【ELK 企业级日志分析系统】

news2024/11/28 8:27:05

目录

  • 一、ELK 概述
    • 1、ELK 简介
      • 1、可以添加的其它组件:
      • 2、filebeat 结合 logstash 带来好处:
    • 2、为什么要使用 ELK
    • 3、完整日志系统基本特征
    • 4、ELK 的工作原理
  • 二、实验操作
    • 1、ELK Elasticsearch 集群部署(在Node1、Node2节点上操作)
      • 1.1、设置Java环境
    • 2.部署 Elasticsearch 软件
      • (1)安装elasticsearch—rpm包
      • (2)修改elasticsearch主配置文件
      • (3)es 性能调优参数(在node01和node02里面添加配置)
      • (4)启动elasticsearch是否成功开启
      • (5)查看节点信息
    • 3.安装 Elasticsearch-head 插件
      • (1)编译安装 node
      • (2)安装 phantomjs
      • (3)安装 Elasticsearch-head 数据可视化工具
      • (4)修改 Elasticsearch 主配置文件
      • (5)启动 elasticsearch-head 服务
      • (6)通过 Elasticsearch-head 查看 Elasticsearch 信息
      • (7)插入索引
        • 1、Elasticsearch 索引管理(==面试题==)
    • 4、ELK Logstash 部署(在 Apache 节点上操作)
      • 1.更改主机名
      • 2.安装Apahce服务(nginx)
      • 3.安装Java环境
      • 4.安装logstash
      • 5.测试 Logstash
        • 5.1、定义输入和输出流
      • 6.定义 logstash配置文件
        • 6.1、格式如下
        • 6.2、在每个部分中,也可以指定多个访问方式。例如,若要指定两个日志来源文件,则格式如下
        • 6.3、修改 Logstash 配置文件,让其收集系统日志/var/log/messages,并将其输出到 elasticsearch 中。
    • 5、ELK Kiabana 部署(在 Node1 节点上操作)
      • 1.安装 Kiabana
      • 2.设置 Kibana 的主配置文件
      • 3.创建日志文件,启动 Kibana 服务
      • 4.验证 Kibana
    • 6、Filebeat+ELK 部署
      • 1、在 Filebeat 节点上操作
        • 1.安装 Filebeat
        • 2.设置 filebeat 的主配置文件
        • 3、启动 filebeat
        • 4.在 Logstash 组件所在节点上新建一个 Logstash 配置文件
        • 5、启动 logstash
        • 6.浏览器访问 http://192.168.80.10:5601 登录 Kibana


一、ELK 概述

1、ELK 简介

ELK平台是一套完整的日志集中处理解决方案,将 ElasticSearch、Logstash 和 Kiabana 三个开源工具配合使用, 完成更强大的用户对日志的查询、排序、统计需求。

●ElasticSearch:是基于Lucene(一个全文检索引擎的架构)开发的分布式存储检索引擎,用来存储各类日志。
Elasticsearch 是用 Java 开发的,可通过 RESTful Web 接口,让用户可以通过浏览器与 Elasticsearch 通信。
Elasticsearch是一个实时的、分布式的可扩展的搜索引擎,允许进行全文、结构化搜索,它通常用于索引和搜索大容量的日志数据,也可用于搜索许多不同类型的文档。

●Kiabana:Kibana 通常与 Elasticsearch 一起部署,Kibana 是 Elasticsearch 的一个功能强大的数据可视化 Dashboard,Kibana 提供图形化的 web 界面来浏览 Elasticsearch 日志数据,可以用来汇总、分析和搜索重要数据。

●Logstash:作为数据收集引擎。它支持动态的从各种数据源搜集数据,并对数据进行过滤、分析、丰富、统一格式等操作,然后存储到用户指定的位置,一般会发送给 Elasticsearch。
Logstash 由 Ruby 语言编写,运行在 Java 虚拟机(JVM)上,是一款强大的数据处理工具, 可以实现数据传输、格式处理、格式化输出。Logstash 具有强大的插件功能,常用于日志处理。

1、可以添加的其它组件:

●Filebeat:轻量级的开源日志文件数据搜集器。通常在需要采集数据的客户端安装 Filebeat,并指定目录与日志格式,Filebeat 就能快速收集数据,并发送给 logstash 进行解析,或是直接发给 Elasticsearch 存储,性能上相比运行于 JVM 上的 logstash 优势明显,是对它的替代。常应用于 EFLK 架构当中。

2、filebeat 结合 logstash 带来好处:

1)通过 Logstash 具有基于磁盘的自适应缓冲系统,该系统将吸收传入的吞吐量,从而减轻 Elasticsearch 持续写入数据的压力
2)从其他数据源(例如数据库,S3对象存储或消息传递队列)中提取
3)将数据发送到多个目的地,例如S3,HDFS(Hadoop分布式文件系统)或写入文件
4)使用条件数据流逻辑组成更复杂的处理管道

●缓存/消息队列(redis、kafka、RabbitMQ等):可以对高并发日志数据进行流量削峰和缓冲,这样的缓冲可以一定程度的保护数据不丢失,还可以对整个架构进行应用解耦。

●Fluentd:是一个流行的开源数据收集器。由于 logstash 太重量级的缺点,Logstash 性能低、资源消耗比较多等问题,随后就有 Fluentd 的出现。相比较 logstash,Fluentd 更易用、资源消耗更少、性能更高,在数据处理上更高效可靠,受到企业欢迎,成为 logstash 的一种替代方案,常应用于 EFK 架构当中。在 Kubernetes 集群中也常使用 EFK 作为日志数据收集的方案。
在 Kubernetes 集群中一般是通过 DaemonSet 来运行 Fluentd,以便它在每个 Kubernetes 工作节点上都可以运行一个 Pod。 它通过获取容器日志文件、过滤和转换日志数据,然后将数据传递到 Elasticsearch 集群,在该集群中对其进行索引和存储。

2、为什么要使用 ELK

日志主要包括系统日志、应用程序日志和安全日志。系统运维和开发人员可以通过日志了解服务器软硬件信息、检查配置过程中的错误及错误发生的原因。经常分析日志可以了解服务器的负荷,性能安全性,从而及时采取措施纠正错误。
往往单台机器的日志我们使用grep、awk等工具就能基本实现简单分析,但是当日志被分散的储存不同的设备上。如果你管理数十上百台服务器,你还在使用依次登录每台机器的传统方法查阅日志。这样是不是感觉很繁琐和效率低下。当务之急我们使用集中化的日志管理,例如:开源的syslog,将所有服务器上的日志收集汇总。集中化管理日志后,日志的统计和检索又成为一件比较麻烦的事情,一般我们使用 grep、awk和wc等Linux命令能实现检索和统计,但是对于要求更高的查询、排序和统计等要求和庞大的机器数量依然使用这样的方法难免有点力不从心。
一般大型系统是一个分布式部署的架构,不同的服务模块部署在不同的服务器上,问题出现时,大部分情况需要根据问题暴露的关键信息,定位到具体的服务器和服务模块,构建一套集中式日志系统,可以提高定位问题的效率。

3、完整日志系统基本特征

收集:能够采集多种来源的日志数据

传输:能够稳定的把日志数据解析过滤并传输到存储系统

存储:存储日志数据

分析:支持 UI 分析

警告:能够提供错误报告,监控机制

4、ELK 的工作原理

1)在所有需要收集日志的服务器上部署Logstash;或者先将日志进行集中化管理在日志服务器上,在日志服务器上部署 Logstash。

(2)Logstash 收集日志,将日志格式化并输出到 Elasticsearch 群集中。

(3)Elasticsearch 对格式化后的数据进行索引和存储。

(4)Kibana 从 ES 群集中查询数据生成图表,并进行前端数据的展示。

在这里插入图片描述

总结:logstash作为日志搜集器,从数据源采集数据,并对数据进行过滤,格式化处理,然后交由Elasticsearch存储,kibana对日志进行可视化处理。

二、实验操作

node1节点(2C/4G):node1/192.168.102.10					Elasticsearch

node2节点(2C/4G):node2/192.168.102.20					Elasticsearch

Apache节点:apache/192.168.102.30						Logstash  Kibana  Apache
systemctl stop firewalld
setenforce 0
sed -i 's/enforcing/disabled/' /etc/selinux/config

1、ELK Elasticsearch 集群部署(在Node1、Node2节点上操作)

1.1、设置Java环境

java -version										#如果没有安装,yum -y install java
openjdk version "1.8.0_131"
OpenJDK Runtime Environment (build 1.8.0_131-b12)
OpenJDK 64-Bit Server VM (build 25.131-b12, mixed mode)

在这里插入图片描述

2.部署 Elasticsearch 软件

(1)安装elasticsearch—rpm包

#上传elasticsearch-6.7.2.rpm到/opt目录下
cd /opt
rpm -ivh elasticsearch-6.7.2.rpm

在这里插入图片描述

(2)修改elasticsearch主配置文件

先备份一下主配置文件

cp /etc/elasticsearch/elasticsearch.yml /etc/elasticsearch/elasticsearch.yml.bak
vim /etc/elasticsearch/elasticsearch.yml
--17--取消注释,指定集群名字
cluster.name: my-elk-cluster
--23--取消注释,指定节点名字:Node1节点为node1,Node2节点为node2
node.name: node1
node.master: true		#是否master节点,false为否
node.data: true			#是否数据节点,false为否
--33--取消注释,指定数据存放路径
path.data: /var/lib/elasticsearch
--37--取消注释,指定日志存放路径
path.logs: /var/log/elasticsearch
--43--取消注释,避免es使用swap交换分区
bootstrap.memory_lock: true
--55--取消注释,设置监听地址,0.0.0.0代表所有地址
network.host: 0.0.0.0
--59--取消注释,ES 服务的默认监听端口为9200
http.port: 9200					#指定es集群提供外部访问的接口
transport.tcp.port: 9300		#指定es集群内部通信接口
--68--取消注释,集群发现通过单播实现,指定要发现的节点
discovery.zen.ping.unicast.hosts: ["192.168.80.10:9300", "192.168.80.11:9300"]

node01设置
在这里插入图片描述
在这里插入图片描述
node02设置与node01设置一样,只需要将nodename改一下就好了
在这里插入图片描述

查看使用的配置

grep -v "^#" /etc/elasticsearch/elasticsearch.yml

在这里插入图片描述

(3)es 性能调优参数(在node01和node02里面添加配置)

优化最大内存大小和最大文件描述符的数量

vim /etc/security/limits.conf
*  soft    nofile          65536
*  hard    nofile          65536
*  soft    nproc           32000
*  hard    nproc           32000
*  soft    memlock         unlimited
*  hard    memlock         unlimited

在这里插入图片描述

vim /etc/systemd/system.conf
DefaultLimitNOFILE=65536
DefaultLimitNPROC=32000
DefaultLimitMEMLOCK=infinity

在这里插入图片描述

优化elasticsearch用户拥有的内存权限

由于ES构建基于lucene, 而lucene设计强大之处在于lucene能够很好的利用操作系统内存来缓存索引数据,以提供快速的查询性能。lucene的索引文件segements是存储在单文件中的,并且不可变,对于OS来说,能够很友好地将索引文件保持在cache中,以便快速访问;因此,我们很有必要将一半的物理内存留给lucene ; 另一半的物理内存留给ES(JVM heap )。所以, 在ES内存设置方面,可以遵循以下原则:
1.当机器内存小于64G时,遵循通用的原则,50%给ES,50%留给操作系统,供lucene使用
2.当机器内存大于64G时,遵循原则:建议分配给ES分配 4~32G 的内存即可,其它内存留给操作系统,供lucene使用

vim /etc/sysctl.conf
#一个进程可以拥有的最大内存映射区域数,参考数据(分配 2g/2621444g/41943048g/8388608)
vm.max_map_count=262144
sysctl -p
sysctl -a | grep vm.max_map_count

在这里插入图片描述

(4)启动elasticsearch是否成功开启

systemctl enable --now elasticsearch.service
netstat -lntp | grep 9200

在这里插入图片描述

(5)查看节点信息

浏览器访问  http://192.168.102.10:9200  、 http://192.168.102.20:9200 查看节点 Node1、Node2 的信息。

浏览器访问 http://192.168.80.10:9200/_cluster/health?pretty  、 http://192.168.80.11:9200/_cluster/health?pretty查看群集的健康情况,可以看到 status 值为 green(绿色), 表示节点健康运行。

浏览器访问 http://192.168.80.10:9200/_cluster/state?pretty  检查群集状态信息。

#使用上述方式查看群集的状态对用户并不友好,可以通过安装 Elasticsearch-head 插件,可以更方便地管理群集。

在这里插入图片描述

3.安装 Elasticsearch-head 插件

Elasticsearch 在 5.0 版本后,Elasticsearch-head 插件需要作为独立服务进行安装,需要使用npm工具(NodeJS的包管理工具)安装。
安装 Elasticsearch-head 需要提前安装好依赖软件 node 和 phantomjs。
node:是一个基于 Chrome V8 引擎的 JavaScript 运行环境。
phantomjs:是一个基于 webkit 的JavaScriptAPI,可以理解为一个隐形的浏览器,任何基于 webkit 浏览器做的事情,它都可以做到。

(1)编译安装 node

#上传软件包 node-v8.2.1.tar.gz 到/opt
yum install gcc gcc-c++ make -y
cd /opt
tar zxvf node-v8.2.1.tar.gz
cd node-v8.2.1/
./configure
make && make install

(2)安装 phantomjs

上传软件包 phantomjs-2.1.1-linux-x86_64.tar.bz2 到

cd /opt
tar jxvf phantomjs-2.1.1-linux-x86_64.tar.bz2
cd /opt/phantomjs-2.1.1-linux-x86_64/bin
cp phantomjs /usr/local/bin

(3)安装 Elasticsearch-head 数据可视化工具

上传软件包 elasticsearch-head-master.zip 到/opt

cd /opt
unzip elasticsearch-head-master.zip
cd /opt/elasticsearch-head-master
npm install		 //安装依赖包

(4)修改 Elasticsearch 主配置文件

vim /etc/elasticsearch/elasticsearch.yml
--末尾添加以下内容--
http.cors.enabled: true				#开启跨域访问支持,默认为 false
http.cors.allow-origin: "*"			#指定跨域访问允许的域名地址为所有

在这里插入图片描述

systemctl restart elasticsearch
netstat -lntp | grep 9200

在这里插入图片描述

(5)启动 elasticsearch-head 服务

必须在解压后的 elasticsearch-head 目录下启动服务,进程会读取该目录下的 gruntfile.js 文件,否则可能启动失败。

cd /opt/elasticsearch-head-master/
npm run start &

> elasticsearch-head@0.0.0 start /usr/local/src/elasticsearch-head
> grunt server

Running "connect:server" (connect) task
Waiting forever...
Started connect web server on http://localhost:9100

在这里插入图片描述

#elasticsearch-head 监听的端口是 9100
netstat -natp |grep 9100

(6)通过 Elasticsearch-head 查看 Elasticsearch 信息

通过浏览器访问 http://192.168.102.20:9100/ 地址并连接群集。如果看到群集健康值为 green 绿色,代表群集很健康。
在这里插入图片描述

(7)插入索引

API基本格式:http://ip:port/<索引>/<类型>/<文档id>

通过命令插入一个测试索引,索引为 index-demo,类型为 test。

curl -X PUT '192.168.102.20:9200/index-demo/test/1?pretty&pretty' -H 'content-Type: application/json' -d '{"user":"zhangsan","mesg":"hello world"}'

在这里插入图片描述

浏览器访问 http://192.168.102.20:9100/ 查看索引信息,可以看见索引默认被分片5个,并且有一个副本。
点击“数据浏览”,会发现在node2上创建的索引为 index-demo,类型为 test 的相关信息。

在这里插入图片描述

1、Elasticsearch 索引管理(面试题

创建索引

PUT IP:PORT/index info

查看索引

GET index info/ settings

修改索引

在这里插入图片描述

创建索引别名
在这里插入图片描述

删除索引别名

在这里插入图片描述

删除索引

删除单个索引

DELETE /index info

删除多个索引:

DELETE /index one,index two
curl -X DELETE '192.168.102.20:9200/index-demo'

在这里插入图片描述
在这里插入图片描述

4、ELK Logstash 部署(在 Apache 节点上操作)

Logstash 一般部署在需要监控其日志的服务器。在本案例中,Logstash 部署在 Apache 服务器上,用于收集 Apache 服务器的日志信息并发送到 Elasticsearch。

1.更改主机名

hostnamectl set-hostname apache

2.安装Apahce服务(nginx)

vim nginx.repo
[nginx-stable]
name=nginx stable repo
baseurl=http://nginx.org/packages/centos/7/$basearch/
gpgcheck=0
enabled=1
yum install -y nginx

在这里插入图片描述

3.安装Java环境

yum -y install java
java -version

在这里插入图片描述

4.安装logstash

上传软件包 logstash-6.7.2.rpm 到/opt目录下

cd /opt
rpm -ivh logstash-6.7.2.rpm                          
systemctl start logstash.service                      
systemctl enable logstash.service

创建软连接

ln -s /usr/share/logstash/bin/logstash /usr/local/bin/

5.测试 Logstash

Logstash 命令常用选项

-f:通过这个选项可以指定 Logstash 的配置文件,根据配置文件配置 Logstash 的输入和输出流。

-e:从命令行中获取,输入、输出后面跟着字符串,该字符串可以被当作 Logstash 的配置(如果是空,则默认使用 stdin 作为输入,stdout 作为输出)。

-t:测试配置文件是否正确,然后退出。

-w:指定filter线程数量,默认线程数是5

-l:指定日志文件名称

5.1、定义输入和输出流

输入采用标准输入,输出采用标准输出(类似管道),新版本默认使用 rubydebug 格式输出

logstash -e 'input { stdin{} } output { stdout{} }'

在这里插入图片描述

使用 rubydebug 输出详细格式显示,codec 为一种编解码器

logstash -e 'input { stdin{} } output { stdout{ codec=>rubydebug } }'

在这里插入图片描述

使用 Logstash 将信息写入 Elasticsearch 中,结果不在标准输出显示,而是发送至 Elasticsearch 中,可浏览器访问 http://192.168.102.20:9200/ 查看索引信息和数据浏览。

logstash -e 'input { stdin{} } output { elasticsearch { hosts=>["192.168.102.20:9200"] } }'

在这里插入图片描述

在这里插入图片描述

6.定义 logstash配置文件

Logstash 配置文件基本由三部分组成:input、output 以及 filter(可选,根据需要选择使用)。

●input:表示从数据源采集数据,常见的数据源如Kafka、日志文件等

file   beats   kafka   redis   stdin

●filter:表示数据处理层,包括对数据进行格式化处理、数据类型转换、数据过滤等,支持正则表达式

grok       对若干个大文本字段进行再分割成一些小字段   (?<字段名>正则表达式)   字段名: 正则表达式匹配到的内容
date       对数据中的时间格式进行统一和格式化
mutate     对一些无用的字段进行剔除,或增加字段
mutiline   对多行数据进行统一编排,多行合并或拆分


●output:表示将Logstash收集的数据经由过滤器处理之后输出到Elasticsearch。

elasticsearch   stdout 

6.1、格式如下

input {...}
filter {...}
output {...}

6.2、在每个部分中,也可以指定多个访问方式。例如,若要指定两个日志来源文件,则格式如下

input {
	file { path =>"/var/log/messages" type =>"syslog"}
	file { path =>"/var/log/httpd/access.log" type =>"apache"}
}

6.3、修改 Logstash 配置文件,让其收集系统日志/var/log/messages,并将其输出到 elasticsearch 中。

chmod +r /var/log/messages					#让 Logstash 可以读取日志

cd /etc/logstash/conf.d/
vim system.conf
input {
    file{
        path =>"/var/log/nginx/access.log"
        type =>"access"
        start_position =>"beginning"
                # ignore_older => 604800
        sincedb_path => "/etc/logstash/sincedb_path/log_progress"
        add_field => {"log_hostname"=>"${HOSTNAME}"}
    }
}
常用参数:
#path表示要收集的日志的文件位置,必须使用绝对路径,可以使用通配符匹配,如果同时指定多个文件使用,使用,间隔

#exclude:排除不想要监听的文件

#type是输入ES时给结果增加一个叫type的属性字段

#start_position可以设置为beginning或者end,beginning表示从头开始读取文件,end表示读取最新的,这个要和ignore_older一起使用

#ignore_older表示了针对多久的文件进行监控,默认一天,单位为秒,可以自己定制,比如默认只读取一天内被修改的文件

#sincedb_path表示文件读取进度的记录,每行表示一个文件,每行有两个数字,第一个表示文件的inode,第二个表示文件读取到的位置(byteoffset)。默认为$HOME/.sincedb*

#add_field增加属性。这里使用了${HOSTNAME},即本机的环境变量,如果要使用本机的环境变量,那么需要在启动命令上加--alow-env
output {
    elasticsearch {												#输出到 elasticsearch
        hosts => ["192.168.102.10:9200","192.168.102.20:9200"]	#指定 elasticsearch 服务器的地址和端口
        index =>"system-%{+YYYY.MM.dd}"							#指定输出到 elasticsearch 的索引格式
    }
}
mkdir /etc/logstash/sincedb_path/
touch /etc/logstash/sincedb_path/log_progress
chown logstash:logstash /etc/logstash/sincedb_path/log_progress
logstash -f system.conf

在这里插入图片描述

浏览器访问 http://192.168.102.20:9100/ 查看索引信息
在这里插入图片描述

5、ELK Kiabana 部署(在 Node1 节点上操作)

1.安装 Kiabana

上传软件包 kibana-6.7.2-x86_64.rpm 到/opt目录

cd /opt
rpm -ivh kibana-6.7.2-x86_64.rpm

2.设置 Kibana 的主配置文件

#设置一下配置文件的备份以防出错
cp kibana.yml kibana.yml.bak

在这里插入图片描述

vim /etc/kibana/kibana.yml
--2--取消注释,Kiabana 服务的默认监听端口为5601
server.port: 5601
--7--取消注释,设置 Kiabana 的监听地址,0.0.0.0代表所有地址
server.host: "0.0.0.0"
--28--取消注释,配置es服务器的ip,如果是集群则配置该集群中master节点的ip
elasticsearch.url:  ["http://192.168.80.10:9200","http://192.168.80.11:9200"] 
--37--取消注释,设置在 elasticsearch 中添加.kibana索引
kibana.index: ".kibana"
--96--取消注释,配置kibana的日志文件路径(需手动创建),不然默认是messages里记录日志
logging.dest: /var/log/kibana.log

在这里插入图片描述在这里插入图片描述
在这里插入图片描述

3.创建日志文件,启动 Kibana 服务

touch /var/log/kibana.log
chown kibana:kibana /var/log/kibana.log
systemctl start kibana.service
systemctl enable kibana.service
netstat -natp | grep 5601

在这里插入图片描述

4.验证 Kibana

浏览器访问 http://192.168.80.10:5601

在这里插入图片描述

创建一个索引

第一次登录需要添加一个 Elasticsearch 索引:
Management -> Index Pattern -> Create index pattern
Index pattern 输入:access-*	#在索引名中输入之前配置的 Output 前缀“access”

Next step -> Time Filter field name 选择 @timestamp -> Create index pattern

单击 “Discover” 按钮可查看图表信息及日志信息。
数据展示可以分类显示,在“Available Fields”中的“host”,然后单击 “add”按钮,可以看到按照“host”筛选后的结果

在这里插入图片描述在这里插入图片描述在这里插入图片描述

查看发现可以找到对应日志
在这里插入图片描述

添加上错误日志进行访问

在这里插入图片描述

在这里插入图片描述在这里插入图片描述

6、Filebeat+ELK 部署

node1节点(2C/4G):node1/192.168.102.10					Elasticsearch

node2节点(2C/4G):node2/192.168.102.20					Elasticsearch

Apache节点:apache/192.168.102.30						Logstash  Kibana  Apache

Filebeat节点:filebeat/192.168.102.80				Filebeat

1、在 Filebeat 节点上操作

1.安装 Filebeat

#上传软件包 filebeat-6.7.2-linux-x86_64.tar.gz 到/opt目录
tar zxvf filebeat-6.7.2-linux-x86_64.tar.gz
mv filebeat-6.7.2-linux-x86_64/ /usr/local/filebeat

在这里插入图片描述

2.设置 filebeat 的主配置文件

cd /usr/local/filebeat

vim filebeat.yml
filebeat.inputs:
- type: log         #指定 log 类型,从日志文件中读取消息
  enabled: true
  paths:
    - /var/log/messages       #指定监控的日志文件
    - /var/log/*.log
  tags: ["sys"]		#设置索引标签
  fields:           #可以使用 fields 配置选项设置一些参数字段添加到 output 中
  
  fields:
    service_name:httpd
    log_type: access
    from:192.168.102.80
    --------------Elasticsearch output-------------------
(全部注释掉)

----------------Logstash output---------------------
output.logstash:
  hosts: ["192.168.102.30:5044"]      #指定 logstash 的 IP 和端口

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

3、启动 filebeat

./filebeat -e -c filebeat.yml
#-e:输出到标准输出,禁用syslog/文件输出
#-c:指定配置文件
#nohup:在系统后台不挂断地运行命令,退出终端不会影响程序的运行

在这里插入图片描述

4.在 Logstash 组件所在节点上新建一个 Logstash 配置文件

cd /etc/logstash/conf.d
input {
    beats {
        port => "5044"
    }
}

filter {
  grok {
    match => ["message", "(?<remote_addr>%{IPV6}|%{IPV4})[\s\-]+\[(?<logTime>.*)\]\s+\"(?<method>\S+)\s+(?<url_path>.+)\"\s+(?<rev_code>\d+) \d+ \"(?<req_addr>.+)\" \"(?<content>.*)\""]
  }
}

output {
    elasticsearch {
        hosts => ["192.168.102.10:9200","192.168.102.20:9200"]
        index => "%{[fields][service_name]}-%{+YYYY.MM.dd}"
    }
    stdout {
        codec => rubydebug
    }
}
#filebeat发送给logstash的日志内容会放到message字段里面,logstash使用grok插件正则匹配message字段内容进行字段分割
#Kibana自带grok的正则匹配的工具:http://<your kibana IP>:5601/app/kibana#/dev_tools/grokdebugger
# %{IPV6}|%{IPV4} 为 logstash 自带的 IP 常量

filter {
  grok {
    match => ["message", "(?<remote_addr>%{IPV6}|%{IPV4})[\s\-]+\[(?<logTime>.*)\]\s+\"(?<method>\S+)\s+(?<url_path>.+)\"\s+(?<rev_code>\d+) \d+ \"(?<req_addr>.+)\" \"(?<content>.*)\""]
  }
}

output {
    elasticsearch {
        hosts => ["192.168.102.10:9200","192.168.102.20:9200"]
        index => "%{[fields][service_name]}-%{+YYYY.MM.dd}"
    }
    stdout {
        codec => rubydebug
    }
}

5、启动 logstash

logstash -f /etc/logstash/conf.d/filebeat.conf

6.浏览器访问 http://192.168.80.10:5601 登录 Kibana

单击“Create Index Pattern”按钮添加索引“filebeat-*”,单击 “create” 按钮创建,单击 “Discover” 按钮可查看图表信息及日志信息

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/741958.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【SpringBoot_Error】关于SpringBoot项目中经常出现yml/xml识别不到的问题

Problems 关于关于SpringBoot项目中经常出现yml/xml识别不到的问题 Solution 在pom.xml文件的<build></build>标签中添加如下代码&#xff1a; > <build><resources><!--检测mapperxml&#xff0c;本项目数据访问层的SQL xml文件放在Java包…

雷达人体存在感应器成品,雷达探测感知联动,空间智能化控制应用

随着科技的日新月异&#xff0c;人机交互的方式也不断推陈出新。在科技的不断发展与创新的驱动下&#xff0c;人们的生活正逐渐变得更加智能化和便捷化。 智能雷达人体存在感应器&#xff0c;凭借其呼吸探测技术&#xff0c;实现真正的人体存在探测&#xff0c;将智慧酒店、办…

C# 位1的个数

191 位1的个数 编写一个函数&#xff0c;输入是一个无符号整数&#xff08;以二进制串的形式&#xff09;&#xff0c;返回其二进制表达式中数字位数为 ‘1’ 的个数&#xff08;也被称为汉明重量&#xff09;。 提示&#xff1a; 请注意&#xff0c;在某些语言&#xff08;…

浅谈虚拟DOM、Diff算法、Key机制

您好&#xff0c;如果喜欢我的文章&#xff0c;可以关注我的公众号「量子前端」&#xff0c;将不定期关注推送前端好文~ 虚拟DOM 我们都知道虚拟DOM带来的好处&#xff0c;多次更新数据层的数据&#xff0c;最后异步处理只进行一次页面重绘&#xff0c;而这中间的奥秘就是虚拟…

论文 | 一分钟快速找到自己研究领域的核心期刊

进入知网官网 https://www.cnki.net/ 点击搜索框右边的&#xff1a;出版物检索 鼠标放到顶部的 出版来源导航 旁边的倒三角上 选择期刊导航&#xff1a; 点击核心期刊导航 找到自己感兴趣的领域 点进去就可以看到该期刊中发表的论文&#xff1a;

postgresql regular lock常规锁 烤的内嫩外焦,入口即化

​专栏内容&#xff1a; postgresql内核源码分析 手写数据库toadb 并发编程 个人主页&#xff1a;我的主页 座右铭&#xff1a;天行健&#xff0c;君子以自强不息&#xff1b;地势坤&#xff0c;君子以厚德载物. 介绍 常规锁&#xff0c;主要用于数据库对象的加锁&#xff0c…

学Python还是学JAVA,千万别听机构瞎吹!

机构真的为了割韭菜&#xff0c;无所不用其极&#xff0c;过份夸大Python语言的能力或者贬低JAVA。 导致大家要么跟风被割韭菜&#xff0c;学完也用不到。 导致这一主要原因&#xff1a; 1.你不懂行业内需求。 2.你缺乏认知清楚自己的发展规划路线的途径。3.对于编程的优缺点…

Pandas理论与实战(二)

本文章续接上篇文章 目录 1.数据抽取 1.1 抽取一行数据 1.2 抽取多行数据 1.3 抽取指定列数据 1.4 抽取指定行、列数据 1.5 按指定条件抽取数据 2、数据的增加、删除和修改 2.1 数据增加 2.2 修改数据 2.3 删除数据 1.数据抽取 数据分析过程中&#xff0c;并不是所有的数…

CentOS 6 手动将OpenSSH升级到9.3

前言 收到通知说服务器组件存在漏洞 服务器版本:CentOS-6.8-x86_64 目前SSH版本:OpenSSH_5.3p1, OpenSSL 1.0.1e-fips 11 Feb 2013 前置操作 为了避免升级过程中出现的意外导致服务器无法进行连接,建议对重要的内容先进行备份 创建快照 在主机服务商那里为主机创建快照,防止最糟…

Android Studio无法打开问题解决记录

目录 1 问题起因2 发现问题3 解决问题 1 问题起因 问题的起因是我为了运行一个Kotlin项目&#xff0c;但是报了一个错误&#xff1a; Kotlin报错The binary version of its metadata is 1.5.1, expected version is 1.1.16 然后我就上百度去搜了以下&#xff0c;一篇博客让禁用…

GEE:多元线性回归

作者&#xff1a;CSDN _养乐多_ 本文记录了在NDVI、EVI和LAI作为自变量&#xff0c;precipitation作为因变量的条件下&#xff0c;使用linearRegression函数进行线性回归分析的代码&#xff0c;代码在Google Earth Engine&#xff08;GEE&#xff09;平台上实现。具体而言&am…

AI大数据智能视频融合平台EasyCVR新增Ehome黑白名单配置

EasyCVR视频融合平台基于云边端智能协同架构&#xff0c;具有强大的数据接入、处理及分发能力&#xff0c;平台支持海量视频汇聚管理&#xff0c;可支持多协议接入&#xff0c;包括市场主流标准协议与厂家私有协议及SDK&#xff0c;如&#xff1a;国标GB28181、RTMP、RTSP/Onvi…

Linux 学习记录50(QT篇)

Linux 学习记录50(QT篇) 本文目录 Linux 学习记录50(QT篇)一、基于QT的TCP客户端连接1. 代码实现2. 自制的客户端/服务器 二、QT数据库SQL1. QT将数据库分为三个层次2. 实现数据库操作的相关方法 思维导图练习1.2.3.4. 一、基于QT的TCP客户端连接 所需头文件 <QTcpSocket&g…

3G理论概述

文章目录 UMTS&#xff08;通用移动通信系统&#xff0c;Universal Mobile Telecommunications System&#xff09;UTRAN&#xff08;UMTS陆地无线接入网&#xff0c;UMTS Terrestrial Radio Access Network&#xff09;RNC&#xff08;无线网络控制器&#xff0c;Radio Networ…

music21 层级解析(了解次结构方可将任意曲谱与mid互相转换)

这段代码创建了一个音乐乐谱并将其保存为 MIDI 文件&#xff0c;其中包含一个乐器和多个小节。每个小节中包含四个音符或和弦&#xff0c;然后将小节添加到乐谱中。最后&#xff0c;将乐谱写入 MIDI 文件。 首先&#xff0c;通过导入 music21 库来使用它的功能。 import music2…

onvif库封装及qt工程调用onvif库实现设备搜索、获取码流地址等功能

一、前言&#xff1a; 本篇的OnvifManager工程是在vs2010下进行开发编译&#xff0c;它实现了对onvif库的封装调用&#xff0c;目前工程接口实现了对onvif的搜索、码流地址获取、设备重启接口&#xff0c;其他接口后续可以通过更改工程代码进行添加。qt工程myonvif是对OnvifMan…

Zotero翻译插件“zotero pdf translate”——使用时出现广告的问题的解决办法

一、背景&#xff1a; 在Zotero上安装了“zotero-pdf-translate”插件来辅助翻译。今天忽然发现&#xff0c;在使用CNKI翻译引擎的时候&#xff0c;末尾被加上了广告&#xff1a; (查看名企职位领高薪offer&#xff01;--->智联招聘https***dict.cnki.net/ad.html) 如下&…

【IMX6ULL驱动开发学习】16.睡眠机制_poll机制_fasync异步通知(按键控制LED)

学完了休眠唤醒机制、poll机制、异步通知、定时器、tasklet、工作队列、mmap、input子系统后&#xff0c;该沉淀沉淀了 一、睡眠机制 案例&#xff1a;APP程序读取按键值 - 睡眠机制&#xff08;阻塞或非阻塞&#xff09; 1.等待队列头创建 static DECLARE_WAIT_QUEUE_HEA…

从零实现深度学习框架——带Attentiond的Seq2seq机器翻译

引言 本着“凡我不能创造的,我就不能理解”的思想,本系列文章会基于纯Python以及NumPy从零创建自己的深度学习框架,该框架类似PyTorch能实现自动求导。 要深入理解深度学习,从零开始创建的经验非常重要,从自己可以理解的角度出发,尽量不使用外部完备的框架前提下,实现我…