代码复现:基于竞争学习的灰狼优化算法Clb-GWO,可用于算法对比
参考文献:Aala Kalananda V K R, Komanapalli V L N. A competitive learning-based Grey wolf Optimizer for engineering problems and its application to multi-layer perceptron training[J]. Multimedia Tools and Applications(SCI四区), 2023: 1-59.
代码获取:
百度搜索“面包多”,在面包多官方主页的搜索作品栏搜索该推文标题即可
算法效果图:以单峰函数F1,F7,多峰函数F10,F12为例