【入门AI】利用Paddle实现简单的数字识别

news2024/11/13 21:25:48

梳理逻辑

整个流程

  1. 准备好Paddle的环境
  2. 准备好训练样本
  3. 设计模型(定义模型)
  4. 训练模型
  5. 模型测试

1、准备好环境

#加载飞桨和相关类库
import paddle
from paddle.nn import Linear
import paddle.nn.functional as F
import os
import numpy as np
import matplotlib.pyplot as plt

开始之前,需要使用下面的命令安装 Python 的 matplotlib 库和 numpy 库,matplotlib 库用于可视化图片,numpy 库用于处理数据。

# 使用 pip 工具安装 matplotlib 和 numpy
! python3 -m pip install matplotlib numpy -i https://mirror.baidu.com/pypi/simple

2、训练样本

# 设置数据读取器,API自动读取MNIST数据训练集
train_dataset = paddle.vision.datasets.MNIST(mode='train')

我使用的是飞浆AI提供的样本,样本是一个像素28*28的图片。样本如下所示

#加载飞桨和相关类库
import paddle
from paddle.nn import Linear
import paddle.nn.functional as F
import os
import numpy as np
import matplotlib.pyplot as plt

train_dataset = paddle.vision.datasets.MNIST(mode='train')
# 取出第一个样本
train_data0 = np.array(train_dataset[0][0])
train_label_0 = np.array(train_dataset[0][1])

# 显示第一batch的第一个图像
import matplotlib.pyplot as plt
plt.figure("Image") # 图像窗口名称
plt.figure(figsize=(2,2))
plt.imshow(train_data0, cmap=plt.cm.binary)
plt.axis('on') # 关掉坐标轴为 off
plt.title('image') # 图像题目
plt.show()

print("图像数据形状和对应数据为:", train_data0.shape)
print("图像标签形状和对应数据为:", train_label_0.shape, train_label_0)
print("\n打印第一个batch的第一个图像,对应标签数字为{}".format(train_label_0))

运行结果如下
在这里插入图片描述

3、模型设计

在这里插入图片描述

# 定义mnist数据识别网络结构,同房价预测网络
class MNIST(paddle.nn.Layer):
    def __init__(self):
        super(MNIST, self).__init__()
        
        # 定义一层全连接层,输出维度是1
        self.fc = paddle.nn.Linear(in_features=784, out_features=1)
        
    # 定义网络结构的前向计算过程
    def forward(self, inputs):
        outputs = self.fc(inputs)
        return outputs

4、训练配置

训练配置需要先生成模型实例(设为“训练”状态),再设置优化算法和学习率(使用随机梯度下降SGD,学习率设置为0.001),实现方法如下所示。

# 声明网络结构
model = MNIST()

def train(model):
    # 启动训练模式
    model.train()
    # 加载训练集 batch_size 设为 16
    train_loader = paddle.io.DataLoader(paddle.vision.datasets.MNIST(mode='train'), 
                                        batch_size=16, 
                                        shuffle=True)
    # 定义优化器,使用随机梯度下降SGD优化器,学习率设置为0.001
    opt = paddle.optimizer.SGD(learning_rate=0.001, parameters=model.parameters())

5、训练过程

训练过程采用二层循环嵌套方式,训练完成后需要保存模型参数,以便后续使用。

  • 内层循环:负责整个数据集的一次遍历,遍历数据集采用分批次(batch)方式。
  • 外层循环:定义遍历数据集的次数,本次训练中外层循环10次,通过参数EPOCH_NUM设置。

图像归一化处理

图像处理为什么要归一化和如何归一化
答:其中一个原因是,对于网络模型训练等,是为了加速神经网络训练收敛,以及保证程序运行时收敛加快。
对图像归一化有2种处理方式:
(1) img/255.0
(2) img/127.5 - 1
第一种图像归一化方式,范围为[0, 1];
第二种图像归一化方式,范围为[-1, 1],这两种只是归一化范围不同.


一般归一化还会做减去均值除以方差的操作, 这种方式可以移除图像的平均亮度值(intensity)。
很多情况下我们对图像的亮度并不感兴趣,而更多地关注其内容,比如在目标识别任务中,图像的整体明亮程度并不会影响图像中存在的是什么物体。
此时,在每个样本上减去数据的统计平均值可以移除共同的部分,凸显个体差异。其效果如下所示: 去除了天空和其他纹理,凸显其我们想要的特征

在这里插入图片描述

# 图像归一化函数,将数据范围为[0, 255]的图像归一化到[0, 1]
def norm_img(img):
    # 验证传入数据格式是否正确,img的shape为[batch_size, 28, 28]
    assert len(img.shape) == 3
    batch_size, img_h, img_w = img.shape[0], img.shape[1], img.shape[2]
    # 归一化图像数据
    img = img / 255
    # 将图像形式reshape为[batch_size, 784]
    img = paddle.reshape(img, [batch_size, img_h*img_w])
    return img

训练样本保存模型参数
什么是模型参数?
模型参数,就是输入参数在模型中会通过参数的值不同程度的影响到输出结果。这个参数就是模型参数

import paddle
# 确保从paddle.vision.datasets.MNIST中加载的图像数据是np.ndarray类型
paddle.vision.set_image_backend('cv2')

# 声明网络结构
model = MNIST()

def train(model):
    # 启动训练模式
    model.train()
    # 加载训练集 batch_size 设为 16
    train_loader = paddle.io.DataLoader(paddle.vision.datasets.MNIST(mode='train'), 
                                        batch_size=16, 
                                        shuffle=True)
    # 定义优化器,使用随机梯度下降SGD优化器,学习率设置为0.001
    opt = paddle.optimizer.SGD(learning_rate=0.001, parameters=model.parameters())
    EPOCH_NUM = 10
    for epoch in range(EPOCH_NUM):
        for batch_id, data in enumerate(train_loader()):
            images = norm_img(data[0]).astype('float32')
            labels = data[1].astype('float32')
            
            #前向计算的过程
            predicts = model(images)
            
            # 计算损失
            loss = F.square_error_cost(predicts, labels)
            avg_loss = paddle.mean(loss)
            
            #每训练了1000批次的数据,打印下当前Loss的情况
            if batch_id % 1000 == 0:
                print("epoch_id: {}, batch_id: {}, loss is: {}".format(epoch, batch_id, avg_loss.numpy()))
            
            #后向传播,更新参数的过程
            avg_loss.backward()
            opt.step()
            opt.clear_grad()
            
train(model)
paddle.save(model.state_dict(), './mnist.pdparams')

6、模型测试

模型测试的主要目的是验证训练好的模型是否能正确识别出数字,包括如下四步:

声明实例
加载模型:加载训练过程中保存的模型参数,
灌入数据:将测试样本传入模型,模型的状态设置为校验状态(eval),显式告诉框架我们接下来只会使用前向计算的流程,不会计算梯度和梯度反向传播。
获取预测结果,取整后作为预测标签输出。
在模型测试之前,需要先从'./work/example_0.png'文件中读取样例图片,并进行归一化处理。
# 导入图像读取第三方库
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image

# 读取一张本地的样例图片,转变成模型输入的格式
def load_image(img_path):
    # 从img_path中读取图像,并转为灰度图
    im = Image.open(img_path).convert('L')
    # print(np.array(im))
    im = im.resize((28, 28), Image.ANTIALIAS)
    im = np.array(im).reshape(1, -1).astype(np.float32)
    # 图像归一化,保持和数据集的数据范围一致
    im = 1 - im / 255
    return im

# 定义预测过程
model = MNIST()
params_file_path = 'mnist.pdparams'
img_path = './work/example_0.jpg'
# 加载模型参数
param_dict = paddle.load(params_file_path)
model.load_dict(param_dict)
# 灌入数据
model.eval()
tensor_img = load_image(img_path)
result = model(paddle.to_tensor(tensor_img))
print('result',result)
#  预测输出取整,即为预测的数字,打印结果
print("本次预测的数字是", result.numpy().astype('int32'))

输出结果
在这里插入图片描述
实际输入的样本图片
请添加图片描述

在这里插入代码片从打印结果来看,模型预测出的数字是与实际输出的图片的数字不一致。这里只是验证了一个样本的情况,如果我们尝试更多的样本,可发现许多数字图片识别结果是错误的。因此完全复用房价预测的实验并不适用于手写数字识别任务!

接下来我们会对手写数字识别实验模型进行逐一改进,直到获得令人满意的结果。

7、完整的模型训练代码

7.1、Version 2.3 写法

import paddle
from paddle.nn import Linear
import paddle.nn.functional as F
import os
import numpy as np
import matplotlib.pyplot as plt
# 组件手写数字识别网络
# 定义mnist数据识别网络结构,同房价预测网络
class MNIST(paddle.nn.Layer):
    def __init__(self):
        super(MNIST, self).__init__()
        
        # 定义一层全连接层,输出维度是1
        self.fc = paddle.nn.Linear(in_features=784, out_features=1)
        
    # 定义网络结构的前向计算过程
    def forward(self, inputs):
        outputs = self.fc(inputs)
        return outputs

 # 图像归一化函数,将数据范围为[0, 255]的图像归一化到[0, 1]
def norm_img(img):
    # 验证传入数据格式是否正确,img的shape为[batch_size, 28, 28]
    assert len(img.shape) == 3
    batch_size, img_h, img_w = img.shape[0], img.shape[1], img.shape[2]
    # 归一化图像数据
    img = img / 255
    # 将图像形式reshape为[batch_size, 784]
    img = paddle.reshape(img, [batch_size, img_h*img_w])
    return img   

# 使用飞浆训练模型
import paddle
# 确保从paddle.vision.datasets.MNIST中加载的图像数据是np.ndarray类型
paddle.vision.set_image_backend('cv2')

# 声明网络结构
model = MNIST()

def train(model):
    # 启动训练模式
    model.train()
    # 加载训练集 batch_size 设为 16
    train_loader = paddle.io.DataLoader(paddle.vision.datasets.MNIST(mode='train'), 
                                        batch_size=16, 
                                        shuffle=True)
    # 定义优化器,使用随机梯度下降SGD优化器,学习率设置为0.001
    opt = paddle.optimizer.SGD(learning_rate=0.001, parameters=model.parameters())
    EPOCH_NUM = 10
    for epoch in range(EPOCH_NUM):
        for batch_id, data in enumerate(train_loader()):
            images = norm_img(data[0]).astype('float32')
            labels = data[1].astype('float32')
            
            #前向计算的过程
            predicts = model(images)
            
            # 计算损失
            loss = F.square_error_cost(predicts, labels)
            avg_loss = paddle.mean(loss)
            
            #每训练了1000批次的数据,打印下当前Loss的情况
            if batch_id % 1000 == 0:
                print("epoch_id: {}, batch_id: {}, loss is: {}".format(epoch, batch_id, avg_loss.numpy()))
            
            #后向传播,更新参数的过程
            avg_loss.backward()
            opt.step()
            opt.clear_grad()
            
train(model)
# 保存模型训练的参数
paddle.save(model.state_dict(), './mnist.pdparams')

7.2、Version 2.4 写法

import paddle
import numpy as np
from paddle.vision.transforms import Normalize

transform = Normalize(mean=[127.5], std=[127.5], data_format='CHW')
# 下载数据集并初始化 DataSet
train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform)
test_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)

# 模型组网并初始化网络
lenet = paddle.vision.models.LeNet(num_classes=10)
model = paddle.Model(lenet)

# 模型训练的配置准备,准备损失函数,优化器和评价指标
model.prepare(paddle.optimizer.Adam(parameters=model.parameters()), 
              paddle.nn.CrossEntropyLoss(),
              paddle.metric.Accuracy())

# 模型训练
model.fit(train_dataset, epochs=5, batch_size=64, verbose=1)
# 模型评估
model.evaluate(test_dataset, batch_size=64, verbose=1)
# 保存模型
model.save('./output/mnist')

8、模型预测代码

8.1、Version 2.3 写法

# 读取一张本地的样例图片,转变成模型输入的格式
def load_image(img_path):
    # 从img_path中读取图像,并转为灰度图
    im = Image.open(img_path).convert('L')
    # print(np.array(im))
    im = im.resize((28, 28), Image.ANTIALIAS)
    im = np.array(im).reshape(1, -1).astype(np.float32)
    # 图像归一化,保持和数据集的数据范围一致
    im = 1 - im / 255
    return im

# 定义预测过程
model = MNIST()
params_file_path = 'mnist.pdparams'
img_path = './work/example_0.jpg'
# 加载模型参数
param_dict = paddle.load(params_file_path)
model.load_dict(param_dict)
# 灌入数据
model.eval()
tensor_img = load_image(img_path)
result = model(paddle.to_tensor(tensor_img))
print('result',result)
#  预测输出取整,即为预测的数字,打印结果
print("本次预测的数字是", result.numpy().astype('int32'))

输出结果与第6步模型测试的结果一致。

8.2、Version 2.4 写法

# 运行训练好的模型
model = paddle.Model(lenet)
# 加载模型
model.load('output/mnist')

# 从测试集中取出一张图片
img, label = test_dataset[0]
# 将图片shape从1*28*28变为1*1*28*28,增加一个batch维度,以匹配模型输入格式要求
img_batch = np.expand_dims(img.astype('float32'), axis=0)

# 执行推理并打印结果,此处predict_batch返回的是一个list,取出其中数据获得预测结果
out = model.predict_batch(img_batch)[0]
pred_label = out.argmax()
print('true label: {}, pred label: {}'.format(label[0], pred_label))
# 可视化图片
from matplotlib import pyplot as plt
plt.figure("Image") # 图像窗口名称
plt.figure(figsize=(2,2))
plt.imshow(img[0])
plt.axis('on') # 关掉坐标轴为 off
plt.title('image') # 图像题目
plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/69391.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

集美大学第14届蓝桥校选题解

本次比赛的出题表如下: 退役一年,勋总还是那么强呜呜呜 目录填空题[1] 十甚至九题意思路拓展[蓝桥杯] XXX 进制减法第十三届蓝桥杯C/C省赛B组 E题[2] 九大于十题意思路[3] N皇后签到题[1] JMU最强蓝人[2] 哪有赌狗一直输[3] 元胞自动机题意思路代码实…

PLC程序实例二:ModBusTCP客户端编程实例与测试方法

一、需求描述 1、设备作为服务端时,需要给出对应的测试方法,即要求 PLC 作为客户端,设备作为服务端,因此要求编写 PLC 的ModBusTCP客户端 2、先了解一下设备作为服务端的ModBusTCP网络触发业务逻辑 (1)设…

SQL 语法速成手册

基本概念 数据库术语 数据库(database):保存有组织的数据的容器(通常是一个文件或一组文件)。数据表(table) :某种特定类型数据的结构化清单。模式(schema)…

JAVA SCRIPT设计模式--创建型设计模式之抽象工厂(1)

JAVA SCRIPT设计模式是本人根据GOF的设计模式写的博客记录。使用JAVA SCRIPT语言来实现主体功能,所以不可能像C,JAVA等面向对象语言一样严谨,大部分程序都附上了JAVA SCRIPT代码,代码只是实现了设计模式的主体功能,不代…

这俩个技巧 解决了90%的冲突

解决冲突的关键技巧 关于本书作者: 达纳.卡斯帕森,冲突调节的专家,尚普兰大学人际冲突专业的硕士。三次获得芭蕾舞国际协会搬的最佳舞者奖。 关于本书: 这是一本引导别人如何化解一段冲突,达成一次有效沟通的社交类…

DataX 及 DataX-Web 安装使用详解

文章目录一、DataX安装1、解压datax.tar.gz2、运行自检脚本二、Datax-Web安装1、解压DataXWeb安装包2、执行一键安装脚本3、启动服务前段时间在项目上使用了阿里的离线数据同步工具datax,在大批量的表同步过程中踩了一些坑,所以详细介绍一下,…

五、伊森商城 前端基础-Vue Vue脚手架原理与使用 p27

目录 Vue项目结构 一、使用vue脚手架进行模块化开发 1、main文件 1.1、首先new Vue创建了一个vue实例,这个实例挂载了index.html中的app元素 1.2、使用了路由,这个路由是简写的写法 1.3、components使用了一个组件叫App 1.4、最终渲染 2、App.vu…

卷积神经网络相关模型

卷积神经网络相关模型1. CNN架构2. CNN架构模型2.1LeNet模型2.2Alexnet模型2.3VGG16模型2.3.1 使用多层小卷积核代替一层大的卷积核优点2.3.2 使用1*1卷积核优点2.3.2 模型特点卷积神经网络基本概念相关知识连接 卷积神经网络基本概念相关知识连接 1. CNN架构 模型分为2部分【…

ubuntu1804在rviz中显示kitti数据集的2D检测框和激光雷达的3D检测框

之前所做的工作参考上篇博客ubuntu1804发布kitti数据集的gps资料,imu资料(包含发布图片,点云过程)_FYY2LHH的博客-CSDN博客 本次将详解如何在ros播放的kitti数据集上作出检测框,首先需要知道的是对于kitti数据集中的每一帧都必须提前进行标注,而这个工作已经被别人完成了…

42. Python range函数—生成器函数

42. range函数—生成器函数 文章目录42. range函数—生成器函数1. 什么是range( )函数2. 回顾列表切片的语法3. range( )函数的语法3. range函数实操3.1 只有1个参数3.2 有2个参数3.3 有3个参数3.4 步长为负数4. list不能完全替代range5. 总结1. 什么是range( )函数 range[reɪ…

基于遗传算法在机器人路径规划中的应用研究(Matlab代码实现)

👨‍🎓个人主页:研学社的博客 💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜…

第十七章 优先队列优化Dijkstra算法

第十七章 优先队列优化Dijkstra算法一、普通dijkstra算法的缺陷1、选出最小距离的过程:2、松弛所有点的过程:二、如何优化1、代码模板(1)问题:(2)模板:2、详细解读三、优化分析1、使…

5G赋能行业应用,助推数智化转型!

导语 | 5G 技术的蓬勃发展推动其行业应用的巨轮乘风破浪、扬帆启航,5G 技术不断落地布局于各行各业,基础建设也不断完善,5G to B 的时代已经到来。此次,我们邀请到了中国电信研究院工业互联网技术研发部主任、腾讯云 TVP 谭华老师…

知识图谱-KGE-语义匹配-双线性模型(打分函数用到了双线性函数)-2014:TATEC

【paper】 Effective Blending of Two and Three-way Interactions for Modeling Multi-relational Data 【简介】 本文是法国 Antoine Bordes 团队发表在 ECML-PKDD 2014 上的工作,提出了 TATEC(Two and Three-way Embeddings Combination)…

ERP+MES集成管理系统重要性有哪些?

随着企业信息化观念的提升,管理方式也愈来愈信息化,因此以信息化推动企业的不断发展趋势已变成企业存活和发展的主要核心理念。其中ERP 系统和 MES 系统在企业发展和改革中起着非常重要的作用。当各种信息化系统在企业内各个部门顺利执行的同…

RabbitMQ安装教程(超详细)

本教程是在centos8下试验的,其实linux系统的都差不多 RabbitMQ官方:Messaging that just works — RabbitMQ RabbitMQ是开源AMQP实现,服务器端用Erlang语言编写,Python、Ruby、 NET、Java、JMS、c、PHP、action screcrive AMQP …

python 爬虫入门该怎么学习?

前言 1、什么是爬虫和爬虫的基本逻辑 “爬虫”是一种形象的说法。互联网比喻成一张大网,爬虫是一个程序或脚本在这种大网上爬走。碰到虫子(资源),若是所需的资源就获取或下载下来。这个资源通常是网页、文件等等。可以通过该资源…

Android NDK 开发之 CMake 必知必会

Android Studio 从 2.2 版本起开始支持 CMake ,可以通过 CMake 和 NDK 将 C/C 代码编译成底层的库,然后再配合 Gradle 的编译将库打包到 APK 中。 这意味就不需要再编写 .mk 文件来编译 so 动态库了。 CMake 是一个跨平台构建系统,在 Android Studio 引…

12月7日 补充数据库链式操作,只生成sql语句,不执行sql的几种函数以及thinkphp中验证器

补充知识: 生成sql语句但是不会执行sql语句 public function fetchSqlTest(){$result Db::name(user)->fetchSql(true)->select();//dump($result);//使用正常select查询默认中select(true)改为false即可返回sql语句$result Db::name(user)->…

UNIX/LINUX操作系统内核结构

通用操作系统的现状和分类 UNIX操作系统的根本特点:分时多用户、开放性 基本功能特征 系统结构 操作系统核心 系统调用的集合及实现系统调用的内部算法就形成操作系统核心 系统调用 以函数形式提供给核外的命令和上层应用系统使用的一组程序,涵…