基于Nonconvex规划的配电网重构研究(Matlab代码实现)

news2024/11/26 4:34:25

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

本文基于Nonconvex规划的配电网重构研究。并用Matlab代码实现之。

基于Nonconvex规划的配电网重构研究是针对配电网优化问题的一种方法。传统的配电网通常是基于线性或者凸规划进行设计和运行,但是实际配电网系统的复杂性往往导致非线性和非凸问题的出现。为解决这些问题,基于Nonconvex规划的方法被提出来更好地优化配电网系统。

配电网重构是指通过变换网络拓扑结构和配置设备参数,以改善配电网的性能和可靠性。基于Nonconvex规划的配电网重构研究通常包括以下几个方面:

1. 非线性建模:将配电网系统建模为非线性的数学模型。这包括考虑网络拓扑结构、设备参数、电流限制、电压限制等的非线性方程和约束条件。

2. 问题定义:明确定义配电网重构的目标,例如最小化损耗、提高电压稳定性、降低网络阻塞等。同时,考虑到配电网的约束条件,例如设备的额定容量、电压限制、工作模式等。

3. Nonconvex规划建模:将配电网重构问题转化为Nonconvex规划问题。这可能涉及到非线性约束和非凸目标函数,并且由于配电网的复杂性,问题可能具有多个局部最优解。

4. 优化算法:针对Nonconvex规划问题,需要选择适当的优化算法来求解最优解。常见的算法包括非线性规划算法、启发式算法(如遗传算法、粒子群算法等)以及近似方法等。这些算法可以搜索到全局或者局部最优解。

5. 结果分析和评估:根据求解得到的最优解,分析和评估配电网的性能指标。这可能包括网络损耗、电压稳定性、负荷均衡等方面的评估。

6. 重构方案实施:根据优化结果,制定并实施配电网重构方案。这可能涉及到改变配电网的拓扑结构、设备配置、控制策略等。

基于Nonconvex规划的配电网重构研究能够更好地应对实际配电网系统的复杂性,帮助提高能源利用效率,降低电力系统的运行成本,并提高系统的可靠性和稳定性。然而,由于Nonconvex规划问题的复杂性,求解过程可能较为困难,需要综合考虑求解效率和解的质量。

📚2 运行结果

14147.3秒得到了全局最优,网损为1.7430,AA=[1;1;1;1;1;1;0;1;0;1;1;1;1;0;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;0;1;1;1;1;0]

部分代码:

%SB=100MVA,UB=12.66kV,IEEE-33 Bus,Distflow SOC-ACOPF
%考虑重构,全天拓扑不变
clear
clc
tic
%网络数据,标幺值
Pload=。。。
Line(:,3)=Line(:,3)*100/(12.66^2);
r=real(Line(:,3));
x=imag(Line(:,3));
father=zeros(33,37);son=zeros(33,37);
for i=1:32
    father(i,i)=1;
end
father(20,33)=1;father(14,34)=1;father(21,35)=1;father(32,36)=1;father(28,37)=1;
for i=[1:16,18:20,22:23,25:31]
    son(i,i+1)=1;
end
son(1,18)=1;son(2,22)=1;son(5,25)=1;son(33,1)=1;son(7,33)=1;son(8,34)=1;son(11,35)=1;son(17,36)=1;son(24,37)=1;
Umax=[1.07*1.07*ones(32,24);1.05*1.05*ones(1,24)];
Umin=[0.93*0.93*ones(32,24);1.05*1.05*ones(1,24)];
Pgmax=[zeros(32,24);ones(1,24)];
Qgmax=[zeros(32,24);ones(1,24)];
%定义变量
P=sdpvar(37,24);%线路有功
Q=sdpvar(37,24);%线路无功
U=sdpvar(33,24);%电压的平方
I=sdpvar(37,24);%电流的平方
Pg=[zeros(32,24);sdpvar(1,24)];%发电机有功
Qg=[zeros(32,24);sdpvar(1,24)];%发电机无功
AA=binvar(37,1);%网架结构
A0=[ones(32,1);zeros(5,1)];%初始拓扑
assign(AA,A0);
Pin=-father*P+father*(I.*(r*ones(1,24)))+son*P;%节点注入有功
Qin=-father*Q+father*(I.*(x*ones(1,24)))+son*Q;%节点注入无功
P_tree=sdpvar(37,1);%虚拟有功
Pin_tree=-father*P_tree+son*P_tree;%虚拟节点注入有功
Ploss_total=sum(sum(I.*(r*ones(1,24))));%目标函数,网损最小
%约束条件
C1=[sum(AA)==32,U>=Umin,U<=Umax,Pg>=-Pgmax,Pg<=Pgmax,Qg>=-Qgmax,Qg<=Qgmax,I>=0,I<=0.11*AA*ones(1,24),-AA<=P_tree<=AA,-0.11*AA*ones(1,24)<=P<=0.11*AA*ones(1,24),-0.11*AA*ones(1,24)<=Q<=0.11*AA*ones(1,24)];%边界约束
C2=[Pin+Pload-Pg==0,Pin_tree(1:32)+0.01==0];%有功KCL约束
C3=[Qin+Qload-Qg==0];%无功KCL约束
C4=[-(1.07*1.07-0.93*0.93)*(1-AA)*ones(1,24)<=-U(Line(:,2),:)+U(Line(:,1),:)-2*(r*ones(1,24)).*P-2*(x*ones(1,24)).*Q+((r.^2+x.^2)*ones(1,24)).*I<=(1.07*1.07-0.93*0.93)*(1-AA)*ones(1,24)];%电压降落约束
C=[C1,C2,C3,C4];
toc%建模时间
ops=sdpsettings('solver','gurobi','usex0',1);
[model,recoverymodel,diagnostic,internalmodel] = export(C,Ploss_total,ops);%得到除去P^2+Q^2=UI的约束
params.Nonconvex=2;%启动gurobi非线性求解器
params.FeasibilityTol=1e-9;%由于gurobi采取的是双层模型,因此可行性步长应尽可能小
params.IntFeasTol=1e-9;%由于gurobi对非线性模型采用的是外嵌分支定界算法,相当于求解MIP问题,因此整数可行性要足够精确
params.Threads=8;%并行计算,8线程
L=length(model.obj);%决策变量数
%下面定义P^2+Q^2=UI的约束,模型为sum(Qval*x(Qrow)*x(Qcol))+q*x=rhs
for t=1:24
    for j=1:37
        model.quadcon(37*t-37+j).Qrow=[37*t-37+j,37*t-37+j+37*24,33*t-33+Line(j,1)+37*24*2];%P,Q,Uj
        model.quadcon(37*t-37+j).Qcol=[37*t-37+j,37*t-37+j+37*24,37*t-37+j+37*24*2+33*24];%P,Q,I
        model.quadcon(37*t-37+j).Qval=[1,1,-1];%P^2+Q^2-UI
        model.quadcon(37*t-37+j).q=sparse(L,1);
        model.quadcon(37*t-37+j).rhs=0;
        model.quadcon(37*t-37+j).sense='=';%严格等号

%定义变量
P=sdpvar(37,1);%线路有功
Q=sdpvar(37,1);%线路无功
U=sdpvar(33,1);%电压的平方
I=sdpvar(37,1);%电流的平方
Pg=[zeros(32,1);sdpvar];%发电机有功
Qg=[zeros(32,1);sdpvar];%发电机无功
AA=binvar(37,1);%网架结构
A0=[ones(32,1);zeros(5,1)];%初始拓扑
assign(AA,A0);
Pin=-father*P+father*(I.*r)+son*P;%节点注入有功
Qin=-father*Q+father*(I.*x)+son*Q;%节点注入无功
P_tree=sdpvar(37,1);%虚拟有功
Pin_tree=-father*P_tree+son*P_tree;%虚拟节点注入有功
Ploss_total=sum(I.*r);%目标函数,网损最小
%约束条件
C1=[sum(AA)==32,U>=Umin,U<=Umax,Pg>=-Pgmax,Pg<=Pgmax,Qg>=-Qgmax,Qg<=Qgmax,I>=0,I<=0.11*AA,-AA<=P_tree<=AA,-0.11*AA<=P<=0.11*AA,-0.11*AA<=Q<=0.11*AA];%边界约束
C2=[Pin+Pload-Pg==0,Pin_tree(1:32)+0.01==0];%有功KCL约束
C3=[Qin+Qload-Qg==0];%无功KCL约束
C4=[-(1.07*1.07-0.93*0.93)*(1-AA)<=-U(Line(:,2),:)+U(Line(:,1),:)-2*r.*P-2*x.*Q+(r.^2+x.^2).*I<=(1.07*1.07-0.93*0.93)*(1-AA)];%电压降落约束
C=[C1,C2,C3,C4];
toc%建模时间
ops=sdpsettings('solver','gurobi','usex0',1);
[model,recoverymodel,diagnostic,internalmodel] = export(C,Ploss_total,ops);%得到除去P^2+Q^2=UI的约束
params.Nonconvex=2;%启动gurobi非线性求解器
params.FeasibilityTol=1e-9;%由于gurobi采取的是双层模型,因此可行性步长应尽可能小
params.IntFeasTol=1e-9;%由于gurobi对非线性模型采用的是外嵌分支定界算法,相当于求解MIP问题,因此整数可行性要足够精确
params.Threads=8;%并行计算,8线程
L=length(model.obj);%决策变量数
%下面定义P^2+Q^2=UI的约束,模型为sum(Qval*x(Qrow)*x(Qcol))+q*x=rhs

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]刘畅,王治邦,黎静华.考虑配电网重构的电-气联合传输网络规划[J].广西大学学报(自然科学版),2023,48(03):616-630.DOI:10.13624/j.cnki.issn.1001-7445.2023.0616.

[2]吴达雷.电动汽车规模化接入后配电网重构系统[J].机械设计与制造工程,2023,52(05):83-86.

[3]吴艳敏,程相,刘家旗.基于SA-CS算法的含分布式电源配电网优化重构[J].科学技术与工程,2023,23(02):626-632.

🌈4 Matlab代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/750342.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【原理图专题】OrCAD Capture如何批量修改原理图网络名称

在实际的工作中,我们很少是从0到1。很多时候供应商或是前人已经给我们留下了电路图,我们要做的初级工作就是让这些标准电路为我们所用。 但事实却是,供应商他们自己公司有自己的一套画图命名标准,而我们自己也有一套命名规则。因为大为都是自己熟悉自己的,所以导致了不能…

【我们一起60天准备考研算法面试(大全)-第十天 10/60】

专注 效率 记忆 预习 笔记 复习 做题 欢迎观看我的博客&#xff0c;如有问题交流&#xff0c;欢迎评论区留言&#xff0c;一定尽快回复&#xff01;&#xff08;大家可以去看我的专栏&#xff0c;是所有文章的目录&#xff09;   文章字体风格&#xff1a; 红色文字表示&#…

PLL 设计理论

鉴相器的输出驱动电荷泵的开关&#xff0c;再经过滤波器得到一个输出电压&#xff0c;通过VCO产生一个频率&#xff0c;再通过分频器反馈回鉴相器。 杂散&#xff1a;常见的杂散分为参考杂散和小数杂散。参考杂散是指在锁相环输出信号的频谱中&#xff0c;特定频偏处出现的非理…

基于springboot的地铁轨道交通运营系统

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容&#xff1a;毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目介绍…

【LeetCode】动态规划 刷题训练(九)

文章目录 环绕字符串中唯一的子字符串题目解析状态转移方程返回值完整代码 最长递增子序列子数组与子序列的区别状态转移方程完整代码 摆动序列题目解析状态转移方程f[i]状态转移方程g[i]状态转移方程 完整代码 环绕字符串中唯一的子字符串 点击查看:467. 环绕字符串中唯一的子…

Flutter——最详细(NavigationBar)使用教程

NavigationBar简介 Material 3 导航栏组件! 导航栏提供了一种持久且便捷的方式来在应用程序的主要目的地之间进行切换。 使用场景&#xff1a; 底部菜单栏模块 属性作用onDestinationSelected选择索引回调监听器selectedIndex目前选定目的地的索引destinations存放菜单按钮back…

Filter的四大插件(grok、date、mutate、mutiline)

Filter的四个插件 一、grok 正则捕获插件1、grok 的概念2、内置正则表达式调用3、常用的常量NetworkingpathsMonths: January, Feb, 3, 03, 12, DecemberDays: Monday, Tue, Thu, etc...Years?Syslog Dates: Month Day HH:MM:SSShortcutsLog formatsLog Levels 3、自定义表达式…

49. 字母异位词分组

题目链接&#xff1a;力扣 解题思路&#xff1a;字母异位词分组也就是将&#xff1a;字母以及字母个数都相同的单词组合成一组&#xff0c;然后返回结果&#xff0c;比如ate&#xff0c;eat&#xff0c;tea都是由1个a&#xff0c;1个t&#xff0c;1个e组成。 所以&#xff0c…

【python基础】python中的with关键字及其相关用法

目录 1.with关键字 2.上下文管理器 3.总结 4.with torch.no_grad()的用法 在Python中&#xff0c;with是一个关键字&#xff0c;用于处理上下文管理器&#xff08;context manager&#xff09;。上下文管理器是一种对象&#xff0c;它定义了在进入和离开某个上下文时应该执…

7.12~7.13学习总结

public static void main(String[] args){File dirnew File("D:\\小花花");boolean flag dir.mkdir();System.out.println(flag);File dirsnew File("D:\\小花花\\你爸爸");dirs.mkdirs();String[]adir.list();//列出下一级&#xff1b;字符串数组for(Stri…

了解 JVM - 认识垃圾回收机制与类加载过程

前言 本篇通过介绍JVM是什么&#xff0c;认识JVM的内存区域的划分&#xff0c;了解类加载过程&#xff0c;JVM中垃圾回收机制&#xff0c;从中了解到垃圾回收机制中如何找到存活对象的方式&#xff0c;引用计数与可达性分析的方式&#xff0c;再释放垃圾对象时使用的方式&…

【YOLO】yolov5的训练策略1 -- 训练热身warmup

目录 一、什么是训练热身二、常见的训练热身1. Constant Warmup2. Linner Warmup2. Cosine Warmup 三、yolov5的训练热身代码 一、什么是训练热身 众所周知学习率是一个非常重要的超参数&#xff0c;直接影响着网络训练的速度和收敛情况。通常情况下&#xff0c;网络开始训练之…

DNS 是如何影响你冲浪速度的?

本文详细介绍了 DNS 相关知识&#xff0c;包括 DNS 工作原理、如何提升域名解析速度、以及 DNS 记录与报文等内容。 1. 域名与域名服务器 在日常上网过程中&#xff0c;出于好记的原因&#xff0c;人们更喜欢在浏览器中输入网站的域名&#xff0c;而不是 IP 地址。比如想要访问…

小红书如何运营 策略方法总结

大家好&#xff0c;我是权知星球&#xff0c;今天跟大家分享一下小红书如何运营和策略方法总结。 小红书是一个生活方式和消费决策平台&#xff0c;并为用户提供入口&#xff0c;作为一个生活方式社区&#xff0c;小红书的独特之处在于其用户发布的内容都来自于真实生活&#…

MySQL-DDL-数据库操作

开发项目流程 数据库设计-DDL DDL&#xff1a;Data Definition Language&#xff0c;数据定义语言&#xff0c;用来定义数据库对象&#xff08;数据库、表&#xff09; 数据库 常见操作 查询 查询所有数据库&#xff1a;show databases&#xff1b; 查询当前数据库&#xf…

A Simple Framework for Contrastive Learning of Visual Representations(论文翻译)

A Simple Framework for Contrastive Learning of Visual Representations 摘要1介绍2 方法2.1 对比学习框架2.2 训练大批量数据2.3 评估协议 3.用于对比表示学习的数据增强3.1.数据增强操作的组合对于学习良好的表示至关重要3.2 对比学习需要更强的数据增强比有监督学习 4. 编…

STM32单片机WIFI阿里云老人智能家居语音识别定时吃药

实践制作DIY- GC00158-WIFI阿里云老人智能家居语音识别定时吃药 一、功能说明&#xff1a; 基于STM32单片机设计------WIFI阿里云老人智能家居语音识别定时吃药 二、功能说明&#xff1a; 电路组成&#xff1a;STM32F103CXT6最小系统LD3322语音识别模块LCD1602显示按键1个ULN2…

【网络安全】渗透测试工具——Burp Suite

渗透测试工具Burp Suite主要功能详解 前言一、 Proxy模块1.1 界面布局1.1.1 菜单栏&#xff08;1&#xff09; 菜单栏 Burp&#xff08;2&#xff09; 菜单栏 project&#xff08;3&#xff09; 菜单栏 Intruder&#xff08;4&#xff09; 菜单栏 Repeater&#xff08;5&#x…

微信小程序开发:必须掌握的 HTML、CSS 和 JavaScript 技术

引言 小程序是一种轻量级的应用程序&#xff0c;通过HTML、CSS和JavaScript等前端技术开发&#xff0c;可在移动设备上直接访问和使用&#xff0c;无需下载和安装。 文章目录 引言一、小程序开发的背景和重要性二、HTML、CSS和JavaScript在小程序开发中的作用三、HTML基础知识1…

一篇文章搞定《JVM的完美图解》

一篇文章搞定《JVM的完美图解》 前言常见的问题1、双亲委托机制2、类加载过程加载链接初始化 3、JVM内存结构图方法区堆栈本地方法栈程序计数器 4、对象的组成对象头示例数据对齐字节 5、JVM中怎么确定一个对象是否可以GC引用计数法&#xff08;早期策略&#xff09;可达性分析…