数据库监控与调优【十五】—— ORDER BY语句优化

news2024/11/17 6:49:29

ORDER BY语句优化

  • 最好的做法:利用索引避免排序

实验

目的:哪些情况下ORDER BY子句能用索引避免排序,哪些情况下不能

在这里插入图片描述

之前说过,B+Tree数据结构里面的关键字,也就是索引值都是按照顺序排列的,那么,当索引的顺序正好和ORDER BY子句所需要的顺序一致时,mysql就不需要针对ORDER BY子句专门作排序,只需要直接按照索引的顺序取数据,然后返回即可。这就是上面说最好的做法是利用索引避免排序

即利用索引本身的有序性,让MySQL跳过排序过程

使用employees表测试

添加索引

ALTER TABLE employees ADD INDEX employees_first_name_last_name_index ( first_name, last_name );

示例一

EXPLAIN SELECT * FROM employees ORDER BY first_name, last_name;

在这里插入图片描述

可以看到结果中type是ALL,代表全表扫描,性能最差。

再次测试

EXPLAIN SELECT * FROM employees ORDER BY first_name, last_name LIMIT 10;

在这里插入图片描述

可以看到结果中type是index,使用了employees_first_name_last_name_index这个索引

提问:为什么一会是ALL一会是index

解答:因为一开始的sql相当于把整张表进行排序,而mysql的优化器是基于成本计算的,当它发现,如果全表扫描的开销比使用索引开销性能更小,那么就使用全表扫描

另外,如果Extra字段是NULL,代表这条sql可以使用索引避免排序;但是如果Extra字段是Using filesort,代表这条sql不可以使用索引避免排序

所以,上述之前的sql无法使用索引避免排序,之后的sql是可以的

示例二

-- 查询条件是组合索引的第一个字段,ORDER BY是组合索引的第二个字段
EXPLAIN SELECT * FROM employees WHERE first_name = 'Bader' ORDER BY last_name;

在这里插入图片描述

可以看到结果中type是ref,使用了索引,Extra字段是NULL,可以使用索引避免排序

分析:首先,使用WHERE first_name = 'Bader'扫描索引,赛选出来一堆符合条件的索引,大概是下面这样的

[Bader, last_name1, emp_no]
[Bader, last_name2, emp_no]
[Bader, last_name3, emp_no]
[Bader, last_name4, emp_no]
[Bader, last_name5, emp_no]
...

索引本身是有顺序的,对于字符串,会按照字典排序,WHERE first_name = 'Bader'这个条件指定了first_name,所以以上的一堆结果就相当于按照last_name作字典排序,自然是可以利用索引避免掉排序。

示例三

EXPLAIN SELECT * FROM employees WHERE first_name < 'Bader' ORDER BY first_name;

在这里插入图片描述

可以看到结果中type是range,表示范围查询且使用了索引,Extra字段是Using index condition,可以使用索引避免排序

分析:首先,索引本身是有顺序的,查询条件是first_name,所以WHERE first_name < 'Bader'可以使用索引,在扫描索引后,会出现下面一堆数据

[Angel, last_name1, emp_no]
[Anni, last_name2, emp_no]
[Anz, last_name3, emp_no]
[Affg, last_name4, emp_no]
[Baaa, last_name5, emp_no]
...

由于索引本身是按照字典排序的,而ORDER BY first_name就是要根据first_name进行字典排序,所以这条sql可以使用索引避免排序

示例四

EXPLAIN SELECT * FROM employees WHERE first_name = 'Bader' AND last_name > 'Peng' ORDER BY last_name;

在这里插入图片描述

可以看到结果中type是range,表示范围查询且使用了索引,Extra字段是Using index condition,可以使用索引避免排序

示例五

EXPLAIN SELECT * FROM employees ORDER BY first_name, emp_no;

在这里插入图片描述

可以看到结果中type是ALL,发生了全表扫描

难道也是因为mysql基于成本计算所以使用全表扫描觉得性能更好吗?

修改为:

EXPLAIN SELECT * FROM employees ORDER BY first_name, emp_no LIMIT 10;

在这里插入图片描述

发现结果中的type依然是ALL,并且Extra是Using filesort,也就是说这条sql无法利用索引避免排序

原因:当排序字段存在于多个索引中是无法使用索引避免排序

- first_name => 存在索引employees_first_name_last_name_index ( first_name, last_name )
- emp_no => 主键索引

示例六

EXPLAIN SELECT * FROM employees ORDER BY first_name DESC, last_name ASC LIMIT 10;

在这里插入图片描述

发现结果中的type依然是ALL,并且Extra是Using filesort,也就是说这条sql无法利用索引避免排序

原因:升降序不一致是无法使用索引避免排序

示例七

EXPLAIN SELECT * FROM employees WHERE first_name < 'Bader' ORDER BY last_name;

在这里插入图片描述

可以看到结果中type是range,表示范围查询WHERE first_name < 'Bader'表示使用了索引,但是Extra是Using index condition; Using filesort,Using filesort表示这条sql无法利用索引避免排序。

原因:存在组合索引index(key_part1,key_part2),使用key_part1范围查询,使用key_part2排序,无法使用索引避免排序

总结

通过实验,已经连接到ORDER BY子句那些情况下能够使用索引避免排序,哪些情况下不能,但是不推荐死记硬背,应该具备自己分析的能力,可以写出数据分析或者画出B+Tree数进行分析。当然,如果mysql能够使用索引避免排序,那样,mysql不用对ORDER BY子句进行单独的处理。但是如果实际的sql就是无法使用索引避免排序,此时,mysql就需要针对ORDER BY子句实现排序功能满足需求。这种情况会在Extra字段中展示Using filesort。但是这个字段含义的原理是怎样的?

排序模式1-rowid排序(常规排序)

1、从表中获取满足WHERE条件的记录

2、对于每条记录,将记录的主键及排序键(id,order_column)取出放入sort buffer(sort buffer是专门作排序的缓存,由sort_buffer_size控制)

3、如果sort buffer能存放所有满足条件的(id,order_column),则进行排序;否则sort buffer满后,进行排序并写到临时文件。这里的排序算法为快速排序算法

4、若排序中产生了临时文件,需要利用归并排序算法,从而保证记录有序

例子

假设mysql设置的sort_buffer_size很小,为256k,但是满足条件的(id,order_column) = 100M,于是就会产生若干个临时文件

-- 假设此时满足条件的(id,order_column)已经产生了两个临时文件,如下
-- [(10001,'Annel'),(8888,'Keeper'),(100001,'Zaker')] => file1
-- [(5555,'Hanmeimei'),(9999,'Jim'),(7777,'Lucy')] => file2

-- 最后经过归并排序算法后的结果,如下
-- [(10001,'Annel'),(5555,'Hanmeimei'),(9999,'Jim'),(8888,'Keeper'),(7777,'Lucy'),(100001,'Zaker')]

5、循环执行上述过程,直到所有满足条件的记录全部参与排序

6、扫描排好序的(id,order_column)对,并利用id去取SELECT需要返回的其他字段

7、返回结果集

rowid排序特点

  • 看sort buffer是否能存放结果集里面的所有(id,order_column),如果不满足,就会产生临时文件
  • 一次排序需要两次IO
    • 第二步:把(id,order_column)扔到sort buffer;第六步:通过id去获取需要返回的其它字段。由于返回结果是按照order_column排序的,所以id是乱序的,会存在随机IO的问题。MySQL内部针对这种情况做了个优化,在用ID取数据之前,会按照ID排序并放到一个缓存里面,这个缓存大小由read_rnd_buffer_size控制,接着再去取记录,从而把随机IO转换为顺序IO

排序模式2-全字段排序(优化排序)

  • 直接取出SQL中需要的所有字段,放到sort buffer
  • 由于sort buffer已经包含了查询需要的所有字段,因此,在sort buffer中排序完成后可直接返回

全字段排序 VS rowid排序

  • 好处:性能的提升,无需两次IO
  • 缺点:一行数据占用的空间一般比rowid排序多;如果sort buffer比较小,容易导致临时文件

算法如何选择?

  • max_length_for_sort_data:当ORDER BY SQL中出现字段的总长度小于该值,使用全字段排序,否则使用rowid排序

排序模式3-打包字段排序

  • MySQL 5.7引入
  • 全字段模式的优化,工作原理一样,但是将字段紧密地排列在一起,而不是使用固定长度空间
    • 某个字段数据类型是varchar(255),值是“yes”:如果使用全字段排序,不打包情况下需要255字节;如果使用打包字段排序,需要2(存储字段长度)+3(存储"yes"字符串本身)字节。可以节省大量空间

参数汇总

在这里插入图片描述

提出疑问

MySQL的排序实现细节特别多,但是使用explain只会在Extra中展示Using filesort,如果想要看更多的细节,可以使用OPTIMIZER_TRACE

-- 开启OPTIMIZER_TRACE
SET OPTIMIZER_TRACE="enabled=on",END_MARKERS_IN_JSON=on;
SET optimizer_trace_offset=-30, optimizer_trace_limit=30;

-- 执行SQL
SELECT * FROM employees WHERE first_name < 'Bader' ORDER BY last_name;

-- 查看OPTIMIZER_TRACE
SELECT * FROM INFORMATION_SCHEMA.OPTIMIZER_TRACE WHERE QUERY LIKE '%Bader%';

查看执行结果

{
  "steps": [
    {
      "join_preparation": {
        "select#": 1,
        "steps": [
          {
            "expanded_query": "/* select#1 */ select `employees`.`emp_no` AS `emp_no`,`employees`.`birth_date` AS `birth_date`,`employees`.`first_name` AS `first_name`,`employees`.`last_name` AS `last_name`,`employees`.`gender` AS `gender`,`employees`.`hire_date` AS `hire_date`,`employees`.`first_name_hash` AS `first_name_hash` from `employees` where (`employees`.`first_name` < 'Bader') order by `employees`.`last_name`"
          }
        ] /* steps */
      } /* join_preparation */
    },
    {
      "join_optimization": {
        "select#": 1,
        "steps": [
          {
            "condition_processing": {
              "condition": "WHERE",
              "original_condition": "(`employees`.`first_name` < 'Bader')",
              "steps": [
                {
                  "transformation": "equality_propagation",
                  "resulting_condition": "(`employees`.`first_name` < 'Bader')"
                },
                {
                  "transformation": "constant_propagation",
                  "resulting_condition": "(`employees`.`first_name` < 'Bader')"
                },
                {
                  "transformation": "trivial_condition_removal",
                  "resulting_condition": "(`employees`.`first_name` < 'Bader')"
                }
              ] /* steps */
            } /* condition_processing */
          },
          {
            "substitute_generated_columns": {
            } /* substitute_generated_columns */
          },
          {
            "table_dependencies": [
              {
                "table": "`employees`",
                "row_may_be_null": false,
                "map_bit": 0,
                "depends_on_map_bits": [
                ] /* depends_on_map_bits */
              }
            ] /* table_dependencies */
          },
          {
            "ref_optimizer_key_uses": [
            ] /* ref_optimizer_key_uses */
          },
          {
            "rows_estimation": [
              {
                "table": "`employees`",
                "range_analysis": {
                  "table_scan": {
                    "rows": 292025,
                    "cost": 29436.8
                  } /* table_scan */,
                  "potential_range_indexes": [
                    {
                      "index": "PRIMARY",
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "employees_first_name_last_name_index",
                      "usable": true,
                      "key_parts": [
                        "first_name",
                        "last_name",
                        "emp_no"
                      ] /* key_parts */
                    }
                  ] /* potential_range_indexes */,
                  "setup_range_conditions": [
                  ] /* setup_range_conditions */,
                  "group_index_range": {
                    "chosen": false,
                    "cause": "not_group_by_or_distinct"
                  } /* group_index_range */,
                  "skip_scan_range": {
                    "potential_skip_scan_indexes": [
                      {
                        "index": "employees_first_name_last_name_index",
                        "usable": false,
                        "cause": "query_references_nonkey_column"
                      }
                    ] /* potential_skip_scan_indexes */
                  } /* skip_scan_range */,
                  "analyzing_range_alternatives": {
                    "range_scan_alternatives": [
                      {
                        "index": "employees_first_name_last_name_index",
                        "ranges": [
                          "first_name < 'Bader'"
                        ] /* ranges */,
                        "index_dives_for_eq_ranges": true,
                        "rowid_ordered": false,
                        "using_mrr": false,
                        "index_only": false,
                        "in_memory": 0.073913,
                        "rows": 45208,
                        "cost": 15823.1,
                        "chosen": true
                      }
                    ] /* range_scan_alternatives */,
                    "analyzing_roworder_intersect": {
                      "usable": false,
                      "cause": "too_few_roworder_scans"
                    } /* analyzing_roworder_intersect */
                  } /* analyzing_range_alternatives */,
                  "chosen_range_access_summary": {
                    "range_access_plan": {
                      "type": "range_scan",
                      "index": "employees_first_name_last_name_index",
                      "rows": 45208,
                      "ranges": [
                        "first_name < 'Bader'"
                      ] /* ranges */
                    } /* range_access_plan */,
                    "rows_for_plan": 45208,
                    "cost_for_plan": 15823.1,
                    "chosen": true
                  } /* chosen_range_access_summary */
                } /* range_analysis */
              }
            ] /* rows_estimation */
          },
          {
            "considered_execution_plans": [
              {
                "plan_prefix": [
                ] /* plan_prefix */,
                "table": "`employees`",
                "best_access_path": {
                  "considered_access_paths": [
                    {
                      "rows_to_scan": 45208,
                      "access_type": "range",
                      "range_details": {
                        "used_index": "employees_first_name_last_name_index"
                      } /* range_details */,
                      "resulting_rows": 45208,
                      "cost": 20343.9,
                      "chosen": true,
                      "use_tmp_table": true
                    }
                  ] /* considered_access_paths */
                } /* best_access_path */,
                "condition_filtering_pct": 100,
                "rows_for_plan": 45208,
                "cost_for_plan": 20343.9,
                "sort_cost": 45208,
                "new_cost_for_plan": 65551.9,
                "chosen": true
              }
            ] /* considered_execution_plans */
          },
          {
            "attaching_conditions_to_tables": {
              "original_condition": "(`employees`.`first_name` < 'Bader')",
              "attached_conditions_computation": [
              ] /* attached_conditions_computation */,
              "attached_conditions_summary": [
                {
                  "table": "`employees`",
                  "attached": "(`employees`.`first_name` < 'Bader')"
                }
              ] /* attached_conditions_summary */
            } /* attaching_conditions_to_tables */
          },
          {
            "optimizing_distinct_group_by_order_by": {
              "simplifying_order_by": {
                "original_clause": "`employees`.`last_name`",
                "items": [
                  {
                    "item": "`employees`.`last_name`"
                  }
                ] /* items */,
                "resulting_clause_is_simple": true,
                "resulting_clause": "`employees`.`last_name`"
              } /* simplifying_order_by */
            } /* optimizing_distinct_group_by_order_by */
          },
          {
            "reconsidering_access_paths_for_index_ordering": {
              "clause": "ORDER BY",
              "steps": [
              ] /* steps */,
              "index_order_summary": {
                "table": "`employees`",
                "index_provides_order": false,
                "order_direction": "undefined",
                "index": "employees_first_name_last_name_index",
                "plan_changed": false
              } /* index_order_summary */
            } /* reconsidering_access_paths_for_index_ordering */
          },
          {
            "finalizing_table_conditions": [
              {
                "table": "`employees`",
                "original_table_condition": "(`employees`.`first_name` < 'Bader')",
                "final_table_condition   ": "(`employees`.`first_name` < 'Bader')"
              }
            ] /* finalizing_table_conditions */
          },
          {
            "refine_plan": [
              {
                "table": "`employees`",
                "pushed_index_condition": "(`employees`.`first_name` < 'Bader')",
                "table_condition_attached": null
              }
            ] /* refine_plan */
          },
          {
            "considering_tmp_tables": [
              {
                "adding_sort_to_table": "employees"
              } /* filesort */
            ] /* considering_tmp_tables */
          }
        ] /* steps */
      } /* join_optimization */
    },
    {
      "join_execution": {
        "select#": 1,
        "steps": [
          {
            "sorting_table": "employees",
            "filesort_information": [
              {
                "direction": "asc",
                "expression": "`employees`.`last_name`"
              }
            ] /* filesort_information */,
            "filesort_priority_queue_optimization": {
              "usable": false,
              "cause": "not applicable (no LIMIT)"
            } /* filesort_priority_queue_optimization */,
            "filesort_execution": [
            ] /* filesort_execution */,
            "filesort_summary": {
              "memory_available": 262144,
              "key_size": 264,
              "row_size": 406,
              "max_rows_per_buffer": 645,
              "num_rows_estimate": 45208,
              "num_rows_found": 22287,
              "num_initial_chunks_spilled_to_disk": 6,
              "peak_memory_used": 262144,
              "sort_algorithm": "std::sort",
              "sort_mode": "<varlen_sort_key, packed_additional_fields>"
            } /* filesort_summary */
          }
        ] /* steps */
      } /* join_execution */
    }
  ] /* steps */
}

可以看到sql使用filesort会多了以下内容,主要关注filesort_summary

"filesort_information": [
    {
        "direction": "asc",
        "expression": "`employees`.`last_name`"
    }
] /* filesort_information */,
"filesort_priority_queue_optimization": {
    "usable": false,
    "cause": "not applicable (no LIMIT)"
} /* filesort_priority_queue_optimization */,
"filesort_execution": [
] /* filesort_execution */,
"filesort_summary": {
    "memory_available": 262144,
    "key_size": 264,
    "row_size": 406,
    "max_rows_per_buffer": 645,
    "num_rows_estimate": 45208,
    "num_rows_found": 22287,
    "num_initial_chunks_spilled_to_disk": 6,
    "peak_memory_used": 262144,
    "sort_algorithm": "std::sort",
    "sort_mode": "<varlen_sort_key, packed_additional_fields>"
} /* filesort_summary */

filesort_summary解读

  • memory_available:可用内存,其实就是sort_buffer_size配置的值
  • num_rows_found:有多少条数据参与排序,越小越好
  • num_initial_chunks_spilled_to_disk:产生了几个临时文件,0代表完全基于内存排序
    • 应该让这个值尽量取向于0,内存排序肯定比文件排序效率高
    • 降低这个值也可以降低归并排序的次数提高效率
  • sort_mode
    • <sort_key, rowid>:使用rowid排序模式
    • <sort_key, additional_fields>:使用了全字段排序
    • <sort_key, packed_additional_fields>:使用了打包字段排序

如何调优ORDER BY

  • 利用索引,防止filesort的发生
  • 如果发生了filesort,并且没办法避免,想办法优化filesort

如何调优filesort

  • 调大sort_buffer_size,减少/避免临时文件、归并操作

    • OPTIMIZER_TRACE中num_initial_chunks_spilled_to_disk的值

    • sort_merge_passes变量的值,表示执行归并的次数

      -- 通过这个sql查看
      SHOW STATUS LIKE '%sort_merge_passes%';
      
  • 调大read_rnd_buffer_size,让一次顺序IO返回的结果更多

  • 设置合理的max_length_for_sort_data的值

    • 这个参数如果设置太大,各种排序的SQL都会利用全字段排序,可能会导致大量内存占用,如果写入临时文件,又会占用大量硬盘

    • 如果设置太小,会导致各种排序的SQL都会利用rowid排序,从而产生两次IO,性能会差很多

    • 一般不建议随意调整

  • 调小max_sort_length

    • 这个参数的作用是指定排序时最多取多少字节
    • 比如超长的text类型或者varchar类型字段,就会取前这么多字节排序,忽略后面部分

调优实战

调优之前

以下sql为例

SELECT * FROM employees WHERE first_name < 'Bader' ORDER BY last_name; -- 调优之前花费0.064s

使用OPTIMIZER_TRACE查看

SELECT * FROM INFORMATION_SCHEMA.OPTIMIZER_TRACE WHERE QUERY LIKE '%Bader%';
{
  "steps": [
    {
      "join_preparation": {
        "select#": 1,
        "steps": [
          {
            "expanded_query": "/* select#1 */ select `employees`.`emp_no` AS `emp_no`,`employees`.`birth_date` AS `birth_date`,`employees`.`first_name` AS `first_name`,`employees`.`last_name` AS `last_name`,`employees`.`gender` AS `gender`,`employees`.`hire_date` AS `hire_date`,`employees`.`first_name_hash` AS `first_name_hash` from `employees` where (`employees`.`first_name` < 'Bader') order by `employees`.`last_name`"
          }
        ] /* steps */
      } /* join_preparation */
    },
    {
      "join_optimization": {
        "select#": 1,
        "steps": [
          {
            "condition_processing": {
              "condition": "WHERE",
              "original_condition": "(`employees`.`first_name` < 'Bader')",
              "steps": [
                {
                  "transformation": "equality_propagation",
                  "resulting_condition": "(`employees`.`first_name` < 'Bader')"
                },
                {
                  "transformation": "constant_propagation",
                  "resulting_condition": "(`employees`.`first_name` < 'Bader')"
                },
                {
                  "transformation": "trivial_condition_removal",
                  "resulting_condition": "(`employees`.`first_name` < 'Bader')"
                }
              ] /* steps */
            } /* condition_processing */
          },
          {
            "substitute_generated_columns": {
            } /* substitute_generated_columns */
          },
          {
            "table_dependencies": [
              {
                "table": "`employees`",
                "row_may_be_null": false,
                "map_bit": 0,
                "depends_on_map_bits": [
                ] /* depends_on_map_bits */
              }
            ] /* table_dependencies */
          },
          {
            "ref_optimizer_key_uses": [
            ] /* ref_optimizer_key_uses */
          },
          {
            "rows_estimation": [
              {
                "table": "`employees`",
                "range_analysis": {
                  "table_scan": {
                    "rows": 292025,
                    "cost": 29436.8
                  } /* table_scan */,
                  "potential_range_indexes": [
                    {
                      "index": "PRIMARY",
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "employees_first_name_last_name_index",
                      "usable": true,
                      "key_parts": [
                        "first_name",
                        "last_name",
                        "emp_no"
                      ] /* key_parts */
                    }
                  ] /* potential_range_indexes */,
                  "setup_range_conditions": [
                  ] /* setup_range_conditions */,
                  "group_index_range": {
                    "chosen": false,
                    "cause": "not_group_by_or_distinct"
                  } /* group_index_range */,
                  "skip_scan_range": {
                    "potential_skip_scan_indexes": [
                      {
                        "index": "employees_first_name_last_name_index",
                        "usable": false,
                        "cause": "query_references_nonkey_column"
                      }
                    ] /* potential_skip_scan_indexes */
                  } /* skip_scan_range */,
                  "analyzing_range_alternatives": {
                    "range_scan_alternatives": [
                      {
                        "index": "employees_first_name_last_name_index",
                        "ranges": [
                          "first_name < 'Bader'"
                        ] /* ranges */,
                        "index_dives_for_eq_ranges": true,
                        "rowid_ordered": false,
                        "using_mrr": false,
                        "index_only": false,
                        "in_memory": 0.073913,
                        "rows": 45208,
                        "cost": 15823.1,
                        "chosen": true
                      }
                    ] /* range_scan_alternatives */,
                    "analyzing_roworder_intersect": {
                      "usable": false,
                      "cause": "too_few_roworder_scans"
                    } /* analyzing_roworder_intersect */
                  } /* analyzing_range_alternatives */,
                  "chosen_range_access_summary": {
                    "range_access_plan": {
                      "type": "range_scan",
                      "index": "employees_first_name_last_name_index",
                      "rows": 45208,
                      "ranges": [
                        "first_name < 'Bader'"
                      ] /* ranges */
                    } /* range_access_plan */,
                    "rows_for_plan": 45208,
                    "cost_for_plan": 15823.1,
                    "chosen": true
                  } /* chosen_range_access_summary */
                } /* range_analysis */
              }
            ] /* rows_estimation */
          },
          {
            "considered_execution_plans": [
              {
                "plan_prefix": [
                ] /* plan_prefix */,
                "table": "`employees`",
                "best_access_path": {
                  "considered_access_paths": [
                    {
                      "rows_to_scan": 45208,
                      "access_type": "range",
                      "range_details": {
                        "used_index": "employees_first_name_last_name_index"
                      } /* range_details */,
                      "resulting_rows": 45208,
                      "cost": 20343.9,
                      "chosen": true,
                      "use_tmp_table": true
                    }
                  ] /* considered_access_paths */
                } /* best_access_path */,
                "condition_filtering_pct": 100,
                "rows_for_plan": 45208,
                "cost_for_plan": 20343.9,
                "sort_cost": 45208,
                "new_cost_for_plan": 65551.9,
                "chosen": true
              }
            ] /* considered_execution_plans */
          },
          {
            "attaching_conditions_to_tables": {
              "original_condition": "(`employees`.`first_name` < 'Bader')",
              "attached_conditions_computation": [
              ] /* attached_conditions_computation */,
              "attached_conditions_summary": [
                {
                  "table": "`employees`",
                  "attached": "(`employees`.`first_name` < 'Bader')"
                }
              ] /* attached_conditions_summary */
            } /* attaching_conditions_to_tables */
          },
          {
            "optimizing_distinct_group_by_order_by": {
              "simplifying_order_by": {
                "original_clause": "`employees`.`last_name`",
                "items": [
                  {
                    "item": "`employees`.`last_name`"
                  }
                ] /* items */,
                "resulting_clause_is_simple": true,
                "resulting_clause": "`employees`.`last_name`"
              } /* simplifying_order_by */
            } /* optimizing_distinct_group_by_order_by */
          },
          {
            "reconsidering_access_paths_for_index_ordering": {
              "clause": "ORDER BY",
              "steps": [
              ] /* steps */,
              "index_order_summary": {
                "table": "`employees`",
                "index_provides_order": false,
                "order_direction": "undefined",
                "index": "employees_first_name_last_name_index",
                "plan_changed": false
              } /* index_order_summary */
            } /* reconsidering_access_paths_for_index_ordering */
          },
          {
            "finalizing_table_conditions": [
              {
                "table": "`employees`",
                "original_table_condition": "(`employees`.`first_name` < 'Bader')",
                "final_table_condition   ": "(`employees`.`first_name` < 'Bader')"
              }
            ] /* finalizing_table_conditions */
          },
          {
            "refine_plan": [
              {
                "table": "`employees`",
                "pushed_index_condition": "(`employees`.`first_name` < 'Bader')",
                "table_condition_attached": null
              }
            ] /* refine_plan */
          },
          {
            "considering_tmp_tables": [
              {
                "adding_sort_to_table": "employees"
              } /* filesort */
            ] /* considering_tmp_tables */
          }
        ] /* steps */
      } /* join_optimization */
    },
    {
      "join_execution": {
        "select#": 1,
        "steps": [
          {
            "sorting_table": "employees",
            "filesort_information": [
              {
                "direction": "asc",
                "expression": "`employees`.`last_name`"
              }
            ] /* filesort_information */,
            "filesort_priority_queue_optimization": {
              "usable": false,
              "cause": "not applicable (no LIMIT)"
            } /* filesort_priority_queue_optimization */,
            "filesort_execution": [
            ] /* filesort_execution */,
            "filesort_summary": {
              "memory_available": 262144,
              "key_size": 264,
              "row_size": 406,
              "max_rows_per_buffer": 645,
              "num_rows_estimate": 45208,
              "num_rows_found": 22287,
              "num_initial_chunks_spilled_to_disk": 6,
              "peak_memory_used": 262144,
              "sort_algorithm": "std::sort",
              "sort_mode": "<varlen_sort_key, packed_additional_fields>"
            } /* filesort_summary */
          }
        ] /* steps */
      } /* join_execution */
    }
  ] /* steps */
}

可以看到num_initial_chunks_spilled_to_disk为6,产生了6个临时文件

调优之后

调大sort_buffer_size

SET sort_buffer_size = 1024 * 1024;

再次执行

SELECT * FROM employees WHERE first_name < 'Bader' ORDER BY last_name; -- 调优之后花费0.052s

再次查看OPTIMIZER_TRACE

SELECT * FROM INFORMATION_SCHEMA.OPTIMIZER_TRACE WHERE QUERY LIKE '%Bader%';
{
  "steps": [
    {
      "join_preparation": {
        "select#": 1,
        "steps": [
          {
            "expanded_query": "/* select#1 */ select `employees`.`emp_no` AS `emp_no`,`employees`.`birth_date` AS `birth_date`,`employees`.`first_name` AS `first_name`,`employees`.`last_name` AS `last_name`,`employees`.`gender` AS `gender`,`employees`.`hire_date` AS `hire_date`,`employees`.`first_name_hash` AS `first_name_hash` from `employees` where (`employees`.`first_name` < 'Bader') order by `employees`.`last_name`"
          }
        ] /* steps */
      } /* join_preparation */
    },
    {
      "join_optimization": {
        "select#": 1,
        "steps": [
          {
            "condition_processing": {
              "condition": "WHERE",
              "original_condition": "(`employees`.`first_name` < 'Bader')",
              "steps": [
                {
                  "transformation": "equality_propagation",
                  "resulting_condition": "(`employees`.`first_name` < 'Bader')"
                },
                {
                  "transformation": "constant_propagation",
                  "resulting_condition": "(`employees`.`first_name` < 'Bader')"
                },
                {
                  "transformation": "trivial_condition_removal",
                  "resulting_condition": "(`employees`.`first_name` < 'Bader')"
                }
              ] /* steps */
            } /* condition_processing */
          },
          {
            "substitute_generated_columns": {
            } /* substitute_generated_columns */
          },
          {
            "table_dependencies": [
              {
                "table": "`employees`",
                "row_may_be_null": false,
                "map_bit": 0,
                "depends_on_map_bits": [
                ] /* depends_on_map_bits */
              }
            ] /* table_dependencies */
          },
          {
            "ref_optimizer_key_uses": [
            ] /* ref_optimizer_key_uses */
          },
          {
            "rows_estimation": [
              {
                "table": "`employees`",
                "range_analysis": {
                  "table_scan": {
                    "rows": 292025,
                    "cost": 29436.8
                  } /* table_scan */,
                  "potential_range_indexes": [
                    {
                      "index": "PRIMARY",
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "employees_first_name_last_name_index",
                      "usable": true,
                      "key_parts": [
                        "first_name",
                        "last_name",
                        "emp_no"
                      ] /* key_parts */
                    }
                  ] /* potential_range_indexes */,
                  "setup_range_conditions": [
                  ] /* setup_range_conditions */,
                  "group_index_range": {
                    "chosen": false,
                    "cause": "not_group_by_or_distinct"
                  } /* group_index_range */,
                  "skip_scan_range": {
                    "potential_skip_scan_indexes": [
                      {
                        "index": "employees_first_name_last_name_index",
                        "usable": false,
                        "cause": "query_references_nonkey_column"
                      }
                    ] /* potential_skip_scan_indexes */
                  } /* skip_scan_range */,
                  "analyzing_range_alternatives": {
                    "range_scan_alternatives": [
                      {
                        "index": "employees_first_name_last_name_index",
                        "ranges": [
                          "first_name < 'Bader'"
                        ] /* ranges */,
                        "index_dives_for_eq_ranges": true,
                        "rowid_ordered": false,
                        "using_mrr": false,
                        "index_only": false,
                        "in_memory": 0.073913,
                        "rows": 45208,
                        "cost": 15823.1,
                        "chosen": true
                      }
                    ] /* range_scan_alternatives */,
                    "analyzing_roworder_intersect": {
                      "usable": false,
                      "cause": "too_few_roworder_scans"
                    } /* analyzing_roworder_intersect */
                  } /* analyzing_range_alternatives */,
                  "chosen_range_access_summary": {
                    "range_access_plan": {
                      "type": "range_scan",
                      "index": "employees_first_name_last_name_index",
                      "rows": 45208,
                      "ranges": [
                        "first_name < 'Bader'"
                      ] /* ranges */
                    } /* range_access_plan */,
                    "rows_for_plan": 45208,
                    "cost_for_plan": 15823.1,
                    "chosen": true
                  } /* chosen_range_access_summary */
                } /* range_analysis */
              }
            ] /* rows_estimation */
          },
          {
            "considered_execution_plans": [
              {
                "plan_prefix": [
                ] /* plan_prefix */,
                "table": "`employees`",
                "best_access_path": {
                  "considered_access_paths": [
                    {
                      "rows_to_scan": 45208,
                      "access_type": "range",
                      "range_details": {
                        "used_index": "employees_first_name_last_name_index"
                      } /* range_details */,
                      "resulting_rows": 45208,
                      "cost": 20343.9,
                      "chosen": true,
                      "use_tmp_table": true
                    }
                  ] /* considered_access_paths */
                } /* best_access_path */,
                "condition_filtering_pct": 100,
                "rows_for_plan": 45208,
                "cost_for_plan": 20343.9,
                "sort_cost": 45208,
                "new_cost_for_plan": 65551.9,
                "chosen": true
              }
            ] /* considered_execution_plans */
          },
          {
            "attaching_conditions_to_tables": {
              "original_condition": "(`employees`.`first_name` < 'Bader')",
              "attached_conditions_computation": [
              ] /* attached_conditions_computation */,
              "attached_conditions_summary": [
                {
                  "table": "`employees`",
                  "attached": "(`employees`.`first_name` < 'Bader')"
                }
              ] /* attached_conditions_summary */
            } /* attaching_conditions_to_tables */
          },
          {
            "optimizing_distinct_group_by_order_by": {
              "simplifying_order_by": {
                "original_clause": "`employees`.`last_name`",
                "items": [
                  {
                    "item": "`employees`.`last_name`"
                  }
                ] /* items */,
                "resulting_clause_is_simple": true,
                "resulting_clause": "`employees`.`last_name`"
              } /* simplifying_order_by */
            } /* optimizing_distinct_group_by_order_by */
          },
          {
            "reconsidering_access_paths_for_index_ordering": {
              "clause": "ORDER BY",
              "steps": [
              ] /* steps */,
              "index_order_summary": {
                "table": "`employees`",
                "index_provides_order": false,
                "order_direction": "undefined",
                "index": "employees_first_name_last_name_index",
                "plan_changed": false
              } /* index_order_summary */
            } /* reconsidering_access_paths_for_index_ordering */
          },
          {
            "finalizing_table_conditions": [
              {
                "table": "`employees`",
                "original_table_condition": "(`employees`.`first_name` < 'Bader')",
                "final_table_condition   ": "(`employees`.`first_name` < 'Bader')"
              }
            ] /* finalizing_table_conditions */
          },
          {
            "refine_plan": [
              {
                "table": "`employees`",
                "pushed_index_condition": "(`employees`.`first_name` < 'Bader')",
                "table_condition_attached": null
              }
            ] /* refine_plan */
          },
          {
            "considering_tmp_tables": [
              {
                "adding_sort_to_table": "employees"
              } /* filesort */
            ] /* considering_tmp_tables */
          }
        ] /* steps */
      } /* join_optimization */
    },
    {
      "join_execution": {
        "select#": 1,
        "steps": [
          {
            "sorting_table": "employees",
            "filesort_information": [
              {
                "direction": "asc",
                "expression": "`employees`.`last_name`"
              }
            ] /* filesort_information */,
            "filesort_priority_queue_optimization": {
              "usable": false,
              "cause": "not applicable (no LIMIT)"
            } /* filesort_priority_queue_optimization */,
            "filesort_execution": [
            ] /* filesort_execution */,
            "filesort_summary": {
              "memory_available": 1048576,
              "key_size": 264,
              "row_size": 406,
              "max_rows_per_buffer": 2582,
              "num_rows_estimate": 45208,
              "num_rows_found": 22287,
              "num_initial_chunks_spilled_to_disk": 2,
              "peak_memory_used": 1048576,
              "sort_algorithm": "std::sort",
              "sort_mode": "<varlen_sort_key, packed_additional_fields>"
            } /* filesort_summary */
          }
        ] /* steps */
      } /* join_execution */
    }
  ] /* steps */
}

可以看到num_initial_chunks_spilled_to_disk为2,此时,只产生了2个临时文件。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/692531.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

端午节粽子代码(python)需要的拿走,顺带给博主一点关注呗~~~~

import math from turtle import * #胡阳 # 画粽子 def rice_dumpling():pensize(4) # 画笔宽度pencolor(4, 60, 12) # 画笔颜色fillcolor(4, 70, 19) # 填充色begin_fill()fd(200) # 向前circle(15, 120) #画圆弧fd(200)circle(15, 120)fd(200)circle(15, 120)fd(200)circle(1…

自动化测试你一定要知道的几个技巧,包你受用终身

自动化测试是应用程序在非常短的时间内执行软件的整个生命周期的过程&#xff0c;使测试软件具有很大的充分性和有效性。在这个程序设计的系统中&#xff0c;测试人员编写一个脚本&#xff0c;并借助合适的软件对软件进行测试。自动化测试背后的基本目标是提高测试效率和提高软…

C 语言经典100例(菜鸟在线工具)

C 语言经典100例 C 语言经典100例 菜鸟工具 C代码在线运行工具 搜索引擎 前端开发

农产品批发采购APP开发 手机里的农产品市场

农业发展是民生之本&#xff0c;随着互联网时代的到来各行各业都迎来了新的发展机遇&#xff0c;农产品批发采购、配送服务等方面也发生了很大的改变&#xff0c;各种农产品商城APP、农产品批发采购平台、农产品供应管理系统的开发让包含农产品信息、数据、物流、配送、仓储、质…

关于tcp协议的18个常问面试题(进阶版)

TCP是一个基础协议&#xff0c;这里相关的十八个问题也都是常见的问题。无论是前端还是后端同学&#xff0c;都应该掌握的这些问题。过于基础的问题&#xff0c;比如TCP格式是什么 占多少字节 三次握手的流程等等&#xff0c;由于过于简单&#xff0c;我们不介绍&#xff0c;本…

Mabatis(CRUD)

Mybatis CRUD(数据和配置使用Mybatis快速入门) select标签 选择&#xff0c;查询语句: <select id"getUserById" resultType"com.louis.pojo.User" parameterType"int"></select>id:就是对应namespace中的方法名(就相当于重写了…

记录::windows11安装子系统ubuntu18.04+cuda

https://learn.microsoft.com/zh-cn/windows/wsl/install-manual https://zhuanlan.zhihu.com/p/436441212 目录 1、开启开发者模式 2、开启子系统 3、下载ubuntu 4、安装ubuntu 5、安装cuda 6、安装cudnn 7、安装桌面 2、桌面 3、Xfces&#xff08;前面2和这个二选一…

不需要数据线传输如何共享笔记软件内容?

在生活和工作中&#xff0c;手机电脑共享数据的情况非常多&#xff0c;比如“共享笔记内容”。每当遇到这种情况&#xff0c;很多人都会使用数据线或借助第三方社交平台&#xff0c;把信息或文件传输过去。不过&#xff0c;这两种方法一个安全性不能保障&#xff0c;尤其是使用…

如何基于Nilearn绘制绘制脑网络图(一)?绘制功能连接、结构连接可视化

结果图 Nilearn Nilearn是一个Python库,用于神经影像分析。它提供了处理和分析功能性和结构性脑成像数据的工具。Nilearn提供了多种预处理函数、机器学习算法应用、统计分析和结果可视化的功能。在神经影像研究领域,Nilearn常用于分析功能性磁共振成像(fMRI)等技术的数据。…

Kubernetes1.21部署apisix网关

1、安装nfs-subdir-external-provisioner helm install nfs-subdir-external-provisioner nfs-subdir-external-provisioner/nfs-subdir-external-provisioner -f values.yaml -n default docker pull k8s.gcr.io/sig-storage/nfs-subdir-external-provisioner:v4.0.2 下载…

本地生活服务平台加盟

本地生活服务平台加盟是一种让创业者可以成为品牌合作伙伴&#xff0c;开展本地生活服务业务的方式。通常&#xff0c;加盟商需要缴纳一定的加盟费用&#xff0c;获得品牌授权和支持&#xff0c;并承担一定的经营风险。 加盟本地生活服务平台可以让创业者在品牌知名度和运营…

机器人开发--Cartographer详细介绍

机器人开发--Cartographer详细介绍 1 介绍1.1 概述1.2 评价1.3 特点 2 框架官方 3 代码结构heimazaifei 解读linyicheng 解读Xiaotu 解读cartographer_ros地图构建器map_builderLocal SLAMGlobal SLAM 赵锴 解读地图设计匹配方法一阶段解算二阶段解算后端如何检测回环检测回环后…

数学建模算法(基于matlab和python)之 Lagrange插值、Newton插值(1/10)

实验目的及要求&#xff1a; 1、了解多项式插值公式的存在唯一性条件及其余项表达式的推导。 2、了解拉格朗日插值多项式的构造、计算及其基函数的特点&#xff0c;牛顿插值多项式的构造与应用&#xff0c;差商、差分的计算及基本性质。 实验内容&#xff1a; 1、编写Lagrange插…

服务 第六章

目录 1.基于域名的跳转 2.基于客户端 IP 访问跳转 3. 基于旧域名跳转到新域名后面加目录 4.基于参数匹配的跳转 5.基于目录下所有 php 结尾的文件跳转 6.基于最普通一条 url 请求的跳转 7.总结 1.基于域名的跳转 2.基于客户端 IP 访问跳转 3. 基于旧域名跳转到新域名后面加目…

ESP32设备驱动-74HC595驱动7段数码管

74HC595驱动7段数码管 文章目录 74HC595驱动7段数码管1、74HC595介绍2、硬件准备3、软件准备4、驱动实现所有微控制器都有特定数量的 IO 引脚,但在某些应用中,例如在 7 段显示器中,我们需要的 GPIO 引脚数量超过我们的控制器所能提供的数量。 对于这种需要多个输出引脚但微控…

深入分析动态链接的延迟绑定

关于程序运行的系列文章 ELF文件结构和实战分析 深入分析动态链接的延迟绑定 文章目录 为什么使用动态链接库&#xff1f;静态链接的问题&#xff1a;动态链接库 动态共享库是怎样存在于内存中的&#xff1f;动态链接 原理简析代码示例dynsymGOT.rela.dyn 和 .rela.pltPLT使用…

【云原生】一文学会Dockerfile所有常用命令

Docker file的作用方便管理员来根据需求来进行构建镜像&#xff0c;前面学习过commit来将一个容器打包成镜像&#xff0c;但是Docker 并不建议用户通过commit方式构建镜像。 原因如下&#xff1a; 1. 这是一种手工创建镜像的方式&#xff0c;容易出错&#xff0c;效率低且可重…

三、角色管理前端

云尚办公系统&#xff1a;角色管理前端 B站直达【为尚硅谷点赞】: https://www.bilibili.com/video/BV1Ya411S7aT 本博文以课程相关为主发布&#xff0c;并且融入了自己的一些看法以及对学习过程中遇见的问题给出相关的解决方法。一起学习一起进步&#xff01;&#xff01;&am…

锁相环PLL原理及matlab代码

补偿相干系统中的激光器相位噪声。 根据Wiener process的性质&#xff0c;离得越近的符号相位噪声在概率统计上越相似&#xff0c;因此&#xff0c;可以用上一个符号估计得到的相位当做当前这个符号的初始相位&#xff0c;再通过判决来估计当前符号的准确相位&#xff0c;这就是…

OJ刷题 第十七篇

34005 - 汽水瓶 时间限制 : 1 秒 内存限制 : 128 MB 有这样一道智力题&#xff1a;“某商店规定&#xff1a;三个空汽水瓶可以换一瓶汽水。小张手上有十个空汽水瓶&#xff0c;她最多可以换多少瓶汽水喝&#xff1f;”答案是5瓶&#xff0c;方法如下&#xff1a;先用9个空瓶…