NLP领域再创佳绩!阿里云机器学习平台 PAI 多篇论文入选 ACL 2023

news2024/11/17 17:33:11

近期,阿里云机器学习平台PAI主导的多篇论文在ACL 2023 Industry Track上入选。ACL是人工智能自然语言处理领域的顶级国际会议,聚焦于自然语言处理技术在各个应用场景的学术研究。该会议曾推动了预训练语言模型、文本挖掘、对话系统、机器翻译等自然语言处理领域的核心创新,在学术和工业界都有巨大的影响力。

论文成果是机器学习平台PAI联合阿里巴巴国际贸易事业部、阿里云与华南理工大学联合培养项目、复旦大学肖仰华教授团队等共同研发,此次入选意味着阿里云机器学习平台PAI自研的自然语言处理和多模态算法,以及算法框架能力达到了全球业界先进水平,获得了国际学者的认可,展现了中国人工智能技术创新在国际上的竞争力。

论文简述

基于电商多模态概念知识图谱增强的电商场景图文模型FashionKLIP

图文检索作为一项流行的跨模态任务,在广泛的工业应用中具有很强的实用价值。视觉-语言预训练(VLP)模型的蓬勃发展大大提高了跨不同模态数据的表示学习,从而带来了显著的性能提升。然而,电商领域的数据具有其自身的特性:1)通用场景的文本大多包含完整的句子结构描述,而电商场景中的描述或查询通常由多个形容性短语组成,描述了产品的材质或风格等细节信息。2)通用领域的图像通常具有复杂的背景;相比之下,商品图像主要包含一个大的商品图,没有很多背景物体。基于此论文提出了一种电商知识增强的VLP模型FashionKLIP。一共包含两部分内容:数据驱动的构建策略,从大规模电商图文语料库中构建多模态电商概念知识图谱(FashionMMKG);和训练融入知识的训练策略,学习两种模态的图像-文本对的表示对齐,并通过将文本表示与FashionMMKG中时尚概念的视觉原型表示进行匹配,进一步得到概念对齐。

image.png

为了验证FashionKLIP方法的实用性,我们将其应用于阿里巴巴国际部的商品搜索平台,在图像-商品和文本-商品两个检索子任务上进行了零样本场景下的验证,并将其与基线方法CLIP比较,实验结果进一步证明了FashionKLIP的实用价值及高效性。

面向轻量化文图检索的Dual-Encoder模型蒸馏算法ConaCLIP

文本-图像检索(Text-Image Retrieval)的目的是在给出一个特定的文本查询时,从一个大型的图像集合中检索出一个最相关的图像列表。随着信息交互和社交场景的快速发展,该任务一直被认为是跨模态应用的一个关键组成部分,并被各种现实世界的场景所需求,如电子商业平台,网站等。现有的相关模型如CLIP在计算资源有限的边缘设备或动态索引场景如私人照片/消息集合上仍然不太实用。为了解决这个问题,我们的目标是从大规模的预训练双流编码器模型出发,专注于小模型预训练阶段的蒸馏过程,以获得一系列更小、更快、更有效的相应的轻量化模型。与现有的工作不同,我们的方法引入了全连接知识交互图(fully-Connected knowledge interaction graph)用于预训练阶段的蒸馏。除了模态内教师-学生交互学习之外,我们的方法还包括模态内学生-学生交互学习、模态间教师-学生交互学习和模态间学生-学生交互学习,如下图所示。

image.png

这种为学生网络建立的全连接图可以看做是多视角和多任务的学习方案的集成,以此可以加强预训练模型所需要的稳健性和有效性。同时我们建议,每种类型的学习过程都应该详细地测试各种不同监督策略的效果。我们将所提出的技术应用于电子商务平台的端到端跨模态检索场景,结果展示我们在基本保证模型性能的同时显著的降低了模型的存储空间并增加了模型的计算效率。

具有高效推理速度的中文领域文图生成扩散模型和工具链

Text-to-Image Synthesis(TIS)是指根据文本输入生成图像的技术,给定一段文本指令,使用计算机程序生成符合文本内容描述的图像。然而,由于预训练语言模型缺乏特定领域的实体知识且受限于扩散模型的推理速度,目前开源社区的流行文图生成模型难以支持特定工业领域的应用。主要问题在于,基于扩散的方法需要使用预训练文本编码器对输入文本进行编码,然后作为扩散模型的UNet模型的条件输入。但是目前使用网上收集的文本图像对预训练的文本编码器模型缺乏特定实体概念的理解能力,难以捕获特定实体知识,这对于生成逼真的实体对象图片至关重要。同时,扩散模型的推理速度和计算成本也是需要考虑的重要因素,而迭代逆扩散去噪过程的繁琐计算一直是扩散模型推理速度的瓶颈。我们提出的新框架用于训练和部署文图生成扩散模型,模型架构如下图所示。为了提升对特定实体的理解能力,我们在CLIP的文本编码器中注入了丰富的实体知识,使用知识图谱进行知识增强。与开源Stable Diffusion直接利用大规模分层扩散模型不同,我们在图像扩散模块之后集成了一个基于ESRGAN的网络,以提高生成图像的分辨率的同时有效解决了参数量爆炸和耗时长的问题。对于在线部署,我们基于FlashAttention优化的神经架构设计了一个高效的推理流程。生成模型计算图的Intermediate Representation(IR)经过端到端人工智能编译器BladeDISC进一步处理,以提高生成模型的推理速度。

image.png

我们的实验证明,我们针对特定领域场景的知识增强模型可以更好地理解领域知识,并且可以生成更逼真和多样化的图像。在推理速度上,我们使用了端到端人工智能编译器BladeDISC以及FlashAttention 技术来提高模型的推理速度。我们还将这一技术与阿里云机器学习平台PAI进行集成,以展示其在实际应用中的实用价值,用户可以在自己的任务(数据)上一键式的进行训练,微调以及推理自己的模型。

算法开源

为了更好地服务开源社区,上述三个算法的源代码即将贡献在自然语言处理算法框架EasyNLP中,欢迎NLP从业人员和研究者使用。EasyNLP是阿里云机器学习平台PAI 团队基于 PyTorch 开发的易用且丰富的中文NLP算法框架,支持常用的中文预训练模型和大模型落地技术,并且提供了从训练到部署的一站式 NLP 开发体验。由于跨模态理解需求的不断增加,EasyNLP也将支持各种跨模态模型,特别是中文领域的跨模态模型,推向开源社区,希望能够服务更多的 NLP 和多模态算法开发者和研究者,也希望和社区一起推动 NLP/多模态技术的发展和模型落地。

Github地址:https://github.com/alibaba/EasyNLP

论文汇总

论文名字:FashionKLIP: Enhancing E-Commerce Image-Text Retrieval with Fashion Multi-Modal Conceptual Knowledge Graph

论文作者:王小丹、汪诚愚、李磊、李直旭、陈犇、金林波、黄俊、肖仰华、高明

论文PDF链接:https://aclanthology.org/2023.acl-industry.16.pdf

论文名字:ConaCLIP: Exploring Distillation of Fully-Connected Knowledge Interaction Graph for Lightweight Text-Image Retrieval
论文作者:汪嘉鹏、汪诚愚、王小丹、黄俊、金连文

论文PDF链接:https://aclanthology.org/2023.acl-industry.8.pdf

论文名字:Rapid Diffusion: Building Domain-Specific Text-to-Image Synthesizers with Fast Inference Speed
论文作者:刘冰雁、林炜丰、段忠杰、汪诚愚、吴梓恒、张子鹏、贾奎、金连文、陈岑、黄俊

论文PDF链接:https://aclanthology.org/2023.acl-industry.28.pdf

免费领取 交互式建模PAI-DSW、模型训练PAI-DLC 5000CU*H计算资源包,以及价值500元模型在线服务 PAI-EAS 抵扣包。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/737328.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Trimble RealWorks处理点云数据(九)之点云分类后将地面导入Arcgis生成DEM

效果 步骤 1、las导入Trimble RealWorks 2、对点云数据预处理 可以参考这篇文章 TrimbleRealWorks点云数据预处理 我这边是把点云做了分类,而后将地面数据导出las 点云做为三维数据,后续步骤在arcscene中操作,能实时显示出来 3、arcscene创建las数据集

【计算机视觉 | 图像分割】arxiv 计算机视觉关于图像分割的学术速递(7 月 10 日论文合集)

文章目录 一、分割|语义相关(6篇)1.1 Unsupervised Segmentation of Fetal Brain MRI using Deep Learning Cascaded Registration1.2 Tranfer Learning of Semantic Segmentation Methods for Identifying Buried Archaeological Structures on LiDAR Data1.3 To pretrain or …

Vue2----Uniapp自定义弹窗

对于擅长后端的程序员,在编写前端时常常回去找库,比如elementUI,uview之类,但是往往这些库较为冗杂,有些功能比较强大,基本用不到,不好理解。这时候,如果可以自定义组件可能会对开发…

C++ STL常见算法

目录 1 各种常见算法的用法 1.1 非可变序列算法 1.2 可变序列算法 1.3 Partitions 1.4 排序算法 1.5 查找算法 1.6 集合算法 1.7 堆算法 1.8 最大最小值算法 1.9 其他算法 1 各种常见算法的用法 STL算法部分主要由头文件<algorithm>,<numeric>,<func…

uniapp 获取状态栏及小程序右侧胶囊信息(用于设置全屏小程序)

1.获取信息: //获取状态栏高度(px) this.statusBarHeight uni.getSystemInfoSync().statusBarHeight; //获取小程序胶囊信息 this.menuButtonInfo uni.getMenuButtonBoundingClientRect() 如下: 2.动态设置style样式: <view:style"{ paddingTop: menuButtonIn…

Oracle-RAC集群安装root.sh报错问题

问题背景: 在redhat 7.8上安装Oracle11G RAC集群&#xff0c;在节点一执行root.sh脚本时发生错误Disk Group OCRDG creation failed with the following message:ORA-15018: diskgroup cannot be created 问题分析: 从报错信息来看错误是在执行创建OCRDG磁盘组时失败&#xff0…

Python读取指定的TXT文本文件并从中提取指定数据的方法

本文介绍基于Python语言&#xff0c;遍历文件夹并从中找到文件名称符合我们需求的多个.txt格式文本文件&#xff0c;并从上述每一个文本文件中&#xff0c;找到我们需要的指定数据&#xff0c;最后得到所有文本文件中我们需要的数据的合集的方法。 首先&#xff0c;我们来明确一…

进度网络图详解

关键路径&#xff1a;总工期最长的那一条路径&#xff1a;可能不止一条。&#xff08;1条或多条&#xff09; 虚工作&#xff1a;不占用任何时间和资源的&#xff0c;只是为了让逻辑关系更加明确&#xff0c;网络图更加美观。 最早开始时间&#xff08;ES&#xff09;- 左上 最…

BT 种子,磁力链接是个啥?

[科普向] BT 种子、磁力链接到底是什么&#xff1f; BitTorrent 我们平时所说的 BT 种子&#xff0c;实际上指的是由 BitTorrent 协议所生成的一个包含资源信息的文件。与传统的网络传输协议不同&#xff0c;BitTorrent 协议是一种以 Peer-To-Peer&#xff08;P2P&#xff09…

【KingbaseES】查看表空间大小

查询单表空间大小 SELECT sys_size_pretty(sys_tablespace_size(sys_default))查看所有表空间大小&#xff08;不包含系统表空间&#xff0c;包含默认表空间&#xff09; SELECT oid,spcname AS "Name",sys_size_pretty(sys_tablespace_size(spcname)) AS "Lo…

2. SpringBoot快速回顾(@value读取配置文件)

目录 1.定义配置文件2. 定义Controller类3. 测试4. 优化4.1 封装实体类4.3 定义controller类4.2 测试 本文将介绍如何使用value读取配置文件的内容。 在实际项目中&#xff0c;往往会在配置文件中写项目部署需要配置的环境信息&#xff08;数据库驱动&#xff0c;数据库账号密码…

mysql离线安装

MySQL离线安装 进行MySQL离线安装包,当前安装版本为MySQL8.0.32 下载页面&#xff1a;https://downloads.mysql.com/archives/community/ 下载地址&#xff1a;https://downloads.mysql.com/archives/get/p/23/file/mysql-5.7.36-1.el7.x86_64.rpm-bundle.tar 将下载完成的安…

【Linux】关于Linux系统挂载大于2TB磁盘的问题

之前在Linux系统挂载文件系统的时候&#xff0c;我已经习惯了使用 fdisk 命令来对磁盘进行分区。fdisk 常用的几个指令有&#xff1a; m 显示命令帮助菜单&#xff1b; n 创建新的分区&#xff1b; p 显示分区信息&#xff1b; t 修改分区类型&#xff08;一般设置为8e&…

Transformer原理理解

本文介绍Transformer的基本原理&#xff0c;主要记录一下自己的学习过程。 论文&#xff1a;https://arxiv.org/abs/1706.03762 参考&#xff1a; http://jalammar.github.io/illustrated-transformer/https://zhuanlan.zhihu.com/p/338817680https://blog.csdn.net/longxin…

2023年05月份青少年软件编程Python等级考试试卷三级真题(含答案)

2023-05 Python三级真题 题数&#xff1a;38 分数&#xff1a;100 测试时长&#xff1a;60min 一、单选题(共25题&#xff0c;共50分) 1. 请选择&#xff0c;下面代码运行之后的结果是&#xff1f;&#xff08; &#xff09;&#xff08;2分&#xff09; a 2 b 4 try:…

声网 Agora音视频uniapp插件跑通详解

一、前言 在使用声网SDK做音视频会议开发时, 通过声网官方论坛 了解到,声网是提供uniapp插件的,只是在官方文档中不是很容易找到。 插件地址如下: Agora音视频插件 Agora音视频插件(JS) 本文讲解如何跑通演示示例 二、跑通Demo 2.1 环境安装: 参考: 2. 通过vue-…

Mellanox ConnectX-6-dx智能网卡 openvswitch 流表卸载源码分析

Mellanox ConnectX-6-dx智能网卡 具备流表卸载能力。智能网卡的部署方式兼容当前服务器ovs部署方式。而DPU bluefield 2&#xff0c;其要求ovs从服务器上转移到DPU上&#xff0c;这影响现有上层neutron架构&#xff0c;改造量大。 前置信息 OFED代码版本&#xff1a;Linux In…

Scratch 猴子踢球

scratch 猴子踢球 本程序转为HTML后运行&#xff0c;“猴子”角色跟随鼠标移动&#xff0c;“沙滩球”角色开始时生成20个并移动到随机位置&#xff0c;在碰到“猴子”角色时开始移动&#xff0c;碰到边缘或其它角色时反弹。 图形化程序如下 “沙滩球”角色 “猴子”角色

spring 详解四 IOC(spring Bean生命周期)

spring生命周期概述 spring Bean的生命周期是从Bean实例化之后&#xff0c;即通过反射创建对象之后&#xff0c;到Bean成为一个完整对象&#xff0c;最终存储在单例池中&#xff0c;然后在销毁的过程被称为spring Bean的生命周期&#xff0c;这部分不会介绍销毁过程&#xff0…

Spring限流之限流方案分析

文章目录 1 限流方案1.1 引言1.2 常用限流策略1.3 基于guava限流实现1.3.1 引入guava依赖1.3.2 自定义限流注解1.3.3 限流AOP类1.3.4 测试接口 1.4 基于sentinel限流实现1.4.1 引入sentinel核心依赖包1.4.2 自定义限流注解1.4.3 自定义AOP类实现限流1.4.4 自定义测试接口 1.5 基…