ( d + l ) × 2 3 q=(d+l)\times \frac{2}{3} q=(d+l)×32
二、基于weka代码实现
package weka.classifiers.myf;
import weka.classifiers.Classifier;
import weka.core.*;
import weka.core.matrix.Matrix;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.NominalToBinary;
/**
* @author YFMan
* @Description 自定义的 BP 神经网络 分类器
* @Date 2023/6/7 11:30
*/
public class myBPNet extends Classifier {
/*
* @Author YFMan
* @Description //主函数
* @Date 2023/6/7 19:14
* @Param [argv 命令行参数]
* @return void
**/
public static void main(String[] argv) {
runClassifier(new myBPNet(), argv);
}
// 训练数据
private Instances m_instances;
// 当前正在训练的样例
private Instance m_currentInstance;
// 训练总次数
private final int m_numEpochs;
// 二值化过滤器,将标称属性转换为二值属性,进而输入到神经网络中
private final NominalToBinary m_nominalToBinaryFilter;
// 学习率
private final double m_learningRate;
// 当前的训练误差
private double m_error;
// 输入维度(输入层神经元数量)
private int m_numInputs;
// 隐藏层维度(隐藏层神经元数量)
private int m_numHidden;
// 输出维度(输出层神经元数量)
private int m_numOutputs;
// 输入层的输出
private Matrix m_input;
// 输入层到隐藏层的权重矩阵
private Matrix m_weightsInputHidden;
// 隐藏层到输出层的权重矩阵
private Matrix m_weightsHiddenOutput;
// 隐藏层的阈值
private Matrix m_hiddenThresholds;
// 输出层的阈值
private Matrix m_outputThresholds;
// 隐藏层的输出
private Matrix m_hiddenOutput;
// 输出层的输出
private Matrix m_output;
// 输出层对应的标签
private Matrix m_labels;
/*
* @Author YFMan
* @Description // BP 网络 构造函数
* @Date 2023/6/7 19:04
* @Param []
* @return
**/
public myBPNet() {
// 训练数据
m_instances = null;
// 当前样例
m_currentInstance = null;
// 训练误差
m_error = 0;
// 二值化过滤器,将标称属性转换为二值属性
m_nominalToBinaryFilter = new NominalToBinary();
// 训练总次数
m_numEpochs = 500;
// 学习率
m_learningRate = .3;
}
/*
* @Author YFMan
* @Description //Sigmoid函数
* @Date 2023/6/7 19:53
* @Param [x]
* @return double
**/
double sigmoid(double x) {
return 1.0 / (1.0 + Math.exp(-x));
}
/*
* @Author YFMan
* @Description //前向传播
* @Date 2023/6/7 19:47
* @Param []
* @return void
**/
void forwardPropagation() {
// 初始化输入层的输出
for (int i = 0; i < m_numInputs; i++) {
m_input.set(0, i, m_currentInstance.value(i));
}
// 计算隐藏层的输出
m_hiddenOutput = m_input.times(m_weightsInputHidden);
// 减去阈值
m_hiddenOutput = m_hiddenOutput.minus(m_hiddenThresholds);
// 激活函数
for (int i = 0; i < m_numHidden; i++) {
m_hiddenOutput.set(0, i, sigmoid(m_hiddenOutput.get(0, i)));
}
// 计算输出层的输出
m_output = m_hiddenOutput.times(m_weightsHiddenOutput);
// 减去阈值
m_output = m_output.minus(m_outputThresholds);
// 激活函数
for (int i = 0; i < m_numOutputs; i++) {
m_output.set(0, i, sigmoid(m_output.get(0, i)));
}
}
/*
* @Author YFMan
* @Description //反向传播
* @Date 2023/6/7 20:20
* @Param []
* @return void
**/
void backPropagation() {
// 获取当前样例的标签
m_labels = new Matrix(1, m_numOutputs);
for (int i = 0; i < m_numOutputs; i++) {
// 将标签转换为矩阵(最后部分的 binary 对应 类标签 标值)
m_labels.set(0, i, m_currentInstance.value(m_numInputs + i));
}
// 计算 g = m_output * (1 - m_output) * (m_labels - m_output)
// 输出层的误差
Matrix m_outputError = m_output.copy();
m_outputError = m_outputError.times(-1);
// 创建一个全为 1 的矩阵 用于 1 - m_output
Matrix one = new Matrix(1, m_numOutputs, 1);
m_outputError = m_outputError.plus(one);
m_outputError = m_outputError.arrayTimes(m_output);
m_outputError = m_outputError.arrayTimes(m_labels.minus(m_output));
// 计算 隐藏层到输出层的权重矩阵的增量 deltaWeightsHiddenOutput = m_learningRate * g * b_h
// 隐藏层到输出层的权重矩阵的增量
Matrix m_deltaWeightsHiddenOutput = new Matrix(m_numHidden, m_numOutputs);
for(int h = 0; h < m_numHidden; h++) {
for(int j = 0; j < m_numOutputs; j++) {
m_deltaWeightsHiddenOutput.set(h, j, m_learningRate * m_outputError.get(0, j) * m_hiddenOutput.get(0, h));
}
}
// 计算 隐藏层到输出层的阈值的增量 deltaOutputThresholds = - m_learningRate * g
// 输出层的阈值的增量
Matrix m_deltaOutputThresholds = m_outputError.times(-m_learningRate);
// 计算 隐藏层的误差 hiddenError = b_h * (1 - b_h) * g * m_weightsHiddenOutput.transpose()
Matrix one1 = new Matrix(1, m_numHidden, 1);
// 隐藏层的误差
Matrix m_hiddenError = m_hiddenOutput.copy();
m_hiddenError = m_hiddenError.times(-1);
m_hiddenError = m_hiddenError.plus(one1);
m_hiddenError = m_hiddenError.arrayTimes(m_hiddenOutput);
m_hiddenError = m_hiddenError.arrayTimes(m_outputError.times(m_weightsHiddenOutput.transpose()));
// 计算 输入层到隐藏层的权重矩阵的增量 deltaWeightsInputHidden = m_learningRate * hiddenError * x_i
// 输入层到隐藏层的权重矩阵的增量
Matrix m_deltaWeightsInputHidden = new Matrix(m_numInputs, m_numHidden);
for(int i = 0; i < m_numInputs; i++) {
for(int h = 0; h < m_numHidden; h++) {
m_deltaWeightsInputHidden.set(i, h, m_learningRate * m_hiddenError.get(0, h) * m_input.get(0, i));
}
}
// 计算 输入层到隐藏层的阈值的增量 deltaHiddenThresholds = - m_learningRate * hiddenError
// 隐藏层的阈值的增量
Matrix m_deltaHiddenThresholds = m_hiddenError.times(-m_learningRate);
// 更新 隐藏层到输出层的权重矩阵
m_weightsHiddenOutput = m_weightsHiddenOutput.plus(m_deltaWeightsHiddenOutput);
// 更新 隐藏层到输出层的阈值
m_outputThresholds = m_outputThresholds.plus(m_deltaOutputThresholds);
// 更新 输入层到隐藏层的权重矩阵
m_weightsInputHidden = m_weightsInputHidden.plus(m_deltaWeightsInputHidden);
// 更新 输入层到隐藏层的阈值
m_hiddenThresholds = m_hiddenThresholds.plus(m_deltaHiddenThresholds);
// 更新训练误差
m_error += calculateError();
}
/*
* @Author YFMan
* @Description //计算训练误差
* @Date 2023/6/7 21:04
* @Param []
* @return double
**/
double calculateError() {
// 计算误差
double error = 0;
for (int i = 0; i < m_numOutputs; i++) {
error += Math.pow(m_labels.get(0, i) - m_output.get(0, i), 2);
}
error /= 2;
return error;
}
/*
* @Author YFMan
* @Description //训练BP网络
* @Date 2023/6/7 19:44
* @Param []
* @return void
**/
void train() {
// 遍历epochs次训练
for (int i = 0; i < m_numEpochs; i++) {
// 初始化训练误差
m_error = 0;
// 遍历训练数据
for (int j = 0; j < m_instances.numInstances(); j++) {
// 获取当前训练样例
m_currentInstance = m_instances.instance(j);
// 前向传播
forwardPropagation();
// 反向传播
backPropagation();
}
// 打印训练误差
System.out.println("Epoch " + (i + 1) + " error: " + m_error);
// 训练误差小于0.01,停止训练
if (m_error < 0.01) {
break;
}
}
}
/*
* @Author YFMan
* @Description //根据训练数据训练BP网络
* @Date 2023/6/7 19:12
* @Param [instances 训练数据]
* @return void
**/
public void buildClassifier(Instances instances) throws Exception {
// 训练数据
m_instances = instances;
// 获取训练数据的标签
m_nominalToBinaryFilter.setInputFormat(m_instances);
m_instances = Filter.useFilter(m_instances, m_nominalToBinaryFilter);
m_numInputs = 0;
// 遍历训练数据,获取输入维度、隐藏层维度、输出维度
for (int i = 0; i < instances.numAttributes(); i++) {
// 获取输入维度
if (i != instances.classIndex()) {
if(instances.attribute(i).numValues()<=2){
m_numInputs += 1;
}
else{
m_numInputs += instances.attribute(i).numValues();
}
} else { // 获取输出维度
if(instances.attribute(i).numValues()<=2){
m_numOutputs = 1;
}
else{
m_numOutputs = instances.attribute(i).numValues();
}
}
}
// 隐藏层维度(输入维度+输出维度) * 2 / 3
m_numHidden = (m_numInputs + m_numOutputs) * 2 / 3;
// 初始化输入层
m_input = new Matrix(1, m_numInputs);
// 初始化权重矩阵
m_weightsInputHidden = Matrix.random(m_numInputs, m_numHidden);
m_weightsHiddenOutput = Matrix.random(m_numHidden, m_numOutputs);
// 初始化隐藏层阈值向量
m_hiddenThresholds = new Matrix(1, m_numHidden);
// 初始化输出层阈值向量
m_outputThresholds = new Matrix(1, m_numOutputs);
// 训练误差
m_error = 0;
// 训练
train();
}
/*
* @Author YFMan
* @Description //根据样例分类数据,返回各个类别的概率
* @Date 2023/6/7 19:11
* @Param [instance 输入样例]
* @return double[] 各个类别的概率
**/
public double[] distributionForInstance(Instance instance) throws Exception {
// 将输入样例由标称属性转换为二值属性
m_nominalToBinaryFilter.input(instance);
m_currentInstance = m_nominalToBinaryFilter.output();
// 前向传播
forwardPropagation();
// 如果输出维度为1,返回概率
double[] result;
if (m_numOutputs == 1) {
result = new double[2];
result[0] = 1 - m_output.get(0, 0);
result[1] = m_output.get(0, 0);
}
else{ // 否则,进行归一化处理
result = m_output.getRowPackedCopy();
// 归一化处理
double sum = 0;
for (double v : result) {
sum += v;
}
for (int i = 0; i < result.length; i++) {
result[i] /= sum;
}
}
return result;
}
}
周志华.《机器学习》 ↩︎