nnUnet测试

news2024/11/15 10:07:41

 https://github.com/MIC-DKFZ/nnUNet

nnUnet要在Windows上跑起来有点麻烦,主要是项目路径的问题,我目前测试了2分类遥感数据(其实只要是二分类都行,无所谓什么数据),我这里说难是因为我没有安装,没有用命令行跑,我直接在脚本里改了参数运行,下面我对关键部分做下说明

1.数据准备

数据就用阿里天池大数据竞赛里那个建筑比赛数据,这个比赛是长期开放的,有兴趣的可以把自己的结果拿去给系统评价一下,数据链接如下:

链接:https://pan.baidu.com/s/1A2owAk1gUlycM7_kDPjIng 
提取码:x5wt 
--来自百度网盘超级会员V6的分享

去源码链接下载有一下项目,创建一个放数据的文件夹datasets

 一级目录:

 二级目录:

 三级目录:

 

 其中train,val,test的结构一样,images放图片,labels里放标签,标签值为0和1

train里有3万张样本,由于nnUnet是用5折交叉验证策略训练的,没必要专门剪切数据出来作为验证测试数据了,所以我只是复制了1000个样本作为val和test,并且val和test一模一样,train还是3万张。另外注意,下面的调试操作尽量拿出几十张先把过程走通,nnUnet数据转化和预处理还是需要不少时间的!!!直接用3万张去调试恐怕很难了,一次错误就要浪费很长时间重来。

 2.数据标准化

 nnUnet在训练之前需要先标准化和预处理,先说标准化。

因为nnUnet本来是在Linux上做的工程,并且是用在三维的医疗数据上的,需要把数据格式标准化到医疗数据格式,另外,在Windows上有些东西可能不起作用,至少目前我是这样的,下面是作者提供的二维数据的转化脚本./dataset_conversion/Task120_Massachusetts_RoadSegm.py文件,我做了些修改,贴出来,务必好好看这个文件的说明

import numpy as np
from batchgenerators.utilities.file_and_folder_operations import *
from nnunet.dataset_conversion.utils import generate_dataset_json
from nnunet.paths import nnUNet_raw_data, preprocessing_output_dir
from nnunet.utilities.file_conversions import convert_2d_image_to_nifti


def mkdir_func(path):
    if os.path.exists(path):
        pass
    else:
        os.mkdir(path)


if __name__ == '__main__':
    """
    nnU-Net was originally built for 3D images. It is also strongest when applied to 3D segmentation problems because a 
    large proportion of its design choices were built with 3D in mind. Also note that many 2D segmentation problems, 
    especially in the non-biomedical domain, may benefit from pretrained network architectures which nnU-Net does not
    support.
    Still, there is certainly a need for an out of the box segmentation solution for 2D segmentation problems. And 
    also on 2D segmentation tasks nnU-Net cam perform extremely well! We have, for example, won a 2D task in the cell 
    tracking challenge with nnU-Net (see our Nature Methods paper) and we have also successfully applied nnU-Net to 
    histopathological segmentation problems. 
    Working with 2D data in nnU-Net requires a small workaround in the creation of the dataset. Essentially, all images 
    must be converted to pseudo 3D images (so an image with shape (X, Y) needs to be converted to an image with shape 
    (1, X, Y). The resulting image must be saved in nifti format. Hereby it is important to set the spacing of the 
    first axis (the one with shape 1) to a value larger than the others. If you are working with niftis anyways, then 
    doing this should be easy for you. This example here is intended for demonstrating how nnU-Net can be used with 
    'regular' 2D images. We selected the massachusetts road segmentation dataset for this because it can be obtained 
    easily, it comes with a good amount of training cases but is still not too large to be difficult to handle.
    """

    # download dataset from https://www.kaggle.com/insaff/massachusetts-roads-dataset
    # extract the zip file, then set the following path according to your system:
    base = 'D:/csdn/tc/work23/nnUNet/nnunet/datasets/build'
    # this folder should have the training and testing subfolders

    # now start the conversion to nnU-Net:
    task_name = 'Task120_MassRoadsSeg'
    target_base = join(nnUNet_raw_data, task_name)
    target_imagesTr = join(target_base, "imagesTr")
    target_imagesTs = join(target_base, "imagesTs")
    target_labelsTs = join(target_base, "labelsTs")
    target_labelsTr = join(target_base, "labelsTr")

    # maybe_mkdir_p(target_imagesTr)
    # maybe_mkdir_p(target_labelsTs)
    # maybe_mkdir_p(target_imagesTs)
    # maybe_mkdir_p(target_labelsTr)

    mkdir_func(target_base)
    mkdir_func(target_imagesTr)
    mkdir_func(target_labelsTs)
    mkdir_func(target_imagesTs)
    mkdir_func(target_labelsTr)

    # convert the training examples. Not all training images have labels, so we just take the cases for which there are
    # labels
    labels_dir_tr = join(base, 'train', 'labels')
    images_dir_tr = join(base, 'train', 'images')
    training_cases = subfiles(labels_dir_tr, suffix='.png', join=False)
    for t in training_cases:
        unique_name = t[:-4]  # just the filename with the extension cropped away, so img-2.png becomes img-2 as unique_name
        input_segmentation_file = join(labels_dir_tr, t)
        input_image_file = join(images_dir_tr, t)

        output_image_file = join(target_imagesTr, unique_name)  # do not specify a file ending! This will be done for you
        output_seg_file = join(target_labelsTr, unique_name)  # do not specify a file ending! This will be done for you

        # this utility will convert 2d images that can be read by skimage.io.imread to nifti. You don't need to do anything.
        # if this throws an error for your images, please just look at the code for this function and adapt it to your needs
        convert_2d_image_to_nifti(input_image_file, output_image_file, is_seg=False)

        # the labels are stored as 0: background, 255: road. We need to convert the 255 to 1 because nnU-Net expects
        # the labels to be consecutive integers. This can be achieved with setting a transform

        # convert_2d_image_to_nifti(input_segmentation_file, output_seg_file, is_seg=True,
        #                           transform=lambda x: (x == 255).astype(int))

        convert_2d_image_to_nifti(input_segmentation_file, output_seg_file, is_seg=True)

    # now do the same for the test set
    labels_dir_ts = join(base, 'val', 'labels')
    images_dir_ts = join(base, 'val', 'images')
    testing_cases = subfiles(labels_dir_ts, suffix='.png', join=False)
    for ts in testing_cases:
        unique_name = ts[:-4]
        input_segmentation_file = join(labels_dir_ts, ts)
        input_image_file = join(images_dir_ts, ts)

        output_image_file = join(target_imagesTs, unique_name)
        output_seg_file = join(target_labelsTs, unique_name)

        convert_2d_image_to_nifti(input_image_file, output_image_file, is_seg=False)
        # convert_2d_image_to_nifti(input_segmentation_file, output_seg_file, is_seg=True,
        #                           transform=lambda x: (x == 255).astype(int))   #当标签是0,1时,lambda x: (x == 255)这个操作不能有,会产生无效标签

        convert_2d_image_to_nifti(input_segmentation_file, output_seg_file, is_seg=True)

    # finally we can call the utility for generating a dataset.json
    generate_dataset_json(join(target_base, 'dataset.json'), target_imagesTr, target_imagesTs, ('Red', 'Green', 'Blue'),
                          labels={0: 'background', 1: 'build'}, dataset_name=task_name, license='hands off!')

    """
    once this is completed, you can use the dataset like any other nnU-Net dataset. Note that since this is a 2D
    dataset there is no need to run preprocessing for 3D U-Nets. You should therefore run the 
    `nnUNet_plan_and_preprocess` command like this:
    
    > nnUNet_plan_and_preprocess -t 120 -pl3d None
    
    once that is completed, you can run the trainings as follows:
    > nnUNet_train 2d nnUNetTrainerV2 120 FOLD
    
    (where fold is again 0, 1, 2, 3 and 4 - 5-fold cross validation)
    
    there is no need to run nnUNet_find_best_configuration because there is only one model to choose from.
    Note that without running nnUNet_find_best_configuration, nnU-Net will not have determined a postprocessing
    for the whole cross-validation. Spoiler: it will determine not to run postprocessing anyways. If you are using
    a different 2D dataset, you can make nnU-Net determine the postprocessing by using the
    `nnUNet_determine_postprocessing` command
    """

改动说明:

1.我创建了mkdir_func函数,用于新建文件夹,因为原始的maybe_mkdir_p没起作用,这里需要把maybe_mkdir_p函数全部替换为mkdir_func函数;

2.base是数据的根目录,给绝对路径;

3.注意到一些项目路径是从path.py导入的from nnunet.paths import nnUNet_raw_data, preprocessing_output_dir, 那我们还要转到这个脚本去看看

#    Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.

import os
from batchgenerators.utilities.file_and_folder_operations import maybe_mkdir_p, join


def mkdir_func(path):
    if os.path.exists(path):
        pass
    else:
        os.mkdir(path)


# do not modify these unless you know what you are doing
my_output_identifier = "nnUNet"
default_plans_identifier = "nnUNetPlansv2.1"
default_data_identifier = 'nnUNetData_plans_v2.1'
default_trainer = "nnUNetTrainerV2"
default_cascade_trainer = "nnUNetTrainerV2CascadeFullRes"

"""
PLEASE READ paths.md FOR INFORMATION TO HOW TO SET THIS UP
"""

# base = os.environ['nnUNet_raw_data_base'] if "nnUNet_raw_data_base" in os.environ.keys() else None
# preprocessing_output_dir = os.environ['nnUNet_preprocessed'] if "nnUNet_preprocessed" in os.environ.keys() else None
# network_training_output_dir_base = os.path.join(os.environ['RESULTS_FOLDER']) if "RESULTS_FOLDER" in os.environ.keys() else None
base = 'D:/csdn/tc/work23/nnUNet/nnunet/nnUNet_raw_data_base'
preprocessing_output_dir = base + '/nnUNet_preprocessed'
network_training_output_dir_base = base + '/nnUNet_trained_models'
mkdir_func(base)
mkdir_func(preprocessing_output_dir)
mkdir_func(network_training_output_dir_base)


if base is not None:
    nnUNet_raw_data = join(base, "nnUNet_raw_data")
    nnUNet_cropped_data = join(base, "nnUNet_cropped_data")
    # maybe_mkdir_p(nnUNet_raw_data)
    # maybe_mkdir_p(nnUNet_cropped_data)
    mkdir_func(nnUNet_raw_data)
    mkdir_func(nnUNet_cropped_data)
else:
    print("nnUNet_raw_data_base is not defined and nnU-Net can only be used on data for which preprocessed files "
          "are already present on your system. nnU-Net cannot be used for experiment planning and preprocessing like "
          "this. If this is not intended, please read documentation/setting_up_paths.md for information on how to set this up properly.")
    nnUNet_cropped_data = nnUNet_raw_data = None

if preprocessing_output_dir is not None:
    maybe_mkdir_p(preprocessing_output_dir)
else:
    print("nnUNet_preprocessed is not defined and nnU-Net can not be used for preprocessing "
          "or training. If this is not intended, please read documentation/setting_up_paths.md for information on how to set this up.")
    preprocessing_output_dir = None

if network_training_output_dir_base is not None:
    network_training_output_dir = join(network_training_output_dir_base, my_output_identifier)
    maybe_mkdir_p(network_training_output_dir)
else:
    print("RESULTS_FOLDER is not defined and nnU-Net cannot be used for training or "
          "inference. If this is not intended behavior, please read documentation/setting_up_paths.md for information on how to set this "
          "up.")
    network_training_output_dir = None

很明显,这里也遵循上述1中的说明,并且base路径我同样给了绝对路径,其实相对路径应该也行,但是为了少点错误,先给绝对,另外,nnUNet_raw_data_base文件夹是我手动创建的,这里改完以后继续返回Task120_Massachusetts_RoadSegm.py看。

4.注意图像和标签的后缀都要是png,不是的话改下 suffix='.png'。

5.这一句话

convert_2d_image_to_nifti(input_segmentation_file, output_seg_file, is_seg=True,
                           transform=lambda x: (x == 255).astype(int))

一定要改成

convert_2d_image_to_nifti(input_segmentation_file, output_seg_file, is_seg=True)

代码里说了原因

6.注意这句

generate_dataset_json(join(target_base, 'dataset.json'), target_imagesTr, target_imagesTs, ('Red', 'Green', 'Blue'),
                      labels={0: 'background', 1: 'build'}, dataset_name=task_name, license='hands off!')

这个 labels={0: 'background', 1: 'build'} 别忘了改。

7.走到文件的最下面,作者给了提示,你接下来要做的就是数据的预处理nnUNet_plan_and_preprocess -t 120 -pl3d None,但是我没有安装也不想跑命令行,我就去experiment_planning文件夹下找到nnUNet_plan_and_preprocess.py脚本,改!

"""
once this is completed, you can use the dataset like any other nnU-Net dataset. Note that since this is a 2D
dataset there is no need to run preprocessing for 3D U-Nets. You should therefore run the 
`nnUNet_plan_and_preprocess` command like this:

> nnUNet_plan_and_preprocess -t 120 -pl3d None

once that is completed, you can run the trainings as follows:
> nnUNet_train 2d nnUNetTrainerV2 120 FOLD

(where fold is again 0, 1, 2, 3 and 4 - 5-fold cross validation)

there is no need to run nnUNet_find_best_configuration because there is only one model to choose from.
Note that without running nnUNet_find_best_configuration, nnU-Net will not have determined a postprocessing
for the whole cross-validation. Spoiler: it will determine not to run postprocessing anyways. If you are using
a different 2D dataset, you can make nnU-Net determine the postprocessing by using the
`nnUNet_determine_postprocessing` command
"""

 3.数据预处理

 ./experiment_planning/nnUNet_plan_and_preprocess.py脚本运行会有很多错误,但全都是路径错误,下面我把要改的地方说明下,下面贴一下nnUNet_plan_and_preprocess.py脚本

#    Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.


import nnunet
from batchgenerators.utilities.file_and_folder_operations import *
from nnunet.experiment_planning.DatasetAnalyzer import DatasetAnalyzer
from nnunet.experiment_planning.utils import crop
from nnunet.paths import *
import shutil
from nnunet.utilities.task_name_id_conversion import convert_id_to_task_name
from nnunet.preprocessing.sanity_checks import verify_dataset_integrity
from nnunet.training.model_restore import recursive_find_python_class
import warnings
warnings.filterwarnings("ignore")

def mkdir_func(path):
    if os.path.exists(path):
        pass
    else:
        os.mkdir(path)
        

def main():
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument("-t", "--task_ids", nargs="+", default=[120], help="List of integers belonging to the task ids you wish to run"
                                                            " experiment planning and preprocessing for. Each of these "
                                                            "ids must, have a matching folder 'TaskXXX_' in the raw "
                                                            "data folder")
    parser.add_argument("-pl3d", "--planner3d", type=str, default="None",
                        help="Name of the ExperimentPlanner class for the full resolution 3D U-Net and U-Net cascade. "
                             "Default is ExperimentPlanner3D_v21. Can be 'None', in which case these U-Nets will not be "
                             "configured")
    parser.add_argument("-pl2d", "--planner2d", type=str, default="ExperimentPlanner2D_v21",
                        help="Name of the ExperimentPlanner class for the 2D U-Net. Default is ExperimentPlanner2D_v21. "
                             "Can be 'None', in which case this U-Net will not be configured")
    parser.add_argument("-no_pp", action="store_true",
                        help="Set this flag if you dont want to run the preprocessing. If this is set then this script "
                             "will only run the experiment planning and create the plans file")
    parser.add_argument("-tl", type=int, required=False, default=2,
                        help="Number of processes used for preprocessing the low resolution data for the 3D low "
                             "resolution U-Net. This can be larger than -tf. Don't overdo it or you will run out of "
                             "RAM")
    parser.add_argument("-tf", type=int, required=False, default=2,
                        help="Number of processes used for preprocessing the full resolution data of the 2D U-Net and "
                             "3D U-Net. Don't overdo it or you will run out of RAM")
    # parser.add_argument("--verify_dataset_integrity", required=False, default=False, action="store_true",
    #                     help="set this flag to check the dataset integrity. This is useful and should be done once for "
    #                          "each dataset!")
    parser.add_argument("--verify_dataset_integrity", required=False, default=True, action="store_true",
                        help="set this flag to check the dataset integrity. This is useful and should be done once for "
                             "each dataset!")
    parser.add_argument("-overwrite_plans", type=str, default=None, required=False,
                        help="Use this to specify a plans file that should be used instead of whatever nnU-Net would "
                             "configure automatically. This will overwrite everything: intensity normalization, "
                             "network architecture, target spacing etc. Using this is useful for using pretrained "
                             "model weights as this will guarantee that the network architecture on the target "
                             "dataset is the same as on the source dataset and the weights can therefore be transferred.\n"
                             "Pro tip: If you want to pretrain on Hepaticvessel and apply the result to LiTS then use "
                             "the LiTS plans to run the preprocessing of the HepaticVessel task.\n"
                             "Make sure to only use plans files that were "
                             "generated with the same number of modalities as the target dataset (LiTS -> BCV or "
                             "LiTS -> Task008_HepaticVessel is OK. BraTS -> LiTS is not (BraTS has 4 input modalities, "
                             "LiTS has just one)). Also only do things that make sense. This functionality is beta with"
                             "no support given.\n"
                             "Note that this will first print the old plans (which are going to be overwritten) and "
                             "then the new ones (provided that -no_pp was NOT set).")
    parser.add_argument("-overwrite_plans_identifier", type=str, default=None, required=False,
                        help="If you set overwrite_plans you need to provide a unique identifier so that nnUNet knows "
                             "where to look for the correct plans and data. Assume your identifier is called "
                             "IDENTIFIER, the correct training command would be:\n"
                             "'nnUNet_train CONFIG TRAINER TASKID FOLD -p nnUNetPlans_pretrained_IDENTIFIER "
                             "-pretrained_weights FILENAME'")

    args = parser.parse_args()
    task_ids = args.task_ids
    dont_run_preprocessing = args.no_pp
    tl = args.tl
    tf = args.tf
    planner_name3d = args.planner3d
    planner_name2d = args.planner2d

    if planner_name3d == "None":
        planner_name3d = None
    if planner_name2d == "None":
        planner_name2d = None

    if args.overwrite_plans is not None:
        if planner_name2d is not None:
            print("Overwriting plans only works for the 3d planner. I am setting '--planner2d' to None. This will "
                  "skip 2d planning and preprocessing.")
        assert planner_name3d == 'ExperimentPlanner3D_v21_Pretrained', "When using --overwrite_plans you need to use " \
                                                                       "'-pl3d ExperimentPlanner3D_v21_Pretrained'"

    # we need raw data
    tasks = []
    for i in task_ids:
        i = int(i)

        task_name = convert_id_to_task_name(i)

        if args.verify_dataset_integrity:
            verify_dataset_integrity(join(nnUNet_raw_data, task_name))

        crop(task_name, False, tf)

        tasks.append(task_name)

    search_in = join(nnunet.__path__[0], "experiment_planning")

    if planner_name3d is not None:
        planner_3d = recursive_find_python_class([search_in], planner_name3d, current_module="nnunet.experiment_planning")
        if planner_3d is None:
            raise RuntimeError("Could not find the Planner class %s. Make sure it is located somewhere in "
                               "nnunet.experiment_planning" % planner_name3d)
    else:
        planner_3d = None

    if planner_name2d is not None:
        planner_2d = recursive_find_python_class([search_in], planner_name2d, current_module="nnunet.experiment_planning")
        if planner_2d is None:
            raise RuntimeError("Could not find the Planner class %s. Make sure it is located somewhere in "
                               "nnunet.experiment_planning" % planner_name2d)
    else:
        planner_2d = None

    for t in tasks:
        print("\n\n\n", t)
        cropped_out_dir = os.path.join(nnUNet_cropped_data, t).replace('\\', '/') #D:/csdn/tc/work23/nnUNet/nnunet/nnUNet_raw_data_base\nnUNet_cropped_data\Task120_MassRoadsSeg
        preprocessing_output_dir_this_task = os.path.join(preprocessing_output_dir, t)
        #splitted_4d_output_dir_task = os.path.join(nnUNet_raw_data, t)
        #lists, modalities = create_lists_from_splitted_dataset(splitted_4d_output_dir_task)

        # we need to figure out if we need the intensity propoerties. We collect them only if one of the modalities is CT
        dataset_json = load_json(join(cropped_out_dir, 'dataset.json'))
        modalities = list(dataset_json["modality"].values())
        collect_intensityproperties = True if (("CT" in modalities) or ("ct" in modalities)) else False
        dataset_analyzer = DatasetAnalyzer(cropped_out_dir, overwrite=False, num_processes=tf)  # this class creates the fingerprint
        _ = dataset_analyzer.analyze_dataset(collect_intensityproperties)  # this will write output files that will be used by the ExperimentPlanner


        # maybe_mkdir_p(preprocessing_output_dir_this_task)
        mkdir_func(preprocessing_output_dir_this_task)
        shutil.copy(join(cropped_out_dir, "dataset_properties.pkl"), preprocessing_output_dir_this_task)
        shutil.copy(join(nnUNet_raw_data, t, "dataset.json"), preprocessing_output_dir_this_task)

        threads = (tl, tf)

        print("number of threads: ", threads, "\n")

        if planner_3d is not None:
            if args.overwrite_plans is not None:
                assert args.overwrite_plans_identifier is not None, "You need to specify -overwrite_plans_identifier"
                exp_planner = planner_3d(cropped_out_dir, preprocessing_output_dir_this_task, args.overwrite_plans,
                                         args.overwrite_plans_identifier)
            else:
                exp_planner = planner_3d(cropped_out_dir, preprocessing_output_dir_this_task)
            exp_planner.plan_experiment()
            if not dont_run_preprocessing:  # double negative, yooo
                exp_planner.run_preprocessing(threads)
        if planner_2d is not None:
            # preprocessing_output_dir_this_task   D:/csdn/tc/work23/nnUNet/nnunet/nnUNet_raw_data_base/nnUNet_preprocessed\Task120_MassRoadsSeg
            exp_planner = planner_2d(cropped_out_dir, preprocessing_output_dir_this_task.replace('\\', '/'))
            exp_planner.plan_experiment()
            if not dont_run_preprocessing:  # double negative, yooo
                exp_planner.run_preprocessing(threads)


if __name__ == "__main__":
    main()

修改说明:

1.由于路径问题还是要加mkdir_func函数,并且去找到用了maybe_mkdir_p的地方替换

2.直接加default参数,懒得用命令行了,default=[120]

parser.add_argument("-t", "--task_ids", nargs="+", default=[120]

3.  3维给none,   default="None"

parser.add_argument("-pl3d", "--planner3d", type=str, default="None",

4.  2维用ExperimentPlanner2D_v21, 

parser.add_argument("-pl2d", "--planner2d", type=str, default="ExperimentPlanner2D_v21",

5. –tl 和 –tf 参数需根据自身电脑配置更改,原始是8我改为了2,实在不行就1,不然会报系统错误以及多线程错误,错误本质上还是因为Windows的多线程问题,本身nnUnet就是在Linux上做的,Windows上有问题也正常

 6. 有两处路径用了.replace('\\', '/'),之所以这样是因为很多路径进入函数以后,作者会利用split('/')来切割路径,路径里如果有\\必然报路径错误,这个在Linux里肯定不会遇到。

上面这些就算改完了还是会有很多路径错误,下面我把需要改路径的脚本列一下,自己去改吧,就不一一拿出来说了,套路完全和上面一样

nnunet\preprocessing\cropping.py 197行  maybe_mkdir_p换成 mkdir_func, 59行,64行加.replace('\\', '/')       127行和188行 改 i.replace(‘\\’, ‘/’)

nnunet\experiment_planning/utils.py 所有maybe_mkdir_p换成 mkdir_func,并且100-108行涉及到路径的,末尾都要加 .replace('\\', '/') 来改变斜杠方向

nnunet\preprocessing/preprocessing.py  添加mkdir_func函数且所有maybe_mkdir_p换成 mkdir_func

nnunet\experiment_planning/DatasetAnalyzer.py   37行  加 .replace(‘\\’, ‘/’)

nnunet\experiment_planning/experiment_planner_baseline_3DUNet.py  34行和406行 加 .replace(‘\\’, ‘/’)

如果上面的改了还有路径错误,改的方式肯定是一样的,定位到错误的地方按上面逻辑改下就行了

 上面的步骤跑完以后,nnUNet_cropped_data和nnUNet_preprocessed里会产生很多文件

 

 

4.模型训练

按照作者的逻辑上面数据转化、预处理做完该去训练了,命令行是

nnUNet_train 2d nnUNetTrainerV2 120 FOLD

这里我还是不用命令行,继续去代码里改

在nnunet/run/run_training.py脚本里改,这里是训练的入口,下面贴出run_training.py改动的代码

def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--network", default='2d')  # 在./run/default_configuration.py 中说了网络的类型 ['2d', '3d_lowres', '3d_fullres', '3d_cascade_fullres']
    parser.add_argument("--network_trainer", default='nnUNetTrainerV2') #在./training/nework_traing/ 下有以下训练器可选nnUNetTrainer, nnUNetTrainerCascadeFullRes, nnUNetTrainerV2,
    # nnUNetTrainerV2_CascadeFullRes, nnUNetTrainerV2_DDP, nnUNetTrainerV2_DP, nnUNetTrainerV2_fp32, 这里是单机单卡,除了DDP,DP都可以试试看。
    parser.add_argument("--task", default='120', help="can be task name or task id")  #任务名
    parser.add_argument("--fold", default='0', help='0, 1, ..., 5 or \'all\'')  #结果存放分几个文件夹放
    parser.add_argument("-val", "--validation_only", help="use this if you want to only run the validation",
                        action="store_true", default=False)
    parser.add_argument("-c", "--continue_training", help="use this if you want to continue a training",
                        action="store_true")
    parser.add_argument("-p", help="plans identifier. Only change this if you created a custom experiment planner",
                        default=default_plans_identifier, required=False)
    parser.add_argument("--use_compressed_data", default=False, action="store_true",
                        help="If you set use_compressed_data, the training cases will not be decompressed. Reading compressed data "
                             "is much more CPU and RAM intensive and should only be used if you know what you are "
                             "doing", required=False)
    parser.add_argument("--deterministic",
                        help="Makes training deterministic, but reduces training speed substantially. I (Fabian) think "
                             "this is not necessary. Deterministic training will make you overfit to some random seed. "
                             "Don't use that.",
                        required=False, default=False, action="store_true")
    parser.add_argument("--npz", required=False, default=False, action="store_true", help="if set then nnUNet will "
                                                                                          "export npz files of "
                                                                                          "predicted segmentations "
                                                                                          "in the validation as well. "
                                                                                          "This is needed to run the "
                                                                                          "ensembling step so unless "
                                                                                          "you are developing nnUNet "
                                                                                          "you should enable this")
    parser.add_argument("--find_lr", required=False, default=False, action="store_true",
                        help="not used here, just for fun")
    parser.add_argument("--valbest", required=False, default=False, action="store_true",
                        help="hands off. This is not intended to be used")
    parser.add_argument("--fp32", required=False, default=False, action="store_true",
                        help="disable mixed precision training and run old school fp32")
    parser.add_argument("--val_folder", required=False, default="validation_raw",
                        help="name of the validation folder. No need to use this for most people")
    parser.add_argument("--disable_saving", required=False, action='store_true',
                        help="If set nnU-Net will not save any parameter files (except a temporary checkpoint that "
                             "will be removed at the end of the training). Useful for development when you are "
                             "only interested in the results and want to save some disk space")
    parser.add_argument("--disable_postprocessing_on_folds", required=False, action='store_true',
                        help="Running postprocessing on each fold only makes sense when developing with nnU-Net and "
                             "closely observing the model performance on specific configurations. You do not need it "
                             "when applying nnU-Net because the postprocessing for this will be determined only once "
                             "all five folds have been trained and nnUNet_find_best_configuration is called. Usually "
                             "running postprocessing on each fold is computationally cheap, but some users have "
                             "reported issues with very large images. If your images are large (>600x600x600 voxels) "
                             "you should consider setting this flag.")
    # parser.add_argument("--interp_order", required=False, default=3, type=int,
    #                     help="order of interpolation for segmentations. Testing purpose only. Hands off")
    # parser.add_argument("--interp_order_z", required=False, default=0, type=int,
    #                     help="order of interpolation along z if z is resampled separately. Testing purpose only. "
    #                          "Hands off")
    # parser.add_argument("--force_separate_z", required=False, default="None", type=str,
    #                     help="force_separate_z resampling. Can be None, True or False. Testing purpose only. Hands off")
    parser.add_argument('--val_disable_overwrite', action='store_false', default=True,
                        help='Validation does not overwrite existing segmentations')
    parser.add_argument('--disable_next_stage_pred', action='store_true', default=False,
                        help='do not predict next stage')
    parser.add_argument('-pretrained_weights', type=str, required=False, default=None,
                        help='path to nnU-Net checkpoint file to be used as pretrained model (use .model '
                             'file, for example model_final_checkpoint.model). Will only be used when actually training. '
                             'Optional. Beta. Use with caution.')

    args = parser.parse_args()

不需要贴全,这里只改了参数的配置部分,部分参数在参数的后面用中文稍微说明了下,注意看下

注意事项:

1.训练的主体nnunet/training/network_training/nnUNetTrainer.py中的nnUNetTrainer类继承了nnunet/training/network_training/network_trainer.py中NetworkTrainer

nnUNetTrainerV2又继承了nnunet/training/network_training/nnUNetTrainer.py中的nnUNetTrainer类 (这里只是说下它们的关系,便于你们自己梳理代码,可以不用太在意

其中network_trainer.py包含了很多基础的参数,epoch想要改的话就在这里改那个max_num_epoch

nnUNetTrainer.py包含了数据加载函数get_basic_generatorsget_basic_generators函数进一步定位到nnunet/training/dataloading/dataset_loading.py中的DataLoader2D函数,这里还是注意下,数据加载函数的位置,后面如果有需要改的话能快速转过去。

2. nnunet/training/dataloading/dataset_loading.py 中的unpack_dataset函数是数据加载多线程函数,其中的线程开启个数由configuration.py中的default_num_threads决定(改为1),改/nnunet/configuration.py中的线程个数在很多地方都用了,所以改为1是很有必要的,不然会报多线程相关的错误,估计这也是Windows特有的错误

3. nnunet/training/network_training/networking_trainer.py 添加mkdir_funcs函数 且所有maybe_mkdir_p 改为 mkdir_funcs 创建多级目录(和mkdir_func不同)

import os
def mkdir_funcs(path):
    if os.path.exists(path):
        pass
    else:
        os.makedirs(path)

 

 4. batchsize的产生由nnunet/experiment_planning/nnUNet_plan_and_preprocess.py(上一步的数据预处理阶段产生)自动产生,直到因为显存问题开始想改变batchsize的时候才发现上一步不止数据预处理,还根据数据情况生成了一个训练计划,所以上一步没有提这个事,所以如果到这里你的显存爆了,那么你需要先删除上一步产生的nnUNet_cropped_data和nnUNet_preprocessed文件夹及内容,重新跑一遍

而具体生成计划的脚本隐藏的太深,下面具体说下,

注意47行的-pl2d参数,此处我给的是ExperimentPlanner2D_v21,接着再看到133行:

planner_2d = recursive_find_python_class([search_in], planner_name2d, current_module="nnunet.experiment_planning")

它这里不在开头导入nnunet.experiment_planning,而是通过recursive_find_python_class函数去nnunet.experiment_planning下检索出了experiment_planner_baseline_2DUNet_v21.py脚本中的ExperimentPlanner2D_v21类,并调用生成了训练计划,另外ExperimentPlanner2D_v21类继承了experiment_planner_baseline_2DUNet.py脚本中的ExperimentPlanner2D类,如果还有什么要调整的,两个脚本的类需要一起看。

experiment_planner_baseline_2DUNet_v21.py脚本中batchsize最终在87行被确定

如果显卡爆了,直接在这里改batchsize,直接在87行后面强制改就行,比如batch_size=2

 5.其它

任务创建的以下三个文件夹,如果有第二个任务,需要更改文件夹名字或者删除不然报错

RuntimeError: More than one task name found for task id 120. Please correct that. (I looked in the following folders:

nnUNet_raw_data  Preprocessed  nnUNet_cropped_data

也就是说,你如果要做新的任务,你需要把之前任务名120改一下。

改完上面以后应该就能训练起来了,下面是训练结果

 

未完,预测下次补上

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/69535.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【SQL】MVCC 多版本并发控制

MVCC多版本并发控制快照读与当前读隔离级别隐藏字段,undo log 版本链隐藏字段trx_id版本链read view举例说明read committed(读已提交)隔离级别下repeatable read(可重复读)隔离级别下innodb如何解决幻读总结并发问题的…

LaTex使用技巧9:argmin / argmax下标写法

记录两种写法 1.arg⁡max⁡θ\mathop{\arg\max}\limits_{\theta}θargmax​的写法 写法1: $\mathop{\arg\max}\limits_{\theta}$ 写法2: $\sideset{}{}{\arg\max}_{\theta}^{} $ 2.arg⁡min⁡θ\mathop{\arg\min}\limits_{\theta}θargmin​的写法 写法…

STL常用生成算法和集合算法(20221207)

STL的常用算法 概述&#xff1a; 算法主要是由头文件<algorithm> <functional> <numeric> 组成。 <algorithm>是所有STL头文件中最大的一个&#xff0c;涉及比较、交换、查找、遍历等等&#xff1b; <functional>定义了一些模板类&#xff0…

做一个公司网站大概要多少钱?

做一个公司网站大概要多少钱&#xff0c;很多公司在做网站之前可能已经简单了解过费用&#xff0c;但是费用差距都会比较大&#xff0c;为什么的呢&#xff0c;因为一般都是受到制作方式因素的影响。下面给大家说说不同的方式做一个公司网站大概要多少钱。 一、自己/团队做公司…

SQLyog —— 图形化工具使用

SQLyog下载链接&#xff1a; 点击跳转 在这一篇内容MySQL数据库 —— 常用语句当中讲到关于MySQL数据库命令的基本使用&#xff0c;这一篇是关于SQLyog数据库图形化工具的内容&#xff0c;先进行安装演示后在通过SQLyog进行操作数据库&#xff1a; SQLyog 安装 下载完成之后双击…

pageoffice在线打开word文件加盖电子印章

一、加盖印章的 js 方法 js方法 二、常见使用场景 1、常规盖章。弹出用户名、密码输入框&#xff0c;选择对应印章。 点击盖章按钮弹出用户名密码登录框&#xff0c;登录以后显示选择电子印章。 document.getElementById("PageOfficeCtrl1").ZoomSeal.AddSeal(…

Python模块pathlib操作文件和目录操作总结

前言 目前大家常用的对于文件和操作的操作使用 os.path 较多&#xff0c;比如 获取当前路径os.getcwd()&#xff0c;判断文件路径是否存在os.path.exists(folder) 等等。 在Python3.4开始&#xff0c;官方提供了 pathlib 面向对象的文件系统路径&#xff0c;核心的点在于 面向…

chatGPT代码写的有点好啊,程序员要失业了?

AI神器ChatGPT 火了。 能直接生成代码、会自动修复bug、在线问诊、模仿莎士比亚风格写作……各种话题都能hold住&#xff0c;它就是OpenAI刚刚推出的——ChatGPT。 有脑洞大开的网友甚至用它来设计游戏&#xff1a;先用ChatGPT生成游戏设定&#xff0c;再用Midjourney出图&…

element-plus elplus el-tree三种图标自定义 并且点击图标展开收起 点击文字获取数据

前言 公司需求,需要实现如下样式的树形列表 (基于vue3 element-plus) 当节点展开时,显示展开的文件夹图标,当节点收起时显示收起的文件夹,最后一级显示文件样式 废话没有了, 代码如下 <!-- 树形列表组件 --> <template><div class"tree-input" v-i…

Vue学习:回顾Object.defineProperty(给对象添加或者定义属性的)

<script>//定义对象let person{name:李四,sex:"男"}Object.defineProperty(person,age,{value:18});//参数:添加属性的对象 添加的属性名 配置项console.log(person)</script> 颜色不同&#xff1a;说明了age不可以枚举age属性不参与遍历 Object.keys(…

电脑屏幕录制怎么弄?电脑上怎么录制屏幕, 3个实用方法

对于日常办公的小伙伴来说&#xff0c;电脑、键盘、鼠标等办公设备都是不可分割的。事实上&#xff0c;不仅仅是在日常办公&#xff0c;在很多业余的活动中&#xff0c;也会使用到电脑设备。在使用电脑的时候&#xff0c;会经常有需要录制电脑屏幕的情况&#xff0c;比如记录会…

阿里云Linux热扩容云盘(growpart和resize2fs工具)

阿里云linux机器系统盘空间不够进行扩容 一、扩容物理盘 阿里云控制台在线扩容完成 二、安装growpart工具和resize2fs工具 [rootA ~]# yum install cloud-utils-growpart [rootA ~]# yum install xfsprogs 三、检查扩容磁盘属性 1、检查云盘大小 /dev/vda1显示容量为20G(在线…

Properties类的使用

Properties类是一个配置文件类&#xff0c;主要作用就是用来封装配置文件&#xff0c;将配置文件加载成为一个Properties对象。 注意&#xff1a;Properties类一般用来加载 .properties配置文件 首先看一下.properties配置文件的样子 driverClassNamecom.mysql.cj.jdbc.Drive…

电力系统潮流【牛顿-拉夫逊法】(4节点、5节点、6节点、9节点)(Matlab代码实现)

目录 1 概述 2 电力系统潮流计算概述 2.1 电力潮流发展进程 2.2牛顿拉夫逊法潮流计算 3 仿真结果 4 Matlab代码及文章讲解 &#x1f4cb;&#x1f4cb;&#x1f4cb;本文目录如下&#xff1a;⛳️⛳️⛳️ ​ 1 概述 最初&#xff0c;电力系统潮流计算是通过人工手算的。后…

Java内存区域与内存分配策略

java很聪明&#xff0c;它将手动改为自动&#xff0c;把内存的控制权交给了虚拟机&#xff0c;下面我们就来探究一下JVM是怎么进行自动内存管理的。 手动内存管理分为两部分&#xff1a;给对象分配内存和回收分配给对象的内存。 一、运行时数据区域 线程公有 在运行时数据区中…

基础入门 - SpringBoot 底层注解

目录 1、SpringBoot特点 1.1、依赖管理 1.2、自动配置 2、容器功能 2.1、组件添加 1、Configuration Spring Boot 在底层 Configuration 的两个配置 2、Import 3、Conditional 2.2、原生配置文件引入 1、ImportResource 2.3、配置绑定 1、ConfigurationProperties …

前端开发踩坑笔记(2022-11)

文章目录1、Mac上SourceTree更新已删除的远端分支和tag2、echarts x轴文字显示不全&#xff08;解决方案&#xff09;3、如何渲染多行多列的表格&#xff08;非固定的行数和列数&#xff09;4、umy-ui标题过长或内容过长时的处理5、dateRange的时间选择只能选择一个周6、如何将…

Servlet API 详解

目录 一、HttpServlet ① init() 方法 ② service() 方法 ③ destroy() 方法 ④ doGet()方法 ⑤ doPost()方法 ⑥ doPut/deDelete/doOptions 常见面试题&#xff1a; 请你谈谈Servlet的生命周期 二、Http请求&#xff1a;HttpServletRequest 1. 获取请求行信息 2. 获…

一个redux使用案例模板

目录 redux 纯函数和高阶函数&#xff1a; redux 开发工具使用 react-redux redux 1. 结构&#xff1a; count--index.jsx import React, { Component } from react import store from ../../redux/store import { acDecrement,acIncrement,acAsyncIncrement } from ../..…

不会向上管理的人,做不好项目经理和PMO【附具体行动清单】

在职场中&#xff0c;向上管理基本是最重要的一件事儿&#xff0c;升职涨薪奖金都离不开向上管理&#xff01;当你的向上管理做得好&#xff0c;机会都会迎面扑来。 你是不是也遇到过被领导批评时&#xff0c;感到非常委屈或愤怒&#xff0c;情绪经常被领导左右&#xff0c;那…