高性能分布式缓存Redis(三) 扩展应用

news2024/12/23 19:35:22

一、分布式锁

在并发编程中,通过锁,来避免由于竞争而造成的数据不一致问题

1.1、高并发下单超卖问题

@Autowired
RedisTemplate<String, String> redisTemplate;

String key = "maotai20210319001";//茅台商品编号

ScheduledExecutorService executorService;
ConcurrentSkipListSet<String> set = new ConcurrentSkipListSet<>();

@PostConstruct
void init() {
    redisTemplate.opsForValue().set(key, "100");

    executorService = Executors.newScheduledThreadPool(1);
    String renewlua = "" +
            "if redis.call('get',KEYS[1]) == ARGV[1] then redis.call('expire',KEYS[1],ARGV[2]) ; return true " +
            "else return false " +
            "end";
    executorService.scheduleAtFixedRate(new Runnable() {
        @Override
        public void run() {
            Iterator<String> iterator = set.iterator();
            while (iterator.hasNext()) {
                String clientid = iterator.next();
                Boolean renew = redisTemplate.execute(new RedisCallback<Boolean>() {
                    @Override
                    public Boolean doInRedis(RedisConnection redisConnection) throws DataAccessException {
                        Boolean eval = null;
                        try {
                            eval = redisConnection.eval(
                                    renewlua.getBytes(),
                                    ReturnType.BOOLEAN,
                                    1,
                                    lockKey.getBytes(),
                                    clientid.getBytes(),
                                    "5".getBytes()

                            );
                        } catch (Exception e) {
                            e.printStackTrace();
                        }
                        return eval;
                    }
                });
            }
        }
    }, 0, 1, TimeUnit.SECONDS);
}

问题分析

  • 现象:本地锁在多节点下失效(集群/分布式)

  • 原因:本地锁它只能锁住本地JVM进程中的多个线程,对于多个JVM进程的不同线程间是锁不住的

  • 解决:分布式锁(在分布式环境下提供锁服务,并且达到本地锁的效果)

1.2、何为分布式锁

  • 当在分布式架构下,数据只有一份(或有限制),此时需要利用锁的技术控制某一时刻修改数据的进程数。

  • 用一个状态值表示锁,对锁的占用和释放通过状态值来标识。

1.3、分布式锁特点

  • 互斥性:不仅要在同一jvm进程下的不同线程间互斥,更要在不同jvm进程下的不同线程间互斥。

  • 锁超时:支持锁的自动释放,防止死锁。

  • 正确,高效,高可用:解铃还须系铃人(加锁和解锁必须是同一个线程),加锁和解锁操作一定要高效,提供锁的服务要具备容错性。

  • 可重入:如果一个线程拿到了锁之后继续去获取锁还能获取到,我们称锁是可重入的(方法的递归调用)。

  • 阻塞/非阻塞:如果获取不到直接返回视为非阻塞的,如果获取不到会等待锁的释放直到获取锁或者等待超时,视为阻塞的。

  • 公平/非公平:按照请求的顺序获取锁视为公平的。

1.4、基于Redis实现分布式锁

1.4.1、实现思路:

锁的实现主要基于redis的 SETNX 命令

SETNX key value
将 key 的值设为 value ,当且仅当 key 不存在。
若给定的 key 已经存在,则 SETNX 不做任何动作。
SETNX 是『SET if Not eXists』(如果不存在,则 SET)的简写。
返回值:
设置成功,返回 1
设置失败,返回 0

使用 SETNX 完成同步锁的流程及事项如下

  1. 使用 SETNX 命令获取锁,若返回0(key已存在,锁已存在)则获取失败,反之获取成功。

  2. 为了防止获取锁后程序出现异常,导致其他线程/进程调用 SETNX 命令总是返回0而进入死锁状态,需要为该key设置一个“合理”的过期时间。

  3. 释放锁,使用 DEL 命令将锁数据删除。

1.4.2、实现代码版本

@GetMapping("/get/maotai3")
public String seckillMaotai3() {
    //先获取锁,如果能获取到则进行业务操作
//        Boolean execute = redisTemplate.execute(new RedisCallback<Boolean>() {
//            @Override
//            public Boolean doInRedis(RedisConnection redisConnection) throws DataAccessException {
//                Boolean aBoolean = redisConnection.setNX(lockKey.getBytes(StandardCharsets.UTF_8), "1".getBytes(StandardCharsets.UTF_8));
//                redisConnection.expire(lockKey.getBytes(StandardCharsets.UTF_8),10);
//                return aBoolean;
//            }
//        });
    String clientId = UUID.randomUUID().toString() + Thread.currentThread().getId();
    Boolean ifAbsent = redisTemplate.opsForValue().setIfAbsent(lockKey, clientId, 5, TimeUnit.SECONDS);
    if (ifAbsent) {
        //获取到了锁,给锁设置一个过期时间
        // redisTemplate.expire(lockKey,10,TimeUnit.SECONDS);
        //开始进行业务操作
        try {
            Integer count = Integer.parseInt(redisTemplate.opsForValue().get(key));
            //如果还有库存
            if (count > 0) {
                //抢到了茅台,库存减一
                redisTemplate.opsForValue().set(key, String.valueOf(count - 1));
                //后续操作 do something
                log.info("我抢到茅台了!");
                //模拟故障退出
                System.exit(1);
                return "ok";
            } else {
                return "no";
            }
        } catch (NumberFormatException e) {
            e.printStackTrace();
        } finally {
            //保证锁一定会被释放
            // 自己的锁自己释放 但是需要保证原子操作,此处无法保证
            String lockvalue = redisTemplate.opsForValue().get(lockKey);
            if (lockvalue != null && lockvalue.equals(clientId)) {
                redisTemplate.delete(lockKey);
            }
        }
    }
    return "dont get lock";
}

问题分析

  1. setnx 和 expire是非原子性操作(解决:2.6以前可用使用lua脚本,2.6以后可用set命令)。

  2. 错误解锁(如何保证解铃还须系铃人:给锁加一个唯一标识)。

1.4.3、错误解锁问题解决

在这里插入图片描述

@GetMapping("/get/maotai4")
public String seckillMaotai4() {
    //先获取锁,如果能获取到则进行业务操作
    String clientId = UUID.randomUUID().toString() + Thread.currentThread().getId();
    /*String locklua = "" +
            "if redis.call('setnx',KEYS[1],ARGV[1]) == 1 then redis.call('expire',KEYS[1],ARGV[2]) ; return true " +
            "else return false " +
            "end";
    Boolean islock = redisTemplate.execute(new RedisCallback<Boolean>() {
        @Override
        public Boolean doInRedis(RedisConnection redisConnection) throws DataAccessException {
            Boolean lock = redisConnection.eval(
                    locklua.getBytes(),
                    ReturnType.BOOLEAN,
                    1,
                    lockKey.getBytes(),
                    clientId.getBytes(),
                    "5".getBytes()
            );
            return lock;
        }
    });*/
    Boolean islock = redisTemplate.opsForValue().setIfAbsent(lockKey, clientId, 5, TimeUnit.SECONDS);//可以改用lua脚本,不改也可以
    if (islock) {
        //开始进行业务操作
        try {
            Integer count = Integer.parseInt(redisTemplate.opsForValue().get(key));
            //如果还有库存
            if (count > 0) {
                //抢到了茅台,库存减一
                redisTemplate.opsForValue().set(key, String.valueOf(count - 1));
                //后续操作 do something
                log.info("我抢到茅台了!");
                //模拟故障退出
                // System.exit(1);
                return "ok";
            } else {
                return "no";
            }
        } catch (NumberFormatException e) {
            e.printStackTrace();
        } finally {
            //保证锁一定会被释放
            String unlocklua = "" +
                    "if redis.call('get',KEYS[1]) == ARGV[1] then redis.call('del',KEYS[1]); return true " +
                    "else return false " +
                    "end";
            Boolean unlock = redisTemplate.execute(new RedisCallback<Boolean>() {
                @Override
                public Boolean doInRedis(RedisConnection redisConnection) throws DataAccessException {
                    Boolean unlock = redisConnection.eval(unlocklua.getBytes(),
                            ReturnType.BOOLEAN,
                            1,
                            lockKey.getBytes(),
                            clientId.getBytes());
                    return unlock;
                }
            });
        }
    }
    return "dont get lock";
}

1.4.4、锁续期/锁续命

在这里插入图片描述

/**
 * 3,锁续期/锁续命
 *  拿到锁之后执行业务,业务的执行时间超过了锁的过期时间
 *
 *  如何做?
 *  给拿到锁的线程创建一个守护线程(看门狗),守护线程定时/延迟 判断拿到锁的线程是否还继续持有锁,如果持有则为其续期
 *
 */
//模拟一下守护线程为其续期
ScheduledExecutorService executorService;//创建守护线程池
ConcurrentSkipListSet<String> set = new ConcurrentSkipListSet<String>();//队列

@PostConstruct
public void init2(){
    executorService = Executors.newScheduledThreadPool(1);

    //编写续期的lua
    String expirrenew = "" +
            "if redis.call('get',KEYS[1]) == ARGV[1] then redis.call('expire',KEYS[1],ARGV[2]) ; return true " +
            "else return false " +
            "end";

    executorService.scheduleAtFixedRate(new Runnable() {
        @Override
        public void run() {
            Iterator<String> iterator = set.iterator();
            while (iterator.hasNext()) {
                String rquestid = iterator.next();

                redisTemplate.execute(new RedisCallback<Boolean>() {
                    @Override
                    public Boolean doInRedis(RedisConnection redisConnection) throws DataAccessException {
                        Boolean eval = false;
                        try {
                            eval = redisConnection.eval(
                                    expirrenew.getBytes(),
                                    ReturnType.BOOLEAN,
                                    1,
                                    lockey.getBytes(),
                                    rquestid.getBytes(),
                                    "5".getBytes()
                            );
                        } catch (Exception e) {
                            log.error("锁续期失败,{}",e.getMessage());
                        }
                        return eval;
                    }
                });

            }
        }
    },0,1,TimeUnit.SECONDS);
}
@GetMapping("/get/maotai5")
public String seckillMaotai5() {
    String requestid = UUID.randomUUID().toString() + Thread.currentThread().getId();
    //获取锁
    Boolean islock = redisTemplate.opsForValue().setIfAbsent(lockey,requestid,5,TimeUnit.SECONDS);
    if (islock) {
        //获取锁成功后让守护线程为其续期
        set.add(requestid);
        try {
            Integer count = Integer.parseInt(redisTemplate.opsForValue().get(maotai)); // 1
            //如果还有库存
            if (count > 0) {
                //抢到了茅台,库存减一
                redisTemplate.opsForValue().set(maotai,String.valueOf(count-1));
                //后续操作 do something
                //seckillMaotai5();
                //模拟业务超时
                TimeUnit.SECONDS.sleep(10);
                log.info("我抢到茅台了!");
                return "ok";
            }else {
                return "no";
            }
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            //解除锁续期
           set.remove(requestid);
            //释放锁
            String unlocklua = "" +
                    "if redis.call('get',KEYS[1]) == ARGV[1] then redis.call('del',KEYS[1]) ; return true " +
                    "else return false " +
                    "end";
            redisTemplate.execute(new RedisCallback<Boolean>() {
                @Override
                public Boolean doInRedis(RedisConnection redisConnection) throws DataAccessException {
                    Boolean eval = redisConnection.eval(
                            unlocklua.getBytes(),
                            ReturnType.BOOLEAN,
                            1,
                            lockey.getBytes(),
                            requestid.getBytes()
                    );
                    return eval;
                }
            });
        }
    }
    return "dont get lock";
}

1.4.5、锁的可重入/阻塞锁(redisson)

/**
 *
 * 4,如何支持可重入
 *   重入次数/过期时间
 *    获取
 *         获取
 *               获取
 *
 *               释放
 *         释放
 *    释放
 *
 *   基于本地实现
 *   还是基于redis但是更换了数据类型,采用hash类型来实现
 *    key   field  value
 *   锁key  请求id  重入次数
 *   用lua实现
 *
 *
 *   5,阻塞/非阻塞的问题:现在的锁是非阻塞的,一旦获取不到锁直接返回了
 *   如何做一个阻塞锁呢?
 *    获取不到就等待锁的释放,直到获取到锁或者等待超时
 *    1:基于客户端轮询的方案
 *    2:基于redis的发布/订阅方案
 *
 *
 *    有没有好的实现呢?
 *    Redisson
 *
 */
@Value("${spring.redis.host}")
String host;
@Value("${spring.redis.port}")
String port;

@Bean
public RedissonClient redissonClient() {
    Config config = new Config();
    config.useSingleServer().setAddress("redis://"+host+":"+port);
    return Redisson.create(config);
}

@Autowired
RedissonClient redissonClient;


@GetMapping("/get/maotai6")
public String seckillMaotai6() {
    //要去获取锁
    RLock lock = redissonClient.getLock(lockey);
    lock.lock();
    try {
        Integer count = Integer.parseInt(redisTemplate.opsForValue().get(maotai)); // 1
        //如果还有库存
        if (count > 0) {
            //抢到了茅台,库存减一
            redisTemplate.opsForValue().set(maotai,String.valueOf(count-1));
            //后续操作 do something
            log.info("我抢到茅台了!");
            return "ok";
        }else {
            return "no";
        }
    } catch (Exception e) {
        e.printStackTrace();
    } finally {
        lock.unlock();;
    }
    return "";
}

1.5、redisson

Redisson内置了一系列的 分布式对象分布式集合分布式锁分布式服务
等诸多功能特性,是一款基于Redis实现,拥有一系列分布式系统功能特性的工具包,是实现分布式系统架构中缓存中间件的最佳选择。

下载地址:https://github.com/redisson/redisson
加解锁源码解析参考: 传送门
实现

<dependency>
    <groupId>org.redisson</groupId>
    <artifactId>redisson</artifactId>
    <version>3.8.2</version>
</dependency>
@Value("${spring.redis.host}")
String host;
@Value("${spring.redis.port}")
String port;
@Bean
public RedissonClient redissonClient() {
    Config config = new Config();
    config.useSingleServer().setAddress("redis://"+host+":"+port);
    return Redisson.create(config);
}

@Autowired
RedissonClient redissonClient;

@GetMapping("/get/maotai6")
public String seckillMaotai6() {
    RLock lock = redissonClient.getLock(lockey);
    //获取锁
    lock.lock();

    try {
        Integer count = Integer.parseInt(redisTemplate.opsForValue().get(maotai));
        //如果还有库存
        if (count > 0) {
            //抢到了茅台,库存减一
            redisTemplate.opsForValue().set(maotai,String.valueOf(count-1));
            //后续操作 do something
            log.info("我抢到茅台了!");
            return "ok";
        }else {
            return "no";
        }
    } catch (Exception e) {
        e.printStackTrace();
    } finally {
        lock.unlock();
    }
    return "dont get lock";
}

源码剖析

  1. 加锁的(是否支持重入)
  2. 锁续期的
  3. 阻塞获取
  4. 释放
/**
 * 原理
 * 1,加锁
 * <T> RFuture<T> tryLockInnerAsync(long leaseTime, TimeUnit unit, long threadId, RedisStrictCommand<T> command) {
 *         internalLockLeaseTime = unit.toMillis(leaseTime);
 *
 *         return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, command,
 *                    #如果锁key不存在
 *                   "if (redis.call('exists', KEYS[1]) == 0) then " +
 *                        #设置锁key,field是唯一标识,value是重入次数
 *                       "redis.call('hset', KEYS[1], ARGV[2], 1); " +
 *                       #设置锁key的过期时间 默认30s
 *                       "redis.call('pexpire', KEYS[1], ARGV[1]); " +
 *                       "return nil; " +
 *                   "end; " +
 *                   #如果锁key存在
 *                   "if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then " +
 *                        #重入次数+1
 *                       "redis.call('hincrby', KEYS[1], ARGV[2], 1); " +
 *                        #重置过期时间
 *                       "redis.call('pexpire', KEYS[1], ARGV[1]); " +
 *                       "return nil; " +
 *                   "end; " +
 *                   "return redis.call('pttl', KEYS[1]);",
 *                     Collections.<Object>singletonList(getName()), internalLockLeaseTime, getLockName(threadId));
 *     }
 *
 *  2,锁续期
 *   private void scheduleExpirationRenewal(final long threadId) {
 *         if (expirationRenewalMap.containsKey(getEntryName())) {
 *             return;
 *         }
 *
 *         Timeout task = commandExecutor.getConnectionManager().newTimeout(new TimerTask() {
 *             @Override
 *             public void run(Timeout timeout) throws Exception {
 *                 //续期函数的真正实现
 *                 RFuture<Boolean> future = renewExpirationAsync(threadId);
 *
 *                 future.addListener(new FutureListener<Boolean>() {
 *                     @Override
 *                     public void operationComplete(Future<Boolean> future) throws Exception {
 *                         expirationRenewalMap.remove(getEntryName());
 *                         if (!future.isSuccess()) {
 *                             log.error("Can't update lock " + getName() + " expiration", future.cause());
 *                             return;
 *                         }
 *
 *                         if (future.getNow()) {
 *                             // reschedule itself  再次调用自己,最终形成的结果就是每隔10秒续期一次
 *                             scheduleExpirationRenewal(threadId);
 *                         }
 *                     }
 *                 });
 *             }
 *          // internalLockLeaseTime=30 * 1000 即30秒
 *         }, internalLockLeaseTime / 3, TimeUnit.MILLISECONDS); //30/3=10秒后异步执行续期函数
 *
 *         if (expirationRenewalMap.putIfAbsent(getEntryName(), new ExpirationEntry(threadId, task)) != null) {
 *             task.cancel();
 *         }
 *     }
 *
 *     续期的lua脚本:判断key,field存在则重置过期时间
 *     protected RFuture<Boolean> renewExpirationAsync(long threadId) {
 *         return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, RedisCommands.EVAL_BOOLEAN,
 *                 "if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then " +
 *                     "redis.call('pexpire', KEYS[1], ARGV[1]); " +
 *                     "return 1; " +
 *                 "end; " +
 *                 "return 0;",
 *             Collections.<Object>singletonList(getName()),
 *             internalLockLeaseTime, getLockName(threadId));
 *     }
 *
 *
 *
 * 4,阻塞锁实现
 *  public void lockInterruptibly(long leaseTime, TimeUnit unit) throws InterruptedException {
 *         long threadId = Thread.currentThread().getId();
 *         Long ttl = tryAcquire(leaseTime, unit, threadId);
 *         // lock acquired
 *         if (ttl == null) {
 *             return;
 *         }
 *         //如果没有获取到锁,则订阅:redisson_lock__channel:{key} 频道
 *         RFuture<RedissonLockEntry> future = subscribe(threadId);
 *         commandExecutor.syncSubscription(future);
 *
 *         try {
 *             while (true) {
 *                //尝试再获取一次
 *                 ttl = tryAcquire(leaseTime, unit, threadId);
 *                 // lock acquired
 *                 if (ttl == null) {
 *                     break;
 *                 }
 *
 *                 // waiting for message 阻塞等待锁订阅频道的消息,一旦锁被释放,就会得到信号通知,继续尝试获取锁
 *                 if (ttl >= 0) {
 *                     getEntry(threadId).getLatch().tryAcquire(ttl, TimeUnit.MILLISECONDS);
 *                 } else {
 *                     getEntry(threadId).getLatch().acquire();
 *                 }
 *             }
 *         } finally {
 *            //获取到锁后取消订阅
 *             unsubscribe(future, threadId);
 *         }
 * //        get(lockAsync(leaseTime, unit));
 *     }
 *
 *
 * 5,解锁
 * protected RFuture<Boolean> unlockInnerAsync(long threadId) {
 *         return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, RedisCommands.EVAL_BOOLEAN,
 *                 //key已经不存在了,则向redisson_lock__channel:{key}频道发布锁释放消息
 *                 "if (redis.call('exists', KEYS[1]) == 0) then " +
 *                     "redis.call('publish', KEYS[2], ARGV[1]); " +
 *                     "return 1; " +
 *                 "end;" +
 *                  // hash 中的field 不存在时直接返回,
 *                 "if (redis.call('hexists', KEYS[1], ARGV[3]) == 0) then " +
 *                     "return nil;" +
 *                 "end; " +
 *                 "local counter = redis.call('hincrby', KEYS[1], ARGV[3], -1); " +
 *                 //重入次数-1后如果还大于0,延长过期时间
 *                 "if (counter > 0) then " +
 *                     "redis.call('pexpire', KEYS[1], ARGV[2]); " +
 *                     "return 0; " +
 *                 "else " +
 *                 //重入次数-1后如果归0,则删除key,并向redisson_lock__channel:{key}频道发布锁释放消息
 *                     "redis.call('del', KEYS[1]); " +
 *                     "redis.call('publish', KEYS[2], ARGV[1]); " +
 *                     "return 1; "+
 *                 "end; " +
 *                 "return nil;",
 *                 Arrays.<Object>asList(getName(), getChannelName()), LockPubSub.unlockMessage, internalLockLeaseTime, getLockName(threadId));
 *
 *     }
 */

二、布隆过滤器(BloomFilter)

引言

  • 问题1:什么是Redis缓存穿透?缓存穿透如何解决?

  • 问题2:如何在海量元素中(例如 10 亿无序、不定长、不重复)快速判断一个元素是否存在?

2.1、什么是 BloomFilter

布隆过滤器 (英语:Bloom Filter)是 1970 年由Burton Howard Bloom提出的,是一种空间效率高的概率型数据结构。

本质上其实就是一个很长的二进制向量和一系列随机映射函数。 专门用来检测集合中是否存在特定的元素

2.1.1、产生的契机

平常在检测集合中是否存在某元素时,都会采用比较的方法。考虑以下情况

  • 如果集合用线性表存储,查找的时间复杂度为O(n)。

  • 如果用平衡BST(如AVL树、红黑树)存储,时间复杂度为O(logn)。

  • 如果用哈希表存储,并用链地址法与平衡BST解决哈希冲突(参考JDK8的HashMap实现方法),时间复杂度也要有O[log(n/m)],m为哈希分桶数。

在这里插入图片描述

总而言之,当集合中元素的数量极多时,不仅查找会变得很慢,而且占用的空间也会大到无法想象。BF就是解决这个矛盾的利器。

2.1.2、数据结构&设计思想

BF是由一个长度为m比特的位数组(bit array)与k个哈希函数(hashfunction)组成的数据结构。位数组均初始化为0,所有哈希函数都可以分别把输入数据尽量均匀地散列。
在这里插入图片描述

基于BitMap
在这里插入图片描述
如果要映射一个值到布隆过滤器中,需要使用 多个不同的哈希函数 生成 多个哈希值 ,并对每个生成的哈希值指向的 bit 位,设置为1。
在这里插入图片描述

在这里插入图片描述

当要 插入 一个元素时,将其数据分别输入k个哈希函数,产生k个哈希值。以哈希值作为位数组中的下标,将所有k个对应的比特置为1。

当要 查询
(即判断是否存在)一个元素时,同样将其数据输入哈希函数,然后检查对应的k个比特。如果有任意一个比特为0,表明该元素一定不在集合中。如果所有比特均为1,表明该集合有(较大的)可能性在集合中。为什么不是一定在集合中呢?因为一个比特被置为1有可能会受到其他元素的影响,这就是所谓“假阳性”(falsepositive)。相对地,“假阴性”(false negative)在BF中是绝不会出现的。

  • 如果这些点有任何一个 0,则被检索元素 一定不在

  • 如果都是 1,则被检索元素 很可能在

2.1.3、误判率问题分析

在这里插入图片描述

哈希函数有以下两个特点

  • 如果两个散列值是不相同的(根据同一函数),那么这两个散列值的原始输入也是不相同的。

  • 散列函数的输入和输出不是唯一对应关系的,如果两个散列值相同,两个输入值很可能是相同的。但也可能不同,这种情况称为 “散列碰撞”(或者 “散列冲突”)

在这里插入图片描述

布隆过滤器的误判是指多个输入经过哈希之后在相同的bit位置1了,这样就无法判断究竟是哪个输入产生的,因此误判的根源在于相同的 bit 位被多次映射且置 1。

2.1.4、不支持删除

hash碰撞这种情况也造成了布隆过滤器的删除问题,传统的布隆过滤器并不支持删除操作,因为布隆过滤器的每一个 bit
并不是独占的,很有可能多个元素共享了某一位。如果直接删除这一位的话,会影响其他的元素。

2.1.5、如何选择哈希函数个数和布隆过滤器长度

很显然,过小的布隆过滤器很快所有的 bit 位均为
1,那么查询任何值都会返回“可能存在”,起不到过滤的目的了。布隆过滤器的长度会直接影响误报率,布隆过滤器越长其误报率越小。

另外,哈希函数的个数也需要权衡,个数越多则布隆过滤器 bit 位置位 1 的速度越快,且布隆过滤器的效率越低;但是如果太少的话,那误报率会变高。
在这里插入图片描述

如何选择适合业务的 k 和 m 值呢,这里直接贴一个公式
在这里插入图片描述

2.2、布隆过滤器实现

2.2.1、第一种方式: Guava

1、引入Guava pom配置

<dependency>
  <groupId>com.google.guava</groupId>
  <artifactId>guava</artifactId>
  <version>29.0-jre</version>
</dependency>

2、代码实现

public class BloomFilterTest {
    @Test
    public void test1() {
        BloomFilter<Integer> bloomFilter =
                BloomFilter.create(Funnels.integerFunnel(), size, fpp);
        // 插入10万样本数据
        for (int i = 0; i < size; i++) {
            bloomFilter.put(i);
        }
        // 用另外十万测试数据,测试误判率
        int count = 0;
        for (int i = capacity; i < size + 100000; i++) {
            if (bloomFilter.mightContain(i)) {
                count++;
                System.out.println(i + "误判了");
            }
        }
        System.out.println("总共的误判数:" + count);
    }
}

运行结果:
在这里插入图片描述
10万数据里有947个误判,约等于0.01%,也就是代码里设置的误判率:fpp = 0.01。

代码分析

核心BloomFilter.create 方法

 @VisibleForTesting
 static <T> BloomFilter<T> create(Funnel<? super T> funnel, long expectedInsertions, double fpp, Strategy strategy) {
 ......
 }

这里有四个参数

  • funnel :数据类型(通常是调用Funnels工具类中的)

  • expectedInsertions :指望插入的值的个数

  • fpp :误判率(默认值为0.03)

  • strategy :哈希算法

fpp误判率

  • 情景一: fpp = 0.01
    误判个数:947 占内存大小:9585058位数

  • 情景二: fpp = 0.03 (默认参数)
    误判个数:3033 占内存大小:7298440位数

总结

  • 误判率能够经过fpp 参数进行调节。

  • fpp越小,须要的内存空间就越大:0.01须要900多万位数,0.03须要700多万位数。

  • fpp越小,集合添加数据时,就须要更多的hash函数运算更多的hash值,去存储到对应的数组下标里(忘了去看上面的布隆过滤存入数据的过程)。

2.2.2、第二种方式:Redisson

上面使用Guava实现的布隆过滤器是把数据放在了本地内存中。分布式的场景中就不合适了,没法共享内存。

还能够用Redis来实现布隆过滤器,这里使用Redis封装好的客户端工具Redisson。

pom配置

<dependency>
	<groupId>org.redisson</groupId>
	<artifactId>redisson-spring-boot-starter</artifactId>
	<version>3.13.4</version>
</dependency>

Java代码

public class RedissonBloomFilter {
    public static void main(String[] args) {
        Config config = new Config();
        config.useSingleServer().setAddress("redis://127.0.0.1:6379");
        config.useSingleServer().setPassword("1234");
        //构造Redisson
        RedissonClient redisson = Redisson.create(config);
        RBloomFilter<String> bloomFilter = redisson.getBloomFilter("phoneList");
        //初始化布隆过滤器:预计元素为100000000L,偏差率为3%
        bloomFilter.tryInit(100000000L,0.03);
        //将号码10086插入到布隆过滤器中
        bloomFilter.add("10086");
        //判断下面号码是否在布隆过滤器中
        //输出false
        System.out.println(bloomFilter.contains("123456"));
        //输出true
        System.out.println(bloomFilter.contains("10086"));
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/706591.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【线程池】史上最全的ScheduledThreadPoolExecutor源码分析

目录 一、简介 1.1 继承关系 1.2 使用 1.3 例子 二、源码分析 2.1 构造方法 2.2 主要的四种提交执行任务的方法 2.3 内部类 ScheduledFutureTask 2.3 scheduleAtFixedRate()方法 2.4 delayedExecute()方法 2.5 ScheduledFutureTask类的run()方法 2.6 内部类 Delaye…

Java设计模式(九)—— 工厂模式1

系列文章目录 披萨订购—传统方式 文章目录 系列文章目录前言一、传统方式案例1.具体需求案例2.传统方式实现3.传统方式优缺点 总结 前言 Hello&#xff0c;小伙伴们&#xff0c;欢迎来到柚子的博客~让我们一起成长吧o(&#xffe3;▽&#xffe3;)ブ 提示&#xff1a;以下是…

Java框架学习(一)JavaWeb基础:Maven、Spring、Tomcat、Mybatis、Springboot

文章目录 MavenMaven仓库Maven坐标为什么Maven进行了依赖管理&#xff0c;依然会出现依赖冲突&#xff1f;处理依赖冲突的手段是什么&#xff1f;详细讲讲scope依赖范围Maven的生命周期Maven高级分模块设计继承版本锁定聚合Maven的继承与聚合的异同私服 Tomcatservlet 分层解耦…

RISCV Reader笔记_4 乘除,浮点扩展

乘法和除法指令 前面了解过 RV32I不带乘除。扩展的RV32M里面有。 mul 较简单。div 是商&#xff0c;rem 是余数。 指令格式都差不多&#xff0c;基本就是靠 func 码确定变体。 因为两个32位数乘积是64位数&#xff0c;一条指令处理会比较复杂&#xff0c;因此分为两个指令计算…

二维地图中立体阴影效果实现

概述 前两天有个学员在群里发出来一张截图&#xff0c;效果是一个区域掩膜边框立体阴影效果&#xff0c;咨询我怎么实现&#xff0c;我看了下心里大概有了一个想法&#xff0c;只是前两天比较忙就没实现&#xff0c;趁着周末就想着验证实现一下。鉴于学员的要求&#xff0c;本…

116.实战网页实现平滑滚动

● 在导航中&#xff0c;我们使用#简单的实现了&#xff0c;现在我们要实现&#xff0c;点击导航自动跳转指定的节去&#xff0c;通过id去选择 <ul class"main-nav-list"><li><a class"main-nav-link" href"#how">工作流程&l…

Web APls-day01

(创作不易&#xff0c;感谢有你&#xff0c;你的支持&#xff0c;就是我前行的最大动力&#xff0c;如果看完对你有帮助&#xff0c;请留下您的足迹&#xff09; 目录 变量声明 Web API 基本认知 1 作用和分类 2 什么是DOM 3 DOM树 4 DOM对象&#xff08;重要…

Powerbuilder项目文件太多,对象继承太多导致编译需要几个小时的解决方案

Powerbuilder项目文件太多&#xff0c;对象继承太多导致编译需要几个小时的解决方案&#xff1a; 项目文件太多&#xff0c;很多pbl是一个相对独立的库算法&#xff0c;而且还夹杂着pfc的一些老库。这些库的特点就是继承和封装比较好&#xff0c;但是导致编译速度特慢。我遇到…

全局异常处理

使用 ControllerAdvice 声明全局异常处理类使用ExceptionHandler(异常类.class) 指定哪一个异常处理 先会抛出指定异常&#xff0c;没有指定异常的情况下抛出全局异常。 3. 自定义异常 3-1. 自定义异常类&#xff0c;需要继承 extends RuntimeException 3-2. 在代码异常处声…

《JavaScript设计模式与开发实践》一篇文章带你读懂

《JavaScript设计模式与开发实践》是由曾探所著的一本经典技术书籍。该书详细介绍了JavaScript中常用的设计模式&#xff0c;并结合实际项目开发经验给出了实践示例和最佳实践建议。这本书首先介绍了设计模式的基本概念和作用&#xff0c;以及为什么要在JavaScript中使用设计模…

Leetcode链表刷题集合

链表 对链表类算法题做个小集合&#xff0c;题解基本来LeetCode题解与labuladong的算法网站&#xff0c;自己加以理解写注释。代码都是测试跑通的。 下面使用的链表结构&#xff1a; class ListNode{public ListNode next;public int val;public ListNode(ListNode next, in…

threejs光源

个人博客地址: https://cxx001.gitee.io 前言 没有光源&#xff0c;渲染场景将不可见。threejs中已经帮我们实现了大量的光源&#xff0c;我们可以直接使用&#xff0c;主要分为两类&#xff1a;基础光源和特殊光源&#xff0c;下面将依次详细介绍。 基础光源 1. THREE.Ambi…

单向/双向V2G环境下分布式电源与电动汽车充电站联合配置方法(matlab代码)

目录 1 主要内容 目标函数 电动汽车负荷建模 算例系统图 程序亮点 2 部分代码 3 程序结果 4 下载链接 1 主要内容 该程序复现博士文章《互动环境下分布式电源与电动汽车充电站的优化配置方法研究》第五章《单向/双向V2G环境下分布式电源与电动汽车充电站联合配置方法》…

13 | 代码模型(上):如何使用DDD设计微服务代码模型?

目录 DDD 分层架构与微服务代码模型 微服务代码模型 微服务一级目录结构 各层目录结构 1. 用户接口层 2. 应用层 3. 领域层 4. 基础层 代码模型总目录结构 总结 上一篇文章中完成了领域模型的设计&#xff0c;接下来我们就要开始微服务的设计和落地了。那微服务落地时…

第十七章、Spring的事务处理

1.什么是事务&#xff1f; 保证业务操作完整性的一种数据库机制事务的特点&#xff1a;ACID 原子性 一致性 隔离性 持久性2.如何控制事务 JDBC:Connection.setAutoCommit(false);事务开启Connection.commit();Connection.rollback(); Mybatis:Mybatis自动开启事务sqlSession(…

Revit中桩的绘制及CAD生成桩

一、Revit如何用体量来绘制一个桩基础 如何用体量来绘制一个桩基础呢?这里采用BIM等级考试一级第十期的第三题来教大家 新建体量样板&#xff0c;选择公制体量来绘制 按题目要求先复制4个参照标高平面&#xff0c;同时按住ctrlshift拖动标高再修改高度就可以 开始绘制基础的最…

Axure教程——模糊搜索(中继器 )

本文介绍的是用Axure中的中继器制作模糊搜索 效果 预览地址&#xff1a;https://f16g7e.axshare.com 功能 输入关键字&#xff0c;可查询出相应的结果 制作 一、需要元件 矩形、中继器 二、制作过程 1、搜索框 拖入一个矩形元件&#xff0c;设置大小为21530,在矩形中加入一个…

多元分类预测 | Matlab麻雀算法(SSA)优化混合核极限学习机(HKELM)分类预测,多特征输入模型,SSA-HKELM分类预测

文章目录 效果一览文章概述部分源码参考资料效果一览 文章概述 多元分类预测 | Matlab麻雀算法(SSA)优化混合核极限学习机(HKELM)分类预测,多特征输入模型,SSA-HKELM分类预测 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。程序语言为matlab…

内网IP怎么用域名让外网访问,域名动态解析和静态区别?

域名解析是将域名与公网IP进行对应关系&#xff0c;实现访问域名即访问到对应IP应用的方式。域名解析分静态域名解析和动态域名解析的区别&#xff0c;它们的区别在哪&#xff1f;内网IP服务器怎么用域名让外网连接访问&#xff1f;这些都是需要我们有所了解掌握的。 这里不但…

ShardingSphere 5.3 整合 Seata 分布式事务 | Spring Cloud 61

一、前言 通过以下系列章节&#xff1a; docker-compose 实现Seata Server高可用部署 | Spring Cloud 51 Seata AT 模式理论学习、事务隔离及部分源码解析 | Spring Cloud 52 Spring Boot集成Seata利用AT模式分布式事务示例 | Spring Cloud 53 Seata XA 模式理论学习、使用…