java 并发 随笔7 ThreadLocal源码走读

news2025/1/13 7:35:08

0. 刚刚见了下老朋友,桌球撞起来的感觉很爽

请添加图片描述

  • 可以看到 Thread 是内部是维护了局部变量的(thread-local-map)

1. 源码走读

很多的细节都在代码块中备注了

package java.lang;

// 现在回来起来,很多经验不太丰富的人之所以在接触、学习java.lang.thread的过程中,搞不清楚跟threadLocal的关系,是因为
// 	很多不太聪明的教程、网课喜欢把这俩放一块比较、学习,这就很搞笑
//  已经了解threadLocal都知道,threadlocal想要做的事情,跟thread做的事情,根本不一回事
//  threadlocal应该被理解成thread的一个thread-local-variables(当前线程的局部变量)
//  此外,走读源码 或 使用过threadLocal的人都知道,threadLocal设计上更像是一种数据结构,更加接近collection的概念
//  thread -> thread-local-map -> Entry<ThreadLocal, value>[]
/**
 * This class provides thread-local variables.  These variables differ from
 * their normal counterparts in that each thread that accesses one (via its
 * {@code get} or {@code set} method) has its own, independently initialized
 * copy of the variable.  {@code ThreadLocal} instances are typically private
 * static fields in classes that wish to associate state with a thread (e.g.,
 * a user ID or Transaction ID).
 *
 * <p>For example, the class below generates unique identifiers local to each
 * thread.
 * A thread's id is assigned the first time it invokes {@code ThreadId.get()}
 * and remains unchanged on subsequent calls.
 * <pre>
 * import java.util.concurrent.atomic.AtomicInteger;
 *
 * public class ThreadId {
 *     // Atomic integer containing the next thread ID to be assigned
 *     private static final AtomicInteger nextId = new AtomicInteger(0);
 *
 *     // Thread local variable containing each thread's ID
 *     private static final ThreadLocal&lt;Integer&gt; threadId =
 *         new ThreadLocal&lt;Integer&gt;() {
 *             &#64;Override protected Integer initialValue() {
 *                 return nextId.getAndIncrement();
 *         }
 *     };
 *
 *     // Returns the current thread's unique ID, assigning it if necessary
 *     public static int get() {
 *         return threadId.get();
 *     }
 * }
 * </pre>
 * <p>Each thread holds an implicit reference to its copy of a thread-local
 * variable as long as the thread is alive and the {@code ThreadLocal}
 * instance is accessible; after a thread goes away, all of its copies of
 * thread-local instances are subject to garbage collection (unless other
 * references to these copies exist).
 * 线程都会持有一个threadLocal副本的引用;
 * 线程生命走到尽头后,其持有threadLocal将被gc回收(除非还被其他的对象所引用)
 *
 * @author  Josh Bloch and Doug Lea
 * @since   1.2
 */
public class ThreadLocal<T> {
	// 只作用于 ThreadLocalMap
	// 这个hashcode 是为了解决 "相同的线程连续的创建 threadlocal 实例" 导致的冲突
	// 该hashcode 经原子的自增得到
    /**
     * ThreadLocals rely on per-thread linear-probe hash maps attached
     * to each thread (Thread.threadLocals and
     * inheritableThreadLocals).  The ThreadLocal objects act as keys,
     * searched via threadLocalHashCode.  This is a custom hash code
     * (useful only within ThreadLocalMaps) that eliminates collisions
     * in the common case where consecutively constructed ThreadLocals
     * are used by the same threads, while remaining well-behaved in
     * less common cases.
     */
    private final int threadLocalHashCode = nextHashCode();

    /**
     * The next hash code to be given out. Updated atomically. Starts at
     * zero.
     */
    private static AtomicInteger nextHashCode =
        new AtomicInteger();

    /**
     * The difference between successively generated hash codes - turns
     * implicit sequential thread-local IDs into near-optimally spread
     * multiplicative hash values for power-of-two-sized tables.
     */
    private static final int HASH_INCREMENT = 0x61c88647;

    /**
     * Returns the next hash code.
     */
    private static int nextHashCode() {
        return nextHashCode.getAndAdd(HASH_INCREMENT);
    }

    /**
     * Returns the current thread's "initial value" for this
     * thread-local variable.  This method will be invoked the first
     * time a thread accesses the variable with the {@link #get}
     * method, unless the thread previously invoked the {@link #set}
     * method, in which case the {@code initialValue} method will not
     * be invoked for the thread.  Normally, this method is invoked at
     * most once per thread, but it may be invoked again in case of
     * subsequent invocations of {@link #remove} followed by {@link #get}.
     *
     * <p>This implementation simply returns {@code null}; if the
     * programmer desires thread-local variables to have an initial
     * value other than {@code null}, {@code ThreadLocal} must be
     * subclassed, and this method overridden.  Typically, an
     * anonymous inner class will be used.
     *
     * @return the initial value for this thread-local
     */
    protected T initialValue() {
        return null;
    }

    /**
     * Creates a thread local variable. The initial value of the variable is
     * determined by invoking the {@code get} method on the {@code Supplier}.
     *
     * @param <S> the type of the thread local's value
     * @param supplier the supplier to be used to determine the initial value
     * @return a new thread local variable
     * @throws NullPointerException if the specified supplier is null
     * @since 1.8
     */
    public static <S> ThreadLocal<S> withInitial(Supplier<? extends S> supplier) {
        return new SuppliedThreadLocal<>(supplier);
    }


	// 获取方法
    /**
     * Returns the value in the current thread's copy of this
     * thread-local variable.  If the variable has no value for the
     * current thread, it is first initialized to the value returned
     * by an invocation of the {@link #initialValue} method.
     *
     * @return the current thread's value of this thread-local
     */
    public T get() {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null) {
            ThreadLocalMap.Entry e = map.getEntry(this);
            if (e != null) {
                @SuppressWarnings("unchecked")
                T result = (T)e.value;
                return result;
            }
        }
        return setInitialValue();
    }

    /**
     * Variant of set() to establish initialValue. Used instead
     * of set() in case user has overridden the set() method.
     *
     * @return the initial value
     */
    private T setInitialValue() {
        T value = initialValue();
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
        return value;
    }

    /**
     * Sets the current thread's copy of this thread-local variable
     * to the specified value.  Most subclasses will have no need to
     * override this method, relying solely on the {@link #initialValue}
     * method to set the values of thread-locals.
     *
     * @param value the value to be stored in the current thread's copy of
     *        this thread-local.
     */
    public void set(T value) {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
    }

    /**
     * Removes the current thread's value for this thread-local
     * variable.  If this thread-local variable is subsequently
     * {@linkplain #get read} by the current thread, its value will be
     * reinitialized by invoking its {@link #initialValue} method,
     * unless its value is {@linkplain #set set} by the current thread
     * in the interim.  This may result in multiple invocations of the
     * {@code initialValue} method in the current thread.
     *
     * @since 1.5
     */
     public void remove() {
         ThreadLocalMap m = getMap(Thread.currentThread());
         if (m != null)
             m.remove(this);
     }

	// thread 确实持有 threadLocalMap的引用
	// ThreadLocal.ThreadLocalMap threadLocals
    /**
     * Get the map associated with a ThreadLocal. Overridden in
     * InheritableThreadLocal.
     *
     * @param  t the current thread
     * @return the map
     */
    ThreadLocalMap getMap(Thread t) {
        return t.threadLocals;
    }

	// 直接新建 threadLocalMap
    /**
     * Create the map associated with a ThreadLocal. Overridden in
     * InheritableThreadLocal.
     *
     * @param t the current thread
     * @param firstValue value for the initial entry of the map
     */
    void createMap(Thread t, T firstValue) {
        t.threadLocals = new ThreadLocalMap(this, firstValue);
    }

    /**
     * Factory method to create map of inherited thread locals.
     * Designed to be called only from Thread constructor.
     *
     * @param  parentMap the map associated with parent thread
     * @return a map containing the parent's inheritable bindings
     */
    static ThreadLocalMap createInheritedMap(ThreadLocalMap parentMap) {
        return new ThreadLocalMap(parentMap);
    }

    /**
     * Method childValue is visibly defined in subclass
     * InheritableThreadLocal, but is internally defined here for the
     * sake of providing createInheritedMap factory method without
     * needing to subclass the map class in InheritableThreadLocal.
     * This technique is preferable to the alternative of embedding
     * instanceof tests in methods.
     */
    T childValue(T parentValue) {
        throw new UnsupportedOperationException();
    }

	// 泛型为 Supplier 的threadlocal
	// 该类型允许延迟执行
    /**
     * An extension of ThreadLocal that obtains its initial value from
     * the specified {@code Supplier}.
     */
    static final class SuppliedThreadLocal<T> extends ThreadLocal<T> {

        private final Supplier<? extends T> supplier;

        SuppliedThreadLocal(Supplier<? extends T> supplier) {
            this.supplier = Objects.requireNonNull(supplier);
        }

        @Override
        protected T initialValue() {
            return supplier.get();
        }
    }

    /**
     * ThreadLocalMap is a customized hash map suitable only for
     * maintaining thread local values. No operations are exported
     * outside of the ThreadLocal class. The class is package private to
     * allow declaration of fields in class Thread.  To help deal with
     * very large and long-lived usages, the hash table entries use
     * WeakReferences for keys. However, since reference queues are not
     * used, stale entries are guaranteed to be removed only when
     * the table starts running out of space.
     */
    static class ThreadLocalMap {
		// 元素类型,弱引用类型
		// threadLocal:值
        /**
         * The entries in this hash map extend WeakReference, using
         * its main ref field as the key (which is always a
         * ThreadLocal object).  Note that null keys (i.e. entry.get()
         * == null) mean that the key is no longer referenced, so the
         * entry can be expunged from table.  Such entries are referred to
         * as "stale entries" in the code that follows.
         */
        static class Entry extends WeakReference<ThreadLocal<?>> {
            /** The value associated with this ThreadLocal. */
            Object value;

            Entry(ThreadLocal<?> k, Object v) {
                super(k);
                value = v;
            }
        }

		// 初始的 可容纳元素个数
        /**
         * The initial capacity -- MUST be a power of two.
         */
        private static final int INITIAL_CAPACITY = 16;

		// 底层的数据结构原来是 数组,扩容时长度翻倍
        /**
         * The table, resized as necessary.
         * table.length MUST always be a power of two.
         */
        private Entry[] table;

        /**
         * The number of entries in the table.
         */
        private int size = 0;

        /**
         * The next size value at which to resize.
         */
        private int threshold; // Default to 0

        /**
         * Set the resize threshold to maintain at worst a 2/3 load factor.
         */
        private void setThreshold(int len) {
            threshold = len * 2 / 3;
        }

		// 下(上)一个元素的索引,如果超过阈值,将返回0
        /**
         * Increment i modulo len.
         */
        private static int nextIndex(int i, int len) {
            return ((i + 1 < len) ? i + 1 : 0);
        }
        /**
         * Decrement i modulo len.
         */
        private static int prevIndex(int i, int len) {
            return ((i - 1 >= 0) ? i - 1 : len - 1);
        }

		// 构造(同时存储第一对元素)
        /**
         * Construct a new map initially containing (firstKey, firstValue).
         * ThreadLocalMaps are constructed lazily, so we only create
         * one when we have at least one entry to put in it.
         */
        ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
            table = new Entry[INITIAL_CAPACITY];
            int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
            table[i] = new Entry(firstKey, firstValue);
            size = 1;
            setThreshold(INITIAL_CAPACITY);
        }

		// 构造(依据 父threadLocalMap创建)
        /**
         * Construct a new map including all Inheritable ThreadLocals
         * from given parent map. Called only by createInheritedMap.
         *
         * @param parentMap the map associated with parent thread.
         */
        private ThreadLocalMap(ThreadLocalMap parentMap) {
            Entry[] parentTable = parentMap.table;
            int len = parentTable.length;
            setThreshold(len);
            table = new Entry[len];

            for (int j = 0; j < len; j++) {
                Entry e = parentTable[j];
                if (e != null) {
                    @SuppressWarnings("unchecked")
                    ThreadLocal<Object> key = (ThreadLocal<Object>) e.get();
                    if (key != null) {
                        Object value = key.childValue(e.value);
                        Entry c = new Entry(key, value);
                        int h = key.threadLocalHashCode & (len - 1);
                        while (table[h] != null)
                            h = nextIndex(h, len);
                        table[h] = c;
                        size++;
                    }
                }
            }
        }

        /**
         * Get the entry associated with key.  This method
         * itself handles only the fast path: a direct hit of existing
         * key. It otherwise relays to getEntryAfterMiss.  This is
         * designed to maximize performance for direct hits, in part
         * by making this method readily inlinable.
         *
         * @param  key the thread local object
         * @return the entry associated with key, or null if no such
         */
        private Entry getEntry(ThreadLocal<?> key) {
            int i = key.threadLocalHashCode & (table.length - 1);
            Entry e = table[i];
            if (e != null && e.get() == key)
                return e;
            else
                return getEntryAfterMiss(key, i, e);
        }

        /**
         * Version of getEntry method for use when key is not found in
         * its direct hash slot.
         *
         * @param  key the thread local object
         * @param  i the table index for key's hash code
         * @param  e the entry at table[i]
         * @return the entry associated with key, or null if no such
         */
        private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) {
            Entry[] tab = table;
            int len = tab.length;

            while (e != null) {
                ThreadLocal<?> k = e.get();
                if (k == key)
                    return e;
                if (k == null)
                    expungeStaleEntry(i);
                else
                    i = nextIndex(i, len);
                e = tab[i];
            }
            return null;
        }

        /**
         * Set the value associated with key.
         *
         * @param key the thread local object
         * @param value the value to be set
         */
        private void set(ThreadLocal<?> key, Object value) {

            // We don't use a fast path as with get() because it is at
            // least as common to use set() to create new entries as
            // it is to replace existing ones, in which case, a fast
            // path would fail more often than not.

            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);

            for (Entry e = tab[i];
                 e != null;
                 e = tab[i = nextIndex(i, len)]) {
                ThreadLocal<?> k = e.get();

                if (k == key) {
                    e.value = value;
                    return;
                }

                if (k == null) {
                    replaceStaleEntry(key, value, i);
                    return;
                }
            }

            tab[i] = new Entry(key, value);
            int sz = ++size;
            if (!cleanSomeSlots(i, sz) && sz >= threshold)
                rehash();
        }

        /**
         * Remove the entry for key.
         */
        private void remove(ThreadLocal<?> key) {
            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);
            for (Entry e = tab[i];
                 e != null;
                 e = tab[i = nextIndex(i, len)]) {
                if (e.get() == key) {
                    e.clear();
                    expungeStaleEntry(i);
                    return;
                }
            }
        }

        /**
         * Replace a stale entry encountered during a set operation
         * with an entry for the specified key.  The value passed in
         * the value parameter is stored in the entry, whether or not
         * an entry already exists for the specified key.
         *
         * As a side effect, this method expunges all stale entries in the
         * "run" containing the stale entry.  (A run is a sequence of entries
         * between two null slots.)
         *
         * @param  key the key
         * @param  value the value to be associated with key
         * @param  staleSlot index of the first stale entry encountered while
         *         searching for key.
         */
        private void replaceStaleEntry(ThreadLocal<?> key, Object value,
                                       int staleSlot) {
            Entry[] tab = table;
            int len = tab.length;
            Entry e;

            // Back up to check for prior stale entry in current run.
            // We clean out whole runs at a time to avoid continual
            // incremental rehashing due to garbage collector freeing
            // up refs in bunches (i.e., whenever the collector runs).
            int slotToExpunge = staleSlot;
            for (int i = prevIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = prevIndex(i, len))
                if (e.get() == null)
                    slotToExpunge = i;

            // Find either the key or trailing null slot of run, whichever
            // occurs first
            for (int i = nextIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = nextIndex(i, len)) {
                ThreadLocal<?> k = e.get();

                // If we find key, then we need to swap it
                // with the stale entry to maintain hash table order.
                // The newly stale slot, or any other stale slot
                // encountered above it, can then be sent to expungeStaleEntry
                // to remove or rehash all of the other entries in run.
                if (k == key) {
                    e.value = value;

                    tab[i] = tab[staleSlot];
                    tab[staleSlot] = e;

                    // Start expunge at preceding stale entry if it exists
                    if (slotToExpunge == staleSlot)
                        slotToExpunge = i;
                    cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
                    return;
                }

                // If we didn't find stale entry on backward scan, the
                // first stale entry seen while scanning for key is the
                // first still present in the run.
                if (k == null && slotToExpunge == staleSlot)
                    slotToExpunge = i;
            }

            // If key not found, put new entry in stale slot
            tab[staleSlot].value = null;
            tab[staleSlot] = new Entry(key, value);

            // If there are any other stale entries in run, expunge them
            if (slotToExpunge != staleSlot)
                cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
        }

        /**
         * Expunge a stale entry by rehashing any possibly colliding entries
         * lying between staleSlot and the next null slot.  This also expunges
         * any other stale entries encountered before the trailing null.  See
         * Knuth, Section 6.4
         *
         * @param staleSlot index of slot known to have null key
         * @return the index of the next null slot after staleSlot
         * (all between staleSlot and this slot will have been checked
         * for expunging).
         */
        private int expungeStaleEntry(int staleSlot) {
            Entry[] tab = table;
            int len = tab.length;

            // expunge entry at staleSlot
            tab[staleSlot].value = null;
            tab[staleSlot] = null;
            size--;

            // Rehash until we encounter null
            Entry e;
            int i;
            for (i = nextIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = nextIndex(i, len)) {
                ThreadLocal<?> k = e.get();
                if (k == null) {
                    e.value = null;
                    tab[i] = null;
                    size--;
                } else {
                    int h = k.threadLocalHashCode & (len - 1);
                    if (h != i) {
                        tab[i] = null;

                        // Unlike Knuth 6.4 Algorithm R, we must scan until
                        // null because multiple entries could have been stale.
                        while (tab[h] != null)
                            h = nextIndex(h, len);
                        tab[h] = e;
                    }
                }
            }
            return i;
        }

        /**
         * Heuristically scan some cells looking for stale entries.
         * This is invoked when either a new element is added, or
         * another stale one has been expunged. It performs a
         * logarithmic number of scans, as a balance between no
         * scanning (fast but retains garbage) and a number of scans
         * proportional to number of elements, that would find all
         * garbage but would cause some insertions to take O(n) time.
         *
         * @param i a position known NOT to hold a stale entry. The
         * scan starts at the element after i.
         *
         * @param n scan control: {@code log2(n)} cells are scanned,
         * unless a stale entry is found, in which case
         * {@code log2(table.length)-1} additional cells are scanned.
         * When called from insertions, this parameter is the number
         * of elements, but when from replaceStaleEntry, it is the
         * table length. (Note: all this could be changed to be either
         * more or less aggressive by weighting n instead of just
         * using straight log n. But this version is simple, fast, and
         * seems to work well.)
         *
         * @return true if any stale entries have been removed.
         */
        private boolean cleanSomeSlots(int i, int n) {
            boolean removed = false;
            Entry[] tab = table;
            int len = tab.length;
            do {
                i = nextIndex(i, len);
                Entry e = tab[i];
                if (e != null && e.get() == null) {
                    n = len;
                    removed = true;
                    i = expungeStaleEntry(i);
                }
            } while ( (n >>>= 1) != 0);
            return removed;
        }

        /**
         * Re-pack and/or re-size the table. First scan the entire
         * table removing stale entries. If this doesn't sufficiently
         * shrink the size of the table, double the table size.
         */
        private void rehash() {
            expungeStaleEntries();

            // Use lower threshold for doubling to avoid hysteresis
            if (size >= threshold - threshold / 4)
                resize();
        }

        /**
         * Double the capacity of the table.
         */
        private void resize() {
            Entry[] oldTab = table;
            int oldLen = oldTab.length;
            int newLen = oldLen * 2;
            Entry[] newTab = new Entry[newLen];
            int count = 0;

            for (int j = 0; j < oldLen; ++j) {
                Entry e = oldTab[j];
                if (e != null) {
                    ThreadLocal<?> k = e.get();
                    if (k == null) {
                        e.value = null; // Help the GC
                    } else {
                        int h = k.threadLocalHashCode & (newLen - 1);
                        while (newTab[h] != null)
                            h = nextIndex(h, newLen);
                        newTab[h] = e;
                        count++;
                    }
                }
            }

            setThreshold(newLen);
            size = count;
            table = newTab;
        }

        /**
         * Expunge all stale entries in the table.
         */
        private void expungeStaleEntries() {
            Entry[] tab = table;
            int len = tab.length;
            for (int j = 0; j < len; j++) {
                Entry e = tab[j];
                if (e != null && e.get() == null)
                    expungeStaleEntry(j);
            }
        }
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/732683.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

初识定时任务

了解定时任务 我们在开发系统的时候&#xff0c;常常会遇到需要定时的去执行一些业务&#xff0c;例如&#xff1a;定时备份数据库、定时生成报告、定时发送通知、定时批处理等各种自动化操作。 那此时我们就需要通过使用定时任务来完成这些业务需求。并且在日常的开发中定时任…

【从删库到跑路】一文带你明白MySQL数据库的 事务 操作

&#x1f38a;专栏【MySQL】 &#x1f354;喜欢的诗句&#xff1a;更喜岷山千里雪 三军过后尽开颜。 &#x1f386;音乐分享【如愿】 大一同学小吉&#xff0c;欢迎并且感谢大家指出我的问题&#x1f970; 文章目录 &#x1f354;事务⭐简介⭐普通操作——不使用事务&#x1f3…

深入流行推荐引擎第一部分:推荐系统基础

深入流行推荐引擎第一部分&#xff1a;推荐系统基础 1. 推荐引擎及其类型什么是推荐引擎&#xff1f;基于内容的推荐&#xff08;Content-Based Recommendations&#xff09;协作推荐&#xff08;Collaborative Recommendations&#xff09;混合动力推荐&#xff08;Hybrid Rec…

【stability.ai】SDXL:改进高分辨率图像合成的潜在扩散模型

github&#xff1a;https://github.com/Stability-AI/stablediffusion 试用&#xff1a; https://clipdrop.co/stable-diffusion https://dreamstudio.ai/ 介绍 近年来&#xff0c;深度生成建模在自然语言、音频和视觉媒体等各个数据领域取得了巨大的突破。本文将重点关注视…

计算机网络 day4 IP地址的两部分-A、B、C、D、E五类IP地址-私有地址-子网掩码-DNA服务器-域名解析服务

目录 三创网络拓扑结构图&#xff1a; 普通家庭网络拓扑结构图&#xff1a;&#xff08;也可以直接使用 子母路由器 &#xff08;母&#xff1a;无线路由器&#xff09;&#xff08;子&#xff1a;信号放大器、中继器&#xff09;&#xff09; 网络层&#xff1a;&#xff0…

一篇文章让你搞懂指针笔试题(加深对指针的理解)

指针笔试题 笔试题1 #include<stdio.h> int main() {int a[5] { 1, 2, 3, 4, 5 };int* ptr (int*)(&a 1);printf("%d,%d", *(a 1), *(ptr - 1));//程序的结果是什么&#xff1f;return 0; }给定一个数组a&#xff0c;当我们取地址a的时候&#xff0c…

基于stm32单片机的智能门禁系统设计

一.硬件方案 基于stm32单片机的智能门禁系统设计的整体电路主要由采用STM32F103单片机&#xff0c;4*4矩阵按键电路&#xff0c;电子锁继电器驱动电路&#xff0c;开锁LED指示灯&#xff0c;LCD1602显示屏电路&#xff0c;蜂鸣器报警电路&#xff0c;RFID感应电路&#xff0c;…

如何查看 当前安装的vue版本

目录 1 实现 1 实现 要查看当前安装的 Vue 版本&#xff0c;可以使用以下方法&#xff1a; 在终端或命令提示符中运行以下命令&#xff1a; vue --version如果你使用的是 Vue CLI 创建的项目&#xff0c;可以在项目的根目录中找到 package.json 文件。在该文件中&#xff0c…

【CSS】悬浮动画

文章目录 效果展示代码实现 效果展示 代码实现 <!DOCTYPE html> <html><head><meta charset"utf-8" /><title>一颗不甘坠落的流星</title></head><style type"text/css">.bth {/* 添加背景颜色 */backgr…

2023-7-7-第十三式模板方法模式

&#x1f37f;*★,*:.☆(&#xffe3;▽&#xffe3;)/$:*.★* &#x1f37f; &#x1f4a5;&#x1f4a5;&#x1f4a5;欢迎来到&#x1f91e;汤姆&#x1f91e;的csdn博文&#x1f4a5;&#x1f4a5;&#x1f4a5; &#x1f49f;&#x1f49f;喜欢的朋友可以关注一下&#xf…

代码随想录算法训练营第60天/最后一天 | 84.柱状图中最大的矩形

今日任务 目录 84.柱状图中最大的矩形 - Hard 84.柱状图中最大的矩形 - Hard 题目链接&#xff1a;力扣-84. 柱状图中最大的矩形 给定 n 个非负整数&#xff0c;用来表示柱状图中各个柱子的高度。每个柱子彼此相邻&#xff0c;且宽度为 1 。 求在该柱状图中&#xff0c;能够…

Android之Handler分析与理解

Android中的Handler是一个用于处理消息和线程间通信的机制。它可以将Runnable对象或Message对象发送到特定的线程中进行处理。 使用Handler的主要目的是在不同的线程之间进行通信&#xff0c;特别是在后台线程中执行一些任务后&#xff0c;将结果发送到UI线程进行更新。 流程图…

pearsonr 报错:numpy.float64 can not be interpreted as an integer

【1】 模型求出pred&#xff0c;pearsonr(pred,true&#xff09; 出现以下报错&#xff1a; 【2】解释&#xff1a; 当在计算皮尔逊相关系数&#xff08;Pearson correlation coefficient&#xff09;时出现"numpy.float64 can not be interpreted as an integer"的…

7.7~7.8学习总结

StringBuider&#xff1a;线程不安全&#xff0c;效率高 StringBuffer&#xff1a;线程安全&#xff0c;效率低&#xff1b; 用法举例&#xff1a; class TWC {public static void main(String []args){StringBuilder sbnew StringBuilder("小麻子爱吃粑粑");Syst…

C语言学习(三十六)---文件操作

上节内容中&#xff0c;我们学习了练习了动态内存的练习题&#xff0c;并且学习了柔性数组的相关内容&#xff0c;大叫要好好掌握&#xff0c;今天&#xff0c;我们将学习文件操作的相关内容&#xff0c;这部分内容实际上很多&#xff0c;我们以点代面&#xff0c;好了&#xf…

windows已有mysql的情况下 mysql8 安装

安装前先停掉本地已有的mysql服务https://dev.mysql.com/downloads/mysql/ 下载mysql压缩包解压创建 my.init 文件 [mysqld] port 3307 basedirF:\mysql-8.0.33-winx64\mysql-8.0.33-winx64 datadirF:\mysql-8.0.33-winx64\mysql-8.0.33-winx64\data max_connections200 cha…

3.3.内存的学习,pinnedmemory,内存效率问题

目录 前言1. Memory总结 前言 杜老师推出的 tensorRT从零起步高性能部署 课程&#xff0c;之前有看过一遍&#xff0c;但是没有做笔记&#xff0c;很多东西也忘了。这次重新撸一遍&#xff0c;顺便记记笔记。 本次课程学习精简 CUDA 教程-内存模型&#xff0c;pinned memory&am…

2023.7.08

#include "widget.h"void Widget::my_slot() {if((edit1->text()"admin")&&(edit2->text()"123456")){qDebug()<<"登陆成功";emit jump();close();}else{qDebug()<<"登陆失败";} }void Widget::b…

OSPFv2基础02_工作原理

目录 1.OSPF接口状态 2.OSPF邻居状态 2.1 OSPF邻居状态类型 2.2 广播网络OSPF邻接关系建立 3.Router ID&#xff08;路由器ID&#xff09;选举 4.DR和BDR选举 4.1 为什么引入DR和BDR&#xff1f; 4.2 DR和BDR的作用 4.3 DR和BDR选举过程 4.4 DR和BDR选举原则 5.OSPF路…

基于单片机指纹考勤系统的设计与实现

功能介绍 以51单片机作为主控系统&#xff1b;利用指纹采集模块存储打卡信息&#xff1b;12864显示当前考勤信息&#xff0c;时间 &#xff1b;如果迟到 语音播报 您已迟到&#xff1b;按键进行注册指纹、删除指纹、设置当前时间和签到时间、查询打卡等&#xff1b;具有掉电保存…