kafka初学入门

news2024/12/29 7:53:56

kafka概述

消息中间件对比

特性ActiveMQRabbitMQRocketMQKafka
开发语言javaerlangjavascala
单机吞吐量万级万级10万级100万级
时效性msusmsms级以内
可用性高(主从)高(主从)非常高(分布式)非常高(分布式)
功能特性成熟的产品、较全的文档、各种协议支持好并发能力强、性能好、延迟低MQ功能比较完善,扩展性佳只支持主要的MQ功能,主要应用于大数据领域

消息中间件对比-选择建议

消息中间件建议
Kafka追求高吞吐量,适合产生大量数据的互联网服务的数据收集业务
RocketMQ可靠性要求很高的金融互联网领域,稳定性高,经历了多次阿里双11考验
RabbitMQ性能较好,社区活跃度高,数据量没有那么大,优先选择功能比较完备的RabbitMQ

kafka介绍

Kafka 是一个分布式流媒体平台,类似于消息队列或企业消息传递系统。kafka官网:http://kafka.apache.org/
在这里插入图片描述

kafka介绍-名词解释

在这里插入图片描述

  • producer:发布消息的对象称之为主题生产者(Kafka topic producer)

  • topic:Kafka将消息分门别类,每一类的消息称之为一个主题(Topic)

  • consumer:订阅消息并处理发布的消息的对象称之为主题消费者(consumers)

  • broker:已发布的消息保存在一组服务器中,称之为Kafka集群。集群中的每一个服务器都是一个代理(Broker)。 消费者可以订阅一个或多个主题(topic),并从Broker拉数据,从而消费这些已发布的消息。

kafka安装配置

Kafka对于zookeeper是强依赖,保存kafka相关的节点数据,所以安装Kafka之前必须先安装zookeeper

  • Docker安装zookeeper

下载镜像:

docker pull zookeeper:3.4.14

创建容器

docker run -d --name zookeeper -p 2181:2181 zookeeper:3.4.14
  • Docker安装kafka

下载镜像:

docker pull wurstmeister/kafka:2.12-2.3.1

创建容器

docker run -d --name kafka \
--env KAFKA_ADVERTISED_HOST_NAME=192.168.200.130 \
--env KAFKA_ZOOKEEPER_CONNECT=192.168.200.130:2181 \
--env KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://192.168.200.130:9092 \
--env KAFKA_LISTENERS=PLAINTEXT://0.0.0.0:9092 \
--env KAFKA_HEAP_OPTS="-Xmx256M -Xms256M" \
--net=host wurstmeister/kafka:2.12-2.3.1

kafka入门

在这里插入图片描述

  • 生产者发送消息,多个消费者只能有一个消费者接收到消息
  • 生产者发送消息,多个消费者都可以接收到消息

(1)创建kafka-demo项目,导入依赖

<dependency>
    <groupId>org.apache.kafka</groupId>
    <artifactId>kafka-clients</artifactId>
</dependency>

(2)生产者发送消息

package com.heima.kafka.sample;

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;

import java.util.Properties;

/**
 * 生产者
 */
public class ProducerQuickStart {

    public static void main(String[] args) {
        //1.kafka的配置信息
        Properties properties = new Properties();
        //kafka的连接地址
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.200.130:9092");
        //发送失败,失败的重试次数
        properties.put(ProducerConfig.RETRIES_CONFIG,5);
        //消息key的序列化器
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");
        //消息value的序列化器
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");

        //2.生产者对象
        KafkaProducer<String,String> producer = new KafkaProducer<String, String>(properties);

        //封装发送的消息
        ProducerRecord<String,String> record = new ProducerRecord<String, String>("itheima-topic","100001","hello kafka");

        //3.发送消息
        producer.send(record);

        //4.关闭消息通道,必须关闭,否则消息发送不成功
        producer.close();
    }

}

(3)消费者接收消息

package com.heima.kafka.sample;

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;

import java.time.Duration;
import java.util.Collections;
import java.util.Properties;

/**
 * 消费者
 */
public class ConsumerQuickStart {

    public static void main(String[] args) {
        //1.添加kafka的配置信息
        Properties properties = new Properties();
        //kafka的连接地址
        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.200.130:9092");
        //消费者组
        properties.put(ConsumerConfig.GROUP_ID_CONFIG, "group2");
        //消息的反序列化器
        properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");
        properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");

        //2.消费者对象
        KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(properties);

        //3.订阅主题
        consumer.subscribe(Collections.singletonList("itheima-topic"));

        //当前线程一直处于监听状态
        while (true) {
            //4.获取消息
            ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofMillis(1000));
            for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
                System.out.println(consumerRecord.key());
                System.out.println(consumerRecord.value());
            }
        }

    }

}

总结

  • 生产者发送消息,多个消费者订阅同一个主题,只能有一个消费者收到消息(一对一)
  • 生产者发送消息,多个消费者订阅同一个主题,所有消费者都能收到消息(一对多)

kafka高可用设计

集群

在这里插入图片描述

  • Kafka 的服务器端由被称为 Broker 的服务进程构成,即一个 Kafka 集群由多个 Broker 组成

  • 这样如果集群中某一台机器宕机,其他机器上的 Broker 也依然能够对外提供服务。这其实就是 Kafka 提供高可用的手段之一

备份机制(Replication)

在这里插入图片描述

Kafka 中消息的备份又叫做 副本(Replica)

Kafka 定义了两类副本:

  • 领导者副本(Leader Replica)

  • 追随者副本(Follower Replica)

同步方式

在这里插入图片描述

ISR(in-sync replica)需要同步复制保存的follower

如果leader失效后,需要选出新的leader,选举的原则如下:

第一:选举时优先从ISR中选定,因为这个列表中follower的数据是与leader同步的

第二:如果ISR列表中的follower都不行了,就只能从其他follower中选取

极端情况,就是所有副本都失效了,这时有两种方案

第一:等待ISR中的一个活过来,选为Leader,数据可靠,但活过来的时间不确定

第二:选择第一个活过来的Replication,不一定是ISR中的,选为leader,以最快速度恢复可用性,但数据不一定完整

kafka生产者详解

发送类型

  • 同步发送

    使用send()方法发送,它会返回一个Future对象,调用get()方法进行等待,就可以知道消息是否发送成功

RecordMetadata recordMetadata = producer.send(kvProducerRecord).get();
System.out.println(recordMetadata.offset());
  • 异步发送

    调用send()方法,并指定一个回调函数,服务器在返回响应时调用函数

//异步消息发送
producer.send(kvProducerRecord, new Callback() {
    @Override
    public void onCompletion(RecordMetadata recordMetadata, Exception e) {
        if(e != null){
            System.out.println("记录异常信息到日志表中");
        }
        System.out.println(recordMetadata.offset());
    }
});

参数详解

  • ack

在这里插入图片描述

代码的配置方式:

//ack配置  消息确认机制
prop.put(ProducerConfig.ACKS_CONFIG,"all");

参数的选择说明

确认机制说明
acks=0生产者在成功写入消息之前不会等待任何来自服务器的响应,消息有丢失的风险,但是速度最快
acks=1(默认值)只要集群首领节点收到消息,生产者就会收到一个来自服务器的成功响应
acks=all只有当所有参与赋值的节点全部收到消息时,生产者才会收到一个来自服务器的成功响应
  • retries

在这里插入图片描述

生产者从服务器收到的错误有可能是临时性错误,在这种情况下,retries参数的值决定了生产者可以重发消息的次数,如果达到这个次数,生产者会放弃重试返回错误,默认情况下,生产者会在每次重试之间等待100ms

代码中配置方式:

//重试次数
prop.put(ProducerConfig.RETRIES_CONFIG,10);
  • 消息压缩

默认情况下, 消息发送时不会被压缩。

代码中配置方式:

//数据压缩
prop.put(ProducerConfig.COMPRESSION_TYPE_CONFIG,"lz4");
压缩算法说明
snappy占用较少的 CPU, 却能提供较好的性能和相当可观的压缩比, 如果看重性能和网络带宽,建议采用
lz4占用较少的 CPU, 压缩和解压缩速度较快,压缩比也很客观
gzip占用较多的 CPU,但会提供更高的压缩比,网络带宽有限,可以使用这种算法

使用压缩可以降低网络传输开销和存储开销,而这往往是向 Kafka 发送消息的瓶颈所在。

kafka消费者详解

消费者组

在这里插入图片描述

  • 消费者组(Consumer Group) :指的就是由一个或多个消费者组成的群体

  • 一个发布在Topic上消息被分发给此消费者组中的一个消费者

    • 所有的消费者都在一个组中,那么这就变成了queue模型

    • 所有的消费者都在不同的组中,那么就完全变成了发布-订阅模型

消息有序性

应用场景:

  • 即时消息中的单对单聊天和群聊,保证发送方消息发送顺序与接收方的顺序一致

  • 充值转账两个渠道在同一个时间进行余额变更,短信通知必须要有顺序

在这里插入图片描述

topic分区中消息只能由消费者组中的唯一一个消费者处理,所以消息肯定是按照先后顺序进行处理的。但是它也仅仅是保证Topic的一个分区顺序处理,不能保证跨分区的消息先后处理顺序。 所以,如果你想要顺序的处理Topic的所有消息,那就只提供一个分区。

提交和偏移量

kafka不会像其他JMS队列那样需要得到消费者的确认,消费者可以使用kafka来追踪消息在分区的位置(偏移量)

消费者会往一个叫做_consumer_offset的特殊主题发送消息,消息里包含了每个分区的偏移量。如果消费者发生崩溃或有新的消费者加入群组,就会触发再均衡

在这里插入图片描述

正常的情况

在这里插入图片描述

如果消费者2挂掉以后,会发生再均衡,消费者2负责的分区会被其他消费者进行消费

再均衡后不可避免会出现一些问题

问题一:

在这里插入图片描述

如果提交偏移量小于客户端处理的最后一个消息的偏移量,那么处于两个偏移量之间的消息就会被重复处理。

问题二:

在这里插入图片描述

如果提交的偏移量大于客户端的最后一个消息的偏移量,那么处于两个偏移量之间的消息将会丢失。

如果想要解决这些问题,还要知道目前kafka提交偏移量的方式:

提交偏移量的方式有两种,分别是自动提交偏移量和手动提交

  • 自动提交偏移量

当enable.auto.commit被设置为true,提交方式就是让消费者自动提交偏移量,每隔5秒消费者会自动把从poll()方法接收的最大偏移量提交上去

  • 手动提交 ,当enable.auto.commit被设置为false可以有以下三种提交方式

    • 提交当前偏移量(同步提交)

    • 异步提交

    • 同步和异步组合提交

1.提交当前偏移量(同步提交)

enable.auto.commit设置为false,让应用程序决定何时提交偏移量。使用commitSync()提交偏移量,commitSync()将会提交poll返回的最新的偏移量,所以在处理完所有记录后要确保调用了commitSync()方法。否则还是会有消息丢失的风险。

只要没有发生不可恢复的错误,commitSync()方法会一直尝试直至提交成功,如果提交失败也可以记录到错误日志里。

while (true){
    ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));
    for (ConsumerRecord<String, String> record : records) {
        System.out.println(record.value());
        System.out.println(record.key());
        try {
            consumer.commitSync();//同步提交当前最新的偏移量
        }catch (CommitFailedException e){
            System.out.println("记录提交失败的异常:"+e);
        }

    }
}

2.异步提交

手动提交有一个缺点,那就是当发起提交调用时应用会阻塞。当然我们可以减少手动提交的频率,但这个会增加消息重复的概率(和自动提交一样)。另外一个解决办法是,使用异步提交的API。

while (true){
    ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));
    for (ConsumerRecord<String, String> record : records) {
        System.out.println(record.value());
        System.out.println(record.key());
    }
    consumer.commitAsync(new OffsetCommitCallback() {
        @Override
        public void onComplete(Map<TopicPartition, OffsetAndMetadata> map, Exception e) {
            if(e!=null){
                System.out.println("记录错误的提交偏移量:"+ map+",异常信息"+e);
            }
        }
    });
}

3.同步和异步组合提交

异步提交也有个缺点,那就是如果服务器返回提交失败,异步提交不会进行重试。相比较起来,同步提交会进行重试直到成功或者最后抛出异常给应用。异步提交没有实现重试是因为,如果同时存在多个异步提交,进行重试可能会导致位移覆盖。

举个例子,假如我们发起了一个异步提交commitA,此时的提交位移为2000,随后又发起了一个异步提交commitB且位移为3000;commitA提交失败但commitB提交成功,此时commitA进行重试并成功的话,会将实际上将已经提交的位移从3000回滚到2000,导致消息重复消费。

try {
    while (true){
        ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));
        for (ConsumerRecord<String, String> record : records) {
            System.out.println(record.value());
            System.out.println(record.key());
        }
        consumer.commitAsync();
    }
}catch (Exception e){+
    e.printStackTrace();
    System.out.println("记录错误信息:"+e);
}finally {
    try {
        consumer.commitSync();
    }finally {
        consumer.close();
    }
}

springboot集成kafka

入门

1.导入spring-kafka依赖信息

<dependencies>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    <!-- kafkfa -->
    <dependency>
        <groupId>org.springframework.kafka</groupId>
        <artifactId>spring-kafka</artifactId>
        <exclusions>
            <exclusion>
                <groupId>org.apache.kafka</groupId>
                <artifactId>kafka-clients</artifactId>
            </exclusion>
        </exclusions>
    </dependency>
    <dependency>
        <groupId>org.apache.kafka</groupId>
        <artifactId>kafka-clients</artifactId>
    </dependency>
    <dependency>
        <groupId>com.alibaba</groupId>
        <artifactId>fastjson</artifactId>
    </dependency>
</dependencies>

2.在resources下创建文件application.yml

server:
  port: 9991
spring:
  application:
    name: kafka-demo
  kafka:
    bootstrap-servers: 192.168.200.130:9092
    producer:
      retries: 10
      key-serializer: org.apache.kafka.common.serialization.StringSerializer
      value-serializer: org.apache.kafka.common.serialization.StringSerializer
    consumer:
      group-id: ${spring.application.name}-test
      key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      value-deserializer: org.apache.kafka.common.serialization.StringDeserializer

3.消息生产者

package com.heima.kafka.controller;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class HelloController {

    @Autowired
    private KafkaTemplate<String,String> kafkaTemplate;

    @GetMapping("/hello")
    public String hello(){
        kafkaTemplate.send("itcast-topic","黑马程序员");
        return "ok";
    }
}

4.消息消费者

package com.heima.kafka.listener;

import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;
import org.springframework.util.StringUtils;

@Component
public class HelloListener {

    @KafkaListener(topics = "itcast-topic")
    public void onMessage(String message){
        if(!StringUtils.isEmpty(message)){
            System.out.println(message);
        }

    }
}

传递消息为对象

目前springboot整合后的kafka,因为序列化器是StringSerializer,这个时候如果需要传递对象可以有两种方式

方式一:可以自定义序列化器,对象类型众多,这种方式通用性不强,本章节不介绍

方式二:可以把要传递的对象进行转json字符串,接收消息后再转为对象即可,本项目采用这种方式

  • 发送消息
@GetMapping("/hello")
public String hello(){
    User user = new User();
    user.setUsername("xiaowang");
    user.setAge(18);

    kafkaTemplate.send("user-topic", JSON.toJSONString(user));

    return "ok";
}
  • 接收消息
package com.heima.kafka.listener;

import com.alibaba.fastjson.JSON;
import com.heima.kafka.pojo.User;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;
import org.springframework.util.StringUtils;

@Component
public class HelloListener {

    @KafkaListener(topics = "user-topic")
    public void onMessage(String message){
        if(!StringUtils.isEmpty(message)){
            User user = JSON.parseObject(message, User.class);
            System.out.println(user);
        }

    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/692407.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

大模型显存占用分析

大模型显存占用由以下几部分组成&#xff1a; 1. 模型本身参数&#xff0c;假设是1个单位 2.模型的梯度&#xff0c;同样也是一个单位 3.优化器参数&#xff08;占大头&#xff09;&#xff1a;以Adam参数为例&#xff0c;还需要在显卡中额外存储m和v两个参数&#xff0c;因…

File学习

1.构造方法 1.File(String pathname) 根据路径名创建抽象File对象 //1. 通过路径进行创建 pathname是字符串格式的路径名public File(String pathname) {if (pathname null) {throw new NullPointerException();}// 和系统交互 获取最近的File文件目录文件this.path fs.nor…

10分钟快速入门UI自动化-Puppeteer

目录 先简单介绍一下&#xff1a; 工欲善其事必先利其器&#xff0c;首先把所需要的工具装好 1. 安装node 2. 安装npm &#xff08;node安装时会自动安装npm,如果已安装node&#xff0c;此步请忽略) 3. 安装cnpm (npm下载包失败&#xff0c;选择cnpm安装) 4. 新建一个nod…

【ICer必备 4】IC封装设计流程

【ICer必备 3】模拟IC设计全流程 ------------------------------------------------文末附往期文章链接--------------------------------------前言一、IC封装设计过程二、常见IC封装类型三、常见封装特点四、封装设计常用软件五、EM仿真常用EDA&#xff08;1&#xff09;HFS…

apt命令概述,apt命令在Ubuntu16.04安装openjdk-7-jdk

apt是一条linux命令&#xff0c;适用于deb包管理式操作系统&#xff0c;主要用于自动从互联网的软件仓库中搜索、安装、升级、卸载软件或操作系统。deb包是Debian 软件包格式的文件扩展名。 翻译过来就是&#xff1a; apt是一个命令行包管理器&#xff0c;为 搜索和管理以及查询…

解决MySQL删除数据后自增主键ID不连贯问题

首先我们需要取消id的自增和主键 下列代码以water表中的id列为例 alter table watermodify id int not null;alter table waterdrop primary key;然后重新生成id列 set i0; update water set water.id(i:i1);下一步就是重新设置为主键自增 alter table wateradd primary key…

【JSP技术】web杂谈(2)之JSP是什么?

涉及知识点 什么是JSP&#xff0c;JSP的特点&#xff0c;JSP的未来趋势&#xff0c;JSP的应用范例。深入了解JSP技术。 原创于&#xff1a;CSDN博主-《拄杖盲学轻声码》&#xff0c;更多内容可去其主页关注下哈&#xff0c;不胜感激 文章目录 涉及知识点前言1.什么是JSP2&…

Webpack和Vite简单使用

目录 WebPack 介绍 基础使用 初始化使用 webpack.config.js文件 webpack开发服务器 vite 介绍 使用 使用vite创建vue框架项目 WebPack 介绍 当我们习惯了在node中编写代码的方式后&#xff0c;在回到前端编写html、css、js这些东西会感觉到各种的不便。比如: 不能放心…

九、ElasticSearch 运维 -集群维度

1. 查看集群健康 用于简单的判断集群的健康状态&#xff0c;集群内的分片的分配迁移情况。 GET _cluster/health-------------------------Respond----------------------------- {"cluster_name" : "test-jie","status" : "green",…

使用数组的方式计算---任意给出一个年,月,日,判断出这是一年的第几天

任意给出一个年&#xff0c;月&#xff0c;日&#xff0c;判断出这是一年的第几天&#xff1b; 闰年算法&#xff1a;能被4整除且不能被100整除&#xff0c;或者能被400整除 如2015年 5 10 是这一年的第131天 使用数组的方式计算&#xff0c;将每个月的天数放在一个数…

蜂网互联 企业级路由器v4.31 密码泄露漏洞

漏洞描述 蜂网互联企业级路由器v4.31存在接口未授权访问&#xff0c;导致攻击者可以是通过此漏洞得到路由器账号密码接管路由器 漏洞影响 蜂网互联企业级路由器v4.31 网络测绘 app“蜂网互联-互联企业级路由器” 漏洞复现 payload http://ip:port/action/usermanager.ht…

c++ 杂食记

1. inline关键字 在C中&#xff0c;inline关键字用于指定函数应该被内联。 当一个函数被内联时&#xff0c;它的代码将直接插入到调用该函数的代码中&#xff0c;而不是作为单独的函数调用 这可以提高程序的性能&#xff0c;因为它减少了函数调用的开销&#xff0c;并提高了数…

计算机网络那些事之 MTU 篇

哈喽大家好&#xff0c;我是咸鱼 今天我们来聊聊计算机网络中的 MTU &#xff08;Maximum Transmission Unit&#xff09; 什么是 MTU ? MTU&#xff08;Maximum Transmission Unit&#xff09;是指数据链路层中的最大传输单元 通俗点来讲&#xff0c;MTU 是指数据链路层能…

基于workerman 即时通讯聊天(uniapp + pc)

laychat workerman 实现 webIM即时通讯系统 下载 laychat-master.zip https://github.com/hszyh/laychat 实现了功能: 1、通过snake后台实现对聊天成员的增删改查&#xff0c;动态推送给在线的用户 2、实现了群组的查找 3、实现了创建我的群组,删除我的群组,添加群组成员…

性能测试工具——LoadRunner内部介绍以及常见问题

目录 Tools Recording Options General Options 注释脚本 Review log Runtime-Settings General Network Browser Internet Protocol HTTPS证书 总结&#xff1a; Tools Recording Options 接下来我们挨个看一下里面的东东以及区别 General&#xff08;通常的&am…

【Python编程】将格式为ppm和pgm的图片批量转换为png或jpg格式的图片

前序 如果文件夹中有异常图片&#xff0c;则可以使用以下代码从而跳过这些异常图片而不影响转换代码的运行。例如本人在解压时中断而导致的图片异常问题&#xff0c;图片示例如下&#xff1a; from PIL import ImageFile ImageFile.LOAD_TRUNCATED_IMAGES True正文 导入用…

Golang学习日志 ━━ gin-vue-admin插件开发记录

gin-vue-admin是一套国人用golang开发的后台管理系统&#xff0c;本文记录插件开发内容。 官网&#xff1a;https://www.gin-vue-admin.com/ 学习视频&#xff1a;https://www.bilibili.com/video/BV1kv4y1g7nT/ 插件目录 后端位置&#xff1a;\server\plugin\ 前端位置&#…

信号与系统复习笔记——采样与通讯系统

信号与系统复习笔记——采样与通讯系统 采样定理 冲激串采样函数可表示为&#xff1a; p ( t ) ∑ n − ∞ ∞ δ ( t − n T ) p(t) \sum_{n-\infty}^{\infty} \delta(t - nT) p(t)n−∞∑∞​δ(t−nT) 周期 T T T 称为采样周期&#xff0c;而 ω s 1 T \omega_s …

7月29-31日·相约上海丨上海国际智能遮阳与建筑节能展览会即将举办

上海国际智能遮阳与建筑节能展览会&#xff08;ISSE&#xff09;即将盛大召开。这个七月&#xff0c;期待您的参与&#xff0c;一同共聚盛会&#xff01; 1、关于展会 国内建筑遮阳市场尚在快速发展期&#xff0c;随着社会经济的发展以及建筑节能环保概念的不断深入&#xff…

开发的功能不都是经过上线测试,为什么上线后还会那么多 Bug ?

你是否也经过这样的灵魂拷问&#xff1a;「开发的功能不都是经过上线测试的吗&#xff1f;为什么上线后还会那么多 Bug &#xff1f;」。 大家明明都很努力&#xff0c;为什么「输出」的结果没有更进一步&#xff1f;今天我们就水一水这个「狗血」话题&#xff0c;究竟是谁个锅…