LeetCode 双周赛 107(2023/06/24)滑动窗口与离散化

news2024/11/24 14:58:30

本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 和 [BaguTree Pro] 知识星球提问。

  • 往期回顾:LeetCode 单周赛第 348 场 · 数位 DP 模版学会了吗?

T1. 最大字符串配对数目(Easy)

  • 标签:散列表

T2. 构造最长的新字符串(Medium)

  • 标签:模拟

T3. 字符串连接删减字母(Medium)

  • 标签:状态 DP

T4. 统计没有收到请求的服务器数目(Medium)

  • 标签:排序、滑动窗口、离散化


T1. 最大字符串配对数目(Easy)

https://leetcode.cn/problems/find-maximum-number-of-string-pairs/

题解(散列表)

题目说明所有字符串不相同,因此我们可以枚举每个字符串,检查其反转是否存在,模板类似于两数之和;

  • 扩展:如果字符串存在重复,可以将配对的字符分组再按两两配对计算;
  • 扩展:如果字符串长度很长会存在散列冲突,可以调整 U 为较大素数。
class Solution {
    fun maximumNumberOfStringPairs(words: Array<String>): Int {
        val U = 26
        val set = HashSet<Int>()
        var ret = 0
        for (word in words) {
            if (word.length != 2) continue
            val key = (word[0] - 'a') * U + (word[1] - 'a')
            val reversedKey = (word[1] - 'a') * U + (word[0] - 'a')
            if (set.contains(reversedKey)) ret ++
            set.add(key)
        }
        return ret
    }
}

复杂度分析:

  • 时间复杂度: O ( L ) O(L) O(L) 需要访问每个单词的每个字符;
  • 空间复杂度: O ( n ) O(n) O(n) 散列表空间。

T2. 构造最长的新字符串(Medium)

https://leetcode.cn/problems/construct-the-longest-new-string/

题解(模拟)

根据题意分析,我们总可以将 ABAB…ABAB 置于结果中间,再将 AA 或 BB 置于两边。此时所有 AB 都可选,而 AA BB 最多只能选择较少者 + 1,分类讨论即可:

class Solution {
    fun longestString(x: Int, y: Int, z: Int): Int {
        return if (x == y) {
            (x + y + z) * 2
        } else {
            (Math.min(x, y) * 2 + 1 + z) * 2
        }
    }
}

复杂度分析:

  • 时间复杂度: O ( 1 ) O(1) O(1)
  • 空间复杂度: O ( 1 ) O(1) O(1)

T3. 字符串连接删减字母(Medium)

https://leetcode.cn/problems/decremental-string-concatenation/

题解(状态 DP)

  • 对于每个字符串 [i],有拼接到前方或拼接到后方两种方案;
  • 当考虑 join(i, i + 1) 时,我们只需要关心两个字符串的首尾 4 个字符,对于中间的字符是不关心的。因此在遍历到字符串 [i] 时,我们检查以 [i - 1] 为结尾的子问题的可能方案,并维护以 [i] 为结尾的子问题的所有方案。
class Solution {
    fun minimizeConcatenatedLength(words: Array<String>): Int {
        val INF = 0x3F3F3F3F
        val n = words.size
        val dp = Array(n) { Array(26) { IntArray(26) { INF } }}
        // 起始状态
        dp[0][words[0][0] - 'a'][words[0][words[0].length - 1] - 'a'] = words[0].length
        for (i in 1 until n) {
            val word = words[i]
            val x = word[0] - 'a'
            val y = word[word.length - 1] - 'a'
            // 枚举子问题状态
            for (j in 0 until 26) {
                for (k in 0 until 26) {
                    // 拼接到前方
                    if (y == j) {
                        dp[i][x][k] = Math.min(dp[i][x][k], dp[i - 1][j][k] + word.length - 1)
                    } else {
                        dp[i][x][k] = Math.min(dp[i][x][k], dp[i - 1][j][k] + word.length)
                    }
                    // 拼接到后方
                    if (x == k) {
                        dp[i][j][y] = Math.min(dp[i][j][y], dp[i - 1][j][k] + word.length - 1)
                    } else {
                        dp[i][j][y] = Math.min(dp[i][j][y], dp[i - 1][j][k] + word.length)
                    }
                }
            }
        }
        var ret = INF
        for (j in 0 until 26) {
            for (k in 0 until 26) {
                ret = Math.min(ret, dp[n - 1][j][k])
            }
        }
        return ret
    }
}

复杂度分析:

  • 时间复杂度: O ( n ⋅ C 2 ) O(n·C^2) O(nC2) C= 26
  • 空间复杂度: O ( n ⋅ C 2 ) O(n·C^2) O(nC2)

T4. 统计没有收到请求的服务器数目(Medium)

https://leetcode.cn/problems/count-zero-request-servers/

题解一(暴力)

线性扫描日志,并线性扫描查询列表,将日志记录投递到对应的查询中,同时使用散列表对相同服务器去重。

class Solution {
    fun countServers(n: Int, logs: Array<IntArray>, x: Int, queries: IntArray): IntArray {
        val m = queries.size
        val sets = Array(m) { HashSet<Int>() }
        val ret = IntArray(m)
        // 暴力
        for (log in logs) {
            for ((i, query) in queries.withIndex()) {
                if (log[1] in query - x .. query) {
                    sets[i].add(log[0])
                }
            }
        }
        // 输出
        for (i in 0 until m) {
            ret[i] = n - sets[i].size
        }
        return ret
    }
}

复杂度分析:

  • 时间复杂度: O ( n m ) O(nm) O(nm) 超出时间限制;
  • 空间复杂度: O ( n m ) O(nm) O(nm) 散列表空间,最坏情况下每个查询中包含所有服务器记录。

题解二(排序 + 滑动窗口 + 离散化)

需要注意题目中的单调性,对于日志时间 log_i < log_j,当 log_i 时间晚于 query_k 时,那么日志时间更晚的 log_k 必然无法投递到 query_k 中,而暴力算法中没有利用单调性质。因此,我们先对 log 日志列表和 queries 查询列表按时间顺序排序,再来使用滑动窗口来维护每个查询中覆盖的日志信息。

class Solution {
    fun countServers(n: Int, logs: Array<IntArray>, x: Int, queries: IntArray): IntArray {
        val l = logs.size
        val m = queries.size
        val ret = IntArray(m)
        // 查询索引
        val indexs = Array(m) { it }
        // 排序
        Arrays.sort(logs) { i1, i2 ->
            i1[1] - i2[1]
        }
        Arrays.sort(indexs) { i1, i2 -> 
            queries[i1] - queries[i2]
        }
        // 滑动窗口 + 离散化
        var i = 0
        var j = 0
        val cnts = HashMap<Int, Int>()
        for (id in indexs) {
            val to = queries[id]
            if (to <= x) throw IllegalStateException()
            // 拓展右指针
            while (j < l && logs[j][1] <= to) {
                cnts[logs[j][0]] = cnts.getOrDefault(logs[j][0], 0) + 1
                j++
            }
            // 收缩左指针
            while (i < l && logs[i][1] <  to - x) {
                cnts[logs[i][0]] = cnts[logs[i][0]]!! - 1
                if (cnts[logs[i][0]]!! == 0) cnts.remove(logs[i][0])
                i++
            }
            ret[id] = n - cnts.size
        }
        return ret
    }
}

复杂度分析:

  • 时间复杂度: O ( m l g m + l l o g l + m + l ) O(mlgm + llogl + m + l) O(mlgm+llogl+m+l) 瓶颈在排序;
  • 空间复杂度: O ( m + n ) O(m + n) O(m+n) 查询索引数组空间 + 散列表空间。

往期回顾

  • LeetCode 单周赛第 348 场 · 数位 DP 模版学会了吗?
  • LeetCode 单周赛第 347 场 · 二维空间上的 LIS 最长递增子序列问题
  • LeetCode 双周赛第 104 场 · 流水的动态规划,铁打的结构化思考
  • LeetCode 双周赛第 103 场 · 区间求和的树状数组经典应用

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/685215.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

FlutterUnit 已上架 iOS,暗色模式全面支持

theme: cyanosis 一、FlutterUnit 的全平台支持 FlutterUnit 是我的一个开源项目&#xff0c;基于 Flutter 构建的一个 全平台 应用程序。现在很荣幸地宣布: FlutterUnit 已经上架 iOS 的 App Store &#xff0c;自此主流的几大平台均已提供体验。 项目地址: https://github.co…

Chrome Edge Firefox Safari 如何清除 DNS 缓存

Chrome Edge Firefox Safari 如何清除 DNS 缓存 如何清除浏览器的 DNS 缓存 (Chrome, Firefox, Safari) Chrome Chromium Edge Firefox Safari clear DNS Cache, flush DNS cache 请访问原文链接&#xff1a;https://sysin.org/blog/clear-browser-dns-cache/&#xff0c;查…

前端Vue仿京东天猫商品属性选择器自定义单选按钮

前端Vue仿京东天猫商品属性选择器自定义单选按钮&#xff0c; 下载完整代码请访问uni-app插件市场地址&#xff1a;https://ext.dcloud.net.cn/plugin?id13176 效果图如下&#xff1a; # cc-radioBtnBox #### 使用方法 使用方法 <!-- attrArr&#xff1a;属性数据 clic…

改进YOLOv5/YOLOv8:复现结合即插即用 | 高效多尺度注意力(EMA),模块成为YOLOv5改进的小帮手

高效多尺度注意力(EMA) 论文介绍简介EMA模块图像分类实验目标检测实验yolov5加入方法yolo注册yaml文件3563.pdf](https://arxiv.org/ftp/arxiv/papers/2305/2305.13563.pdf) 论文介绍 通道或空间的显著有效性 注意机制对产生更多可辨识的 特征表示的显著效果,在各种计算机视…

深度学习-数据增强与扩充

数据增强可以说是数据驱动下的深度学习必经之路,掌握数据,相当于掌握当下主流方向的自动驾驶的命脉,是人工智能不可或缺的资源。本文将介绍最新的利用大模型扩充数据的方式! 先看下变色效果: 左褐色背景图 为原图,右侧为处理后的图! ​ AI day也在自动标注数据方面,着重…

软件测试技术-期末理论知识复习速成

第一章 软件测试概述 什么是软件缺陷&#xff0c;发生软件缺陷的原因是什么&#xff1f; 答&#xff1a;软件缺陷指的是在软件开发过程中出现的错误、缺陷或故障&#xff0c;导致软件无法按照预期的功能运行或者产生错误的结果。 导致软件缺陷的原因可能有&#xff1a;&#…

AI提高软件外包开发效率

最近几年AI技术取得了很大的进步&#xff0c;在一些领域甚至有突破性的进展&#xff0c;虽然无法预测未来AI会如何影响到人们的生活&#xff0c;但可以确定的是AI会在方方面面影响到大家的生活方式&#xff0c;也许未来五年内就会有一个明显的变化。今天和大家分享AI如何提高软…

IPv6地址配置与验证实验

IPv6地址配置与验证实验 【实验目的】 启动IPv6功能。配置IPv6地址。验证配置。 【实验拓扑】 实验拓扑如下图所示。 实验拓扑 设备参数如表所示。 设备参数表 设备 接口 IPv6地址 子网掩码位数 默认网关 R1 S0/1/0 2000:f106:f208:12::1 64 N/A R2 S0/1/0 2…

【软考网络管理员】2023年软考网管初级常见知识考点(9)- 接入网技术

涉及知识点 接入网相关技术&#xff0c;XDSL 接入&#xff0c;HFC 接入&#xff0c; PON 接入&#xff0c;软考网络管理员常考知识点&#xff0c;软考网络管理员网络安全&#xff0c;网络管理员考点汇总。 原创于&#xff1a;CSDN博主-《拄杖盲学轻声码》&#xff0c;更多考点…

Spring源码:调度框架EnableSchedulingScheduled源码解析

目录 1.开启调度框架 2.ScheduledAnnotationBeanPostProcessor Bean后处理器分析 2.1 调度框架支持的Task类型 2.2 对Task进行调度执行 3.任务调度器 3.1 任务调度器获取 3.2 框架内提供的任务调度器 3.3 任务调度器执行逻辑 在实际项目开发中&#xff0c;有时会遇到定…

1、动手学深度学习——线性神经网络:线性回归的实现(从零实现+内置函数实现)

1、线性回归基本概念 回归&#xff08;regression&#xff09;是能为一个或多个自变量与因变量之间关系建模的一类方法。 在自然科学和社会科学领域&#xff0c;回归经常用来表示输入和输出之间的关系。 给定一个数据集&#xff0c;我们的目标是寻找模型的权重和偏置&#xf…

selenium测试框架快速搭建(UI自动化测试)

一、介绍 selenium目前主流的web自动化测试框架&#xff1b;支持多种编程语言Java、pythan、go、js等&#xff1b;selenium 提供一系列的api 供我们使用&#xff0c;因此在web测试时我们要点页面中的某一个按钮&#xff0c;那么我们只需要获取页面&#xff0c;然后根据…

【力扣刷题 | 第十五天】

目录 前言&#xff1a; ​​​​​​​63. 不同路径 II - 力扣&#xff08;LeetCode&#xff09; 343. 整数拆分 - 力扣&#xff08;LeetCode&#xff09; 总结&#xff1a; 前言&#xff1a; 本篇我们主要刷动态规划的题&#xff0c;解题还是严格按照我们在【夜深人静写算法…

Linux查看文件大小

1、Linux下查看文件和文件夹大小 当磁盘大小超过标准时会有报警提示&#xff0c;这时如果掌握df和du命令是非常明智的选择。 df可以查看一级文件夹大小、使用比例、档案系统及其挂入点&#xff0c;但对文件却无能为力。 du可以查看文件及文件夹大小。 两者配合使用&#xf…

UE中创建可脚本化编辑器工具(Scriptable Tools)

UE5.2中提供了可脚本化工具编辑模式&#xff0c;该模式下用户可以编写蓝图节点自定义界面操作模式下的逻辑&#xff0c;例如重写鼠标点击事件&#xff0c;制作自定义画刷等。 如果你不太了解UE编辑器工具&#xff0c;可以参考这篇文章&#xff1a; https://blog.csdn.net/gray…

chatgpt赋能python:Python编程计算一元二次方程——最简单的方法实现

Python编程计算一元二次方程——最简单的方法实现 前言 Python编程语言是一种优秀的开源编程语言&#xff0c;具有易于学习、代码简洁明了、易于维护等优点&#xff0c;因此在近年来得到了广泛的应用。 本文将介绍如何使用Python编写一个简单而又实用的计算一元二次方程的程…

华为认证哪个方向考的人多?考试费用是多少?

从学校毕业后&#xff0c;就要走上社会了&#xff0c;很多人就要面临就业困难&#xff0c;对于信息通信行业的人来说&#xff0c;考一份技术证书&#xff0c;是可以帮助自己提高职业竞争力、获得好工作的方法。华为云认证是华为云旗下的认证&#xff0c;其设立时间长&#xff0…

多线程爬虫实战-思路

前言 最近有很多小伙伴找到我&#xff0c;说想要王者荣耀所有英雄皮肤的照片&#xff0c;但是又不想自己去下载&#xff0c;正好借这个机会给大家讲解一下多线程的爬虫实战 由于线程爬虫会对任何服务器都有一定的影响&#xff0c;本文仅供学习交流使用&#xff0c;切勿拿去做什…

PID原理及仿真程序套用(matlab仿真与图像处理系列第3期)

PID控制器模拟器 概述: PID控制器是一种常用的反馈控制算法,用于实现系统输出与期望值之间的精确调节。PID控制器模拟器是一个工具,可以模拟和测试PID控制器的性能,并对系统进行调整和优化。 输入参数: setpoint:期望值或目标值process_variable:过程变量或实际测量…

go中map哈希表使用总结

作者&#xff1a;程序员CKeen 博客&#xff1a;http://ckeen.cn​​​​​​​ 长期坚持做有价值的事&#xff01;积累沉淀&#xff0c;持续成长&#xff0c;升维思考&#xff01;希望把编码做为长期爱好&#x1f604; 在 Go 语言中&#xff0c;map是一种基于哈希表实现的数据结…