-
单一职责原则
-
依赖倒转原则
-
最小知识原则
-
接口隔离原则
-
合成/聚合复用原则
-
里氏代换原则,任何基类可以出现的地方,子类一定可以出现
依赖倒置
====
假设我们设计一辆汽车:先设计轮子,然后根据轮子大小设计底盘,接着根据底盘设计车身,最后根据车身设计好整个汽车。这里就出现了一个“依赖”关系:汽车依赖车身,车身依赖底盘,底盘依赖轮子。
这样的设计看起来没问题,但是可维护性却很低。假设设计完工之后,上司却突然说根据市场需求的变动,要我们把车子的轮子设计都改大一码。这下我们就蛋疼了:因为我们是根据轮子的尺寸设计的底盘,轮子的尺寸一改,底盘的设计就得修改;同样因为我们是根据底盘设计的车身,那么车身也得改,同理汽车设计也得改——整个设计几乎都得改!我们现在换一种思路。我们先设计汽车的大概样子,然后根据汽车的样子来设计车身,根据车身来设计底盘,最后根据底盘来设计轮子。这时候,依赖关系就倒置过来了:轮子依赖底盘, 底盘依赖车身, 车身依赖汽车。
这时候,上司再说要改动轮子的设计,我们就只需要改动轮子的设计,而不需要动底盘,车身,汽车的设计了。这就是依赖倒置原则——把原本的高层建筑依赖底层建筑“倒置”过来,变成底层建筑依赖高层建筑。高层建筑决定需要什么,底层去实现这样的需求,但是高层并不用管底层是怎么实现的。这样就不会出现前面的“牵一发动全身”的情况。
控制反转(Inversion of Control)
==============================
就是依赖倒置原则的一种代码设计的思路。具体采用的方法就是所谓的依赖注入(Dependency Injection)。其实这些概念初次接触都会感到云里雾里的。说穿了,这几种概念的关系大概如下:
为了理解这几个概念,我们还是用上面汽车的例子。只不过这次换成代码。我们先定义四个Class,车,车身,底盘,轮胎。然后初始化这辆车,最后跑这辆车。代码结构如下:
这样,就相当于上面第一个例子,上层建筑依赖下层建筑——每一个类的构造函数都直接调用了底层代码的构造函数。假设我们需要改动一下轮胎(Tire)类,把它的尺寸变成动态的,而不是一直都是30。我们需要这样改:
由于我们修改了轮胎的定义,为了让整个程序正常运行,我们需要做以下改动:
由此我们可以看到,仅仅是为了修改轮胎的构造函数,这种设计却需要修改整个上层所有类的构造函数!在软件工程中,这样的设计几乎是不可维护的——在实际工程项目中,有的类可能会是几千个类的底层,如果每次修改这个类,我们都要修改所有以它作为依赖的类,那软件的维护成本就太高了。所以我们需要进行控制反转(IoC),及上层控制下层,而不是下层控制着上层。我们用依赖注入(Dependency Injection)这种方式来实现控制反转。所谓依赖注入,就是把底层类作为参数传入上层类,实现上层类对下层类的“控制”。这里我们用构造方法传递的依赖注入方式重新写车类的定义:
这里我们再把轮胎尺寸变成动态的,同样为了让整个系统顺利运行,我们需要做如下修改:
看到没?这里我只需要修改轮胎类就行了,不用
修改其他任何上层类。这显然是更容易维护的代码。不仅如此,在实际的工程中,这种设计模式还有利于不同组的协同合作和单元测试:比如开发这四个类的分别是四个不同的组,那么只要定义好了接口,四个不同的组可以同时进行开发而不相互受限制;而对于单元测试,如果我们要写Car类的单元测试,就只需要Mock一下Framework类传入Car就行了,而不用把Framework, Bottom, Tire全部new一遍再来构造Car。这里我们是采用的构造函数传入的方式进行的依赖注入。其实还有另外两种方法:Setter传递和接口传递。这里就不多讲了,核心思路都是一样的,都是为了实现控制反转。
控制反转容器(IoC Container)
=========================
其实上面的例子中,对车类进行初始化的那段代码发生的地方,就是控制反转容器。
png)
控制反转容器(IoC Container)
=========================
其实上面的例子中,对车类进行初始化的那段代码发生的地方,就是控制反转容器。