【Java|多线程与高并发】设计模式-单例模式(饿汉式,懒汉式和静态内部类)

news2025/2/27 1:53:19

文章目录

  • 1. 前言
  • 2. 单例模式
  • 3. 如何保证一个类只有一个实例
  • 4. 饿汉式单例模式
  • 5. 懒汉式单例模式
  • 6. 实现线程安全的懒汉式单例
  • 7. 静态内部类实现单例模式
  • 8. 总结

1. 前言

设计模式是一种在软件开发中常用的解决复杂问题的方法论。它提供了一套经过验证的解决方案,用于解决特定类型问题的设计和实现。设计模式可以帮助开发人员提高代码的可重用性、可维护性和可扩展性。

设计模式有很多,本文主要介绍单例模式.
在这里插入图片描述

2. 单例模式

单例模式是一种创建型设计模式,它保证一个类只有一个实例,并提供一个全局访问点来获取该实例。

3. 如何保证一个类只有一个实例

在Java中,通常使用static关键字来保证 类只有唯一的实例.

在单例模式中,类的构造函数被私有化,以防止外部代码直接创建实例。然后,通过一个静态方法或静态变量来获取类的唯一实例。

如果实例不存在,则创建一个新的实例并返回;如果实例已存在,则直接返回该实例。

而是实现上述的方法有很多,下面介绍三种常见的实现模式:

  1. 饿汉式
  2. 懒汉式
  3. 静态内部类

4. 饿汉式单例模式

饿汉式单例: 在类加载时就创建实例,保证在任何情况下都有一个实例可用。

代码示例:

public class Singleton {
    private static final Singleton instance = new Singleton();
    
    private Singleton() {
		// 私有化构造函数
    }

    public static Singleton getInstance() {
        return instance;
    }
}

代码分析:
在这里插入图片描述

私有化构造函数使得外部无法直接创建实例,如果其它线程想到得到Singleton类的实例,只能通过Singleton类提供的getInstance()方法得到.

5. 懒汉式单例模式

懒汉式单例: 延迟加载实例,只有在需要时才创建实例。

代码示例:

public class SingletonLazy {
    private static SingletonLazy instance = null;
    private SingletonLazy(){
		// 私有化构造方法
    }
    public static SingletonLazy getInstance(){
        if (instance == null){
            instance = new SingletonLazy();
        }
        return instance;
    }
}

代码分析:
在这里插入图片描述

如果后续代码中没有调用getInstance方法,那么就把创建实例那一步给省下来了.

上述代码中,那种实现单例模式的方式是线程安全的?

答案是 饿汉模式

饿汉模式并没有涉及到修改,而懒汉模式即涉及到读有涉及到修改.那么在多线程模式中就不安全了.

设想一个场景, 如果在懒汉模式下,两个线程同时去调用getInstance方法,如果一个线程读到的instance为null,并给instance进行实例的创建,而另外一个线程读到的instance还是为null,又给instance创建了一次实例.那么instance就被创建多次了

6. 实现线程安全的懒汉式单例

既然懒汉模式在多线程的环境下不安全,那么如果保证懒汉模式在多线程的环境下安全呢?

既然涉及到多线程,就离不开"锁",也就是 synchronized

示例:
在这里插入图片描述
通过加锁的方式,解决了线程安全问题,但是又带来了新的问题.

懒汉式单例只是第一次调用getInstance方法时才会发生线程不安全问题.一旦创建好了,线程就安全了.

但上述通过加锁的方式,会导致线程已经安全时仍然时需要加锁,有些多此一举了. 且加锁开销比较大,影响效率.

那么如果保证线程安全时不加锁呢?

实例没有创建前,线程不安全.实例创建之后,线程安全. 那么就可以在加锁操作前在进行一次判断.

public class SingletonLazy {
    private static SingletonLazy instance = null;
    private SingletonLazy(){

    }
    public static SingletonLazy getInstance(){
        if (instance == null) {
            synchronized (SingletonLazy.class) {
                if (instance == null){
                    instance = new SingletonLazy();
                }
            }
        }
        return instance;
    }
}

代码分析:
在这里插入图片描述

使用双重if保证只创建一次实例以及保证在线程安全时不进行加锁. 这里要重点进行理解.

但仔细思考上述代码仍然有一个问题.

假如两个线程同时调用getInstance方法,第一个线程拿到锁,进入第二层if,开始进行new对象.

这里的new操作可以分为:

  1. 申请内存,得到内存首地址
  2. 调用构造方法,来初始化实例
  3. 把内存的首地址赋值给instance引用

上述的new操作,编译器可能会进行"指令重排序". 就可能会导致无序写入的问题

上述步骤中的2和3,在单线程环境下是可以调换顺序的,并不会影响结果.

但在多线程环境中就会导致无序写入问题:

  1. 线程A执行到instance = new Singleton();这行代码时,由于指令重排序,可能会先执行分配内存空间、初始化实例对象、将instance指向内存空间这三个操作的任意组合,而不是按照代码顺序执行。
  2. 假设线程A执行完了分配内存空间和初始化实例对象的操作,但还没有将instance指向内存空间,此时线程B执行到第一个instance == null的判断,结果为false,就会直接返回instance,但此时instance并没有正确初始化。

为了解决上述问题,就可以使用volatile关键字. 它可以禁止指令重排序优化,保证instance的写操作先于读操作,从而避免其他线程在没有正确初始化实例时获取到instance。

public class SingletonLazy {
    private static volatile SingletonLazy instance = null;
    private SingletonLazy(){

    }
    public static SingletonLazy getInstance(){
        if (instance == null) {
            synchronized (SingletonLazy.class) {
                if (instance == null){
                    instance = new SingletonLazy();
                }
            }
        }
        return instance;
    }
}

上述就是一个在多线程环境下完全安全的懒汉式单例模式的写法.

7. 静态内部类实现单例模式

除了上述方式,使用静态内部类也能实现单例模式.

该方式利用静态内部类的特性来实现懒加载和线程安全。

代码示例:

public class Singleton {
    private Singleton() {
        // 私有化构造函数
    }
    
    private static class SingletonHolder {
        private static final Singleton instance = new Singleton();
    }
    
    public static Singleton getInstance() {
        return SingletonHolder.instance;
    }
}

静态内部类SingletonHolder持有Singleton的唯一实例,当第一次调用getInstance方法时,才会触发SingletonHolder的初始化,从而创建实例。

由于静态内部类的初始化是线程安全的,因此可以确保在多线程环境下只有一个实例被创建。

8. 总结

本文主要介绍了饿汉式,懒汉式和静态内部类三种实现单例模式的方式,其中 懒汉式单例 很重要,要着重理解双重if的含义.

需要注意的是,以上方式都可以在多线程环境下保证单例的正确创建,但在特殊情况下,如使用反射或序列化/反序列化等机制,仍然可能破坏单例的唯一性。

在实际应用中,需要根据具体场景和需求选择合适的单例模式实现方式。

在这里插入图片描述

感谢你的观看!希望这篇文章能帮到你!
专栏: 《从零开始的Java学习之旅》在不断更新中,欢迎订阅!
“愿与君共勉,携手共进!”
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/679223.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

通信原理概述

通信是指人们通过某种媒介进行信息传递。通过某种介质或通道,将信息从一个地点传递到另一个地点的过程。通信可以是人与人之间的交流,也可以是设备、系统或网络之间的数据传输。 通信信号的分类方法: 1)模拟信号和数字信号(从信号…

数字游戏:如何统计能整除数字的位数?

本篇博客会讲解力扣“2520. 统计能整除数字的位数”的解题思路,这是题目链接。 本题的思路是:取出每一位,判断是否能整除。 如何取出每一位呢?可以采用“mod10除10”的策略。即:每次mod10取出最后一位数,再…

2022年软件测试面试题大全【含答案】

一、面试基础题 简述测试流程: 1、阅读相关技术文档(如产品PRD、UI设计、产品流程图等)。 2、参加需求评审会议。 3、根据最终确定的需求文档编写测试计划。 4、编写测试用例(等价类划分法、边界值分析法等)。 5、用例评审(…

C++面向对象 this指针 构造函数 析构函数 拷贝构造 友元

C面向对象 面向对象概念类与对象的区别 C中类的设计设计实例实例解释共有和私有类的认识 函数定义函数在类里定义和类外定义区别函数定义实例 C对象模型方案一:各对象完全独立地安排内存的方案方案二:各对象的代码区共用的方案: this指针this指针特点程序编译面向对象程序的过程…

【力扣刷题 | 第十四天】

目录 前言: 7. 整数反转 - 力扣(LeetCode) 面试题 16.05. 阶乘尾数 - 力扣(LeetCode) 总结; 前言: 今天仍然是无固定类型刷题, 7. 整数反转 - 力扣(LeetCode) 给你…

傅氏变换算法

半局积分算法的局限性是要求采样的波形为正弦波。当被采样的模拟量不是正弦波而是一个周期性时间函数时,可采用傅氏变换算法。傅氏变换算法来自于傅里叶级数,即一个周期性函数I(t)可用傅里叶级数展开为各次谐波的正弦项和余弦项之…

D117-72. 编辑距离

题目描述 链接:添加链接描述 跟只考虑删除的完全一样,只不过是dp[i-1][j-1]1 class Solution:def minDistance(self, word1: str, word2: str) -> int:# dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2&…

Qt 将某控件、图案绘制在最前面的方法,通过QGraphicsScene模块实现

文章目录 前言一、效果二、代码实现1.工程文件夹结构2.BackWidget类2.1 backwidget.h2.2 backwidget.cpp 总结 前言 在用Qt做一些应用的时候,有可能遇到和“绘制顺序”相关的问题,即要控制一些控件之间的显示前后问题,在常用的QWidget体系中&…

【数据结构与算法】力扣:翻转二叉树

翻转二叉树 给你一棵二叉树的根节点 root ,翻转这棵二叉树,并返回其根节点。 示例 1: 输入:root [4,2,7,1,3,6,9] 输出:[4,7,2,9,6,3,1] 示例 2: 输入:root [2,1,3] 输出:[2,…

云HIS是什么?HIS系统为什么要上云?云HIS有哪些优点?

一、当前医疗行业HIS的现状与发展趋势 1.医院信息系统(HIS)经历了从手工到单机再到局域网的两个阶段,随着云计算、大数据新技术迅猛发展,基于云计算的医院信息系统将逐步取代传统局域网HIS , 以适应人们对医疗卫生服务越来越高的要…

BI-SQL丨角色和用户

角色和用户 在数仓的运维工作中,经常需要为用户开通不同权限的账号,使用户可以正常访问不同的数据,那么这就需要我们了解SQL Server的权限体系。 名词解释 登录名: 用来登录服务器的用户账号,例:sa&…

String类型

前言 之所以介绍是因为基本数据类型是系统中一切操作的基础,就像物理世界中的原子,高楼大厦中的砖瓦。当咱们整明白了这些基本数据类型,使用层面就是挑选和组合的问题了。本文小结下Redis中数据结构和使用场景,如果你有更骚气的挑…

Python中文件的读取

在Python中可以通过内置函数open()、read()和readline()实现文件的读取。 1 打开文件函数 1.1 open()函数的基本用法 open()是Python的内置函数,用来打开指定文件。该函数使用代码如下所示: fin open(words.txt) 其中,参数指定了要打开…

【软件设计师暴击考点】计算机网络知识高频考点暴击系列

👨‍💻个人主页:元宇宙-秩沅 👨‍💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍💻 本文由 秩沅 原创 👨‍💻 收录于专栏:软件…

NodeJS Request下载图片文件到本地⑩⑦

文章目录 ✨文章有误请指正,如果觉得对你有用,请点三连一波,蟹蟹支持😘前言使用模块创建文件删除文件写入图片案例效果总结 ✨文章有误请指正,如果觉得对你有用,请点三连一波,蟹蟹支持&#x1f…

网页前端制作需要哪些基础知识?

💂 个人网站:【海拥】【游戏大全】【神级源码资源网】🤟 前端学习课程:👉【28个案例趣学前端】【400个JS面试题】💅 寻找学习交流、摸鱼划水的小伙伴,请点击【摸鱼学习交流群】 目录 前言HTML基础知识1 HTM…

存款进阶“10万元门槛”,年轻人为何遭遇困境?

文章目录 ❗❗ 前言💌目前的存款在哪一个区间?你觉得存款难吗?😢存钱到底有多难?🤍为存款做出过哪些努力?🧧没钱更要理财吗?🆔影响年轻人存款能力和存款意愿的…

C++多态 动态联编 静态联编 虚函数 抽象类 final override关键字

C多态 多态多态原理 动态联编和静态联编纯虚函数和抽象类C11的final override关键字重载 隐藏 重写的区别 多态 1.派生类中定义虚函数必须与基类中的虚函数同名外,还必须同参数表,同返回类型。 否则被认为是同名覆盖,不具有多态性。 如基类中…

NCI Architecture

2.1 组成部分 NCI 可分为以下逻辑组件:  NCI 核心 NCI 核心定义了设备主机 (DH) 和 NFC 控制器 (NFCC) 之间通信的基本功能。 这使得 NFCC 和 DH 之间能够进行控制消息(命令、响应和通知)和数据消息交换。  传输映射 传输映射定义 N…

Excel百万级别数据的导入和导出【详细代码】

代码层级结构 DurationAspect package com.zhouyu.aspect;import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import org.aspectj.lang.JoinPoint; import org.aspectj.lang.ProceedingJoinPoint; import org.aspectj.lang.annotation.A…