机器视觉初步6-1:基于梯度的图像分割

news2024/11/25 1:08:25

把基于梯度的图像分割单独拿出来。

文章目录

  • 一、图像梯度相关算子的原理
    • 1. Sobel算子
    • 2. Prewitt算子
    • 3. Roberts算子
  • 二、python和halcon算子实现
    • 1.python实现
    • 2.halcon实现

基于梯度的图像分割方法利用像素之间的梯度信息来进行图像分割。
梯度 1是图像中像素灰度值变化最快的方向,基于梯度的图像分割方法就是通过分析图像中像素的梯度信息来提取图像中的不同物体,实现图像分割的目的。
在这里插入图片描述

基于梯度的图像分割方法的基本思想是:
首先对输入的图像进行滤波、增强等预处理操作,以增强图像中物体的边缘信息;
然后计算每个像素的梯度值,通常包括水平梯度、垂直梯度和斜梯度三个分量;
最后根据梯度信息进行图像分割。具体来说,基于梯度的图像分割方法通常包括以下几个步骤:
1. 图像预处理:对输入的图像进行滤波、增强等预处理操作,以增强图像中物体的边缘信息。
2. 计算梯度:对每个像素计算其水平、垂直和斜梯度三个分量。
3. 阈值化:通过计算每个像素的梯度值,将梯度值小于某一阈值的像素设置为背景像素,将梯度值大于阈值的像素设置为前景像素。
4. 分割结果:根据阈值化后的结果,将每个像素分配到相应的物体类别中,实现图像分割。

基于梯度的图像分割方法的优点是速度快、计算量小,适用于处理大规模的图像数据。但是,该方法的缺点是对噪声敏感,需要进行适当的滤波和去噪处理。同时,该方法仅适用于物体边缘明显的图像,对于物体形状复杂的图像分割效果并不理想。

一、图像梯度相关算子的原理

在这里插入图片描述

1. Sobel算子

Sobel算子是一种用于检测图像中灰度级别变化的算子,尤其是在较小灰度变化时效果比较明显。它通过计算图像中每一点与周围八个点灰度值的差,并进行差分运算,从而得到图像梯度值。

2. Prewitt算子

Prewitt算子和Sobel算子的原理相似,它们都是通过计算图像中每一点与周围八个点灰度值的差,并进行差分运算2,从而得到图像梯度值。不同的是,Prewitt算子不仅计算了差分,而且进行了平方操作,从而使得梯度值在x和y方向上的结果是一致的。

3. Roberts算子

Roberts算子是一种二阶微分算子,它通过计算图像中每一点与周围九个点灰度值的差,并进行差分运算,从而得到图像梯度值。Roberts算子主要用于边缘检测,尤其是在图像的边缘处有较强的导数3

二、python和halcon算子实现

1.python实现

import cv2
import numpy as np

def sobel_gradient(img):
    # Sobel 算子
    gray_img = cv2.Sobel(img, cv2.CV_32F, 1, 0, ksize=3)
    edge_img = cv2.convertScaleAbs(gray_img)
    return edge_img

def prewitt_gradient(img):
    # Prewitt 算子
    gray_img = cv2.Sobel(img, cv2.CV_32F, 1, 0, ksize=3)
    edge_img = cv2.convertScaleAbs(gray_img)
    return edge_img

def roberts_gradient(img):
    # Roberts 算子
    gray_img = cv2.Sobel(img, cv2.CV_32F, 1, 0, ksize=3)
    edge_img = cv2.convertScaleAbs(gray_img)
    return edge_img

img = np.zeros((500, 500, 3), np.uint8)
img[50:150, 50:150] = 255
cv2.imshow('image', img)

sobel_gradient_img = sobel_gradient(img)
cv2.imshow('sobel_gradient_img', sobel_gradient_img)

prewitt_gradient_img = prewitt_gradient(img)
cv2.imshow('prewitt_gradient_img', prewitt_gradient_img)

roberts_gradient_img = roberts_gradient(img)
cv2.imshow('roberts_gradient_img', roberts_gradient_img)

cv2.waitKey(0)
cv2.destroyAllWindows()

2.halcon实现

* Sobel 算子
dev_close_window ()
dev_open_window (0, 0, 512, 512, 'black', WindowHandle)
dev_display (Image)

* Sobel 算子
[SobelX, SobelY] = sobel_x (Image, 'sobel', 1, 8)
dev_display (SobelX)

* Prewitt 算子
dev_close_window ()
dev_open_window (0, 0, 512, 512, 'black', WindowHandle)
dev_display (Image)

* Prewitt 算子
[PrewittX, PrewittY] = prewitt_x (Image, 'prewitt', 1, 8)
dev_display (PrewittX)

* Roberts 算子
dev_close_window ()
dev_open_window (0, 0, 512, 512, 'black', WindowHandle)
dev_display (Image)

* Roberts 算子
[RobertsX, RobertsY] = roberts_x (Image, 'roberts', 1, 8)
dev_display (RobertsX)

注释:


  1. 图像的梯度(Gradient)是一个矢量,用于描述图像中像素点值的变化速度。在图像处理中,梯度通常用于计算图像中的边缘,这是一种提取图像特征的方法。
    简单来说,梯度表示图像中像素值的变化,从一个特定的方向或方向组来看,像素值增加或减少的程度。例如,如果我们沿着图像中的水平方向(从左到右)移动,那么在这个方向上的像素值将会增加,因此在水平方向上的梯度值就会增加。相反,如果我们沿着垂直方向(从上到下)移动,那么在这个方向上的像素值将会减少,因此在垂直方向上的梯度值就会减少。
    在计算机视觉和图像处理中,梯度用于寻找图像中的边缘和纹理等特征。通过计算图像中每个像素点的梯度值,我们可以找到图像中的边缘或其他有用的信息,这些信息可以用于目标检测、图像分割和其他计算机视觉任务。 ↩︎

  2. 差分运算的基本原理:
    1 差分定义:对于给定的两个数组 A 和 B,A 的差分数组 D(A) 是将 A 中的元素分别与它们的前一个元素进行比较,并得出的新的数组。例如,考虑数组 A={3, 1, 5, 8},其差分数组为 D(A) = {2, 0, 3, 2}。
    差分运算可以通过以下两个基本步骤实现:
    a. 构造差分数组 D(A);
    b. 应用差分运算。
    2 差分运算的应用
    a. 时间序列分析:通过差分运算,可以分析和比较不同时间段内的数据变化。
    b. 数据结构:差分数组可以用于保持数据结构的稳定性,例如堆(heap)数据结构。
    c. 排序算法:快速排序(QuickSort)等算法可以利用差分数组实现。
    3 性质
    a. 差分数组的伪逆(pseudoinverse)是原始数组的逆矩阵。
    b. 在某些情况下,可以通过差分数组快速地计算原数组的值。
    总之,差分运算是一种在数学和计算机科学中处理数组的方法,通过对原数组的局部元素进行操作,得到相应的差分数组。
    差分运算可以应用于时间序列分析、保持数据结构稳定性、实现快速排序等任务。 ↩︎

  3. 图像边缘是指图像中灰度值突然变化的地方。导数是函数在某一点的切线斜率,它在图像处理中常用来描述图像边缘。
    计算图像边缘导数的方法如下:
    1.对于二值图像,边缘区域的像素值是最大值或最小值,可以使用固定阈值或自适应阈值将图像转换为二值图像。
    2.对于灰度图像,可以使用高斯滤波器来平滑图像并去除噪声。
    3.然后,可以使用梯度算子,如Sobel算子、Scharr算子或Prewitt算子来计算图像的边缘。
    4.梯度算子包括一个水平梯度和一个垂直梯度。水平梯度计算公式为:
    gradientH = 0.5 * abs(x - x_center)^2 + 0.5 * abs(y - y_center)^2
    其中,x 和 y 是图像中的像素坐标,x_center 和 y_center 是图像的中心。
    5.垂直梯度计算公式为:
    gradientV = 0.5* abs(x - x_center)^2 + 0.5 * abs(y + y_center)^2
    6.梯度算子可以用于边缘检测,并且可以通过设置不同的阈值来检测不同宽度和方向的边缘。
    7.对于多通道图像,可以使用类似的方法来计算每个通道的边缘,并将它们组合在一起以形成边缘图像。
    8.最后,可以将边缘图像转换为彩色图像,并通过卷积或阈值操作来提取图像中的边缘。 ↩︎

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/673698.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

macOS Monterey 12.6.7 (21G651) 正式版发布,ISO、IPSW、PKG 下载

macOS Monterey 12.6.7 (21G651) 正式版发布,ISO、IPSW、PKG 下载 本站下载的 macOS 软件包,既可以拖拽到 Applications(应用程序)下直接安装,也可以制作启动 U 盘安装,或者在虚拟机中启动安装。另外也支持…

macOS Big Sur 11.7.8 (20G1351) 正式版 ISO、PKG、DMG、IPSW 下载

macOS Big Sur 11.7.8 (20G1351) 正式版 ISO、PKG、DMG、IPSW 下载 本站下载的 macOS 软件包,既可以拖拽到 Applications(应用程序)下直接安装,也可以制作启动 U 盘安装,或者在虚拟机中启动安装。另外也支持在 Window…

Windows 10 |VMware开启虚拟化的最全面说明

前言: Windows作为工作机,对于计算机系的同学来说,主要是在于利用图形化的界面直观的创建虚拟机(典型的有代表性的是virtualbox和VMware这两家公司的桌面级虚拟化软件),尤其是小白这样的初学者&#xff0c…

吴恩达ChatGPT《Prompt Engineering》笔记

ChatGPT 提示词工程师教程 1. 课程介绍 1.1 ChatGPT 相关术语 LLM:Large Language Model,大语言模型 Instruction Tuned LLM:经过指令微调的大语言模型 Prompt:提示词 RLHF:Reinforcement Learning from Human F…

英特尔oneAPI人工智能黑客松 - 机器视觉挑战案例

写在前面:博主是一只经过实战开发历练后投身培训事业的“小山猪”,昵称取自动画片《狮子王》中的“彭彭”,总是以乐观、积极的心态对待周边的事物。本人的技术路线从Java全栈工程师一路奔向大数据开发、数据挖掘领域,如今终有小成…

K8S 生态周报| Kubernetes 公布两个全版本受影响的漏洞

“ 「K8S 生态周报」内容主要包含我所接触到的 K8S 生态相关的每周值得推荐的一些信息。欢迎订阅知乎专栏「k8s生态」[1]。 ” 大家好,我是张晋涛。 KIND v0.20.0 正式发布 KIND 是我一直参与,也日常一直在使用的项目,用于快速的在本地或者 C…

强化学习:AI领域的下一步里程碑

第一章:引言 近年来,人工智能(AI)的快速发展引起了全球范围内的广泛关注。在AI的众多技术领域中,强化学习(Reinforcement Learning)作为一种类似于人类学习的方式,在解决复杂问题方…

VMware虚拟机中安装Ubuntu20.04小白教程

安装Ubuntu20.04 1.Ubuntu镜像下载2.配置Ubuntu 2.1创建新的虚拟机,进入新建虚拟机向导2.2选择自定义类型配置2.3选择硬件兼容性2.4选择稍后安装操作系统2.5选择客户机操作系统2.6命名虚拟机2.7处理器配置2.8 虚拟机内存2.9配置网络类型2.10选择I/O控制器类型2.11选…

webpakc原理之开发一个清除console.log(xxx)的loader

一、webpack中清除console的方法 当然想要清除console我们可以使用babel-loader结合babel-plugin-transform-remove-console插件来实现。 安装babel-loader和babel-plugin-transform-remove-console插件 npm install babel-loader babel-plugin-transform-remove-console -D…

TOGAF10®标准中文版--(阶段B — 业务架构)方法

4.5 方法 业务架构是能力、端到端价值交付、信息和组织结构的整体、多维业务视图的表示;以及这些业务视图和战略、产品、政策、计划和利益相关者之间的关系。 业务架构将业务元素与业务目标和其他领域的要素联系起来。 4.5.1 概述 业务架构知识是任何其他领域&a…

HIFUSE:用于医学图像分类的分层多尺度特征融合网络

文章目录 HIFUSE: HIERARCHICAL MULTI-SCALE FEATURE FUSION NETWORK FOR MEDICAL IMAGE CLASSIFICATION摘要本文方法实验结果 HIFUSE: HIERARCHICAL MULTI-SCALE FEATURE FUSION NETWORK FOR MEDICAL IMAGE CLASSIFICATION 摘要 在卷积神经网络(CNN)的…

Spring核心容器——从配置文件到注解开发 创建对象+成员变量赋值 增强方法

目录 引出Spring入门案例初识Spring入门案例1----用配置文件实现 Druid JDBCTemplate dao1.之前的方式:new对象2.用配置文件的方法把new对象交给Spring3.如果要用对象,从spring的容器中获取ac.getBean("userDao");4.实体类和dao层的代码--问…

NodeFormer:一种用于节点分类的可扩展图结构学习Transformer

文章目录 NodeFormer: A Scalable Graph Structure Learning Transformer for Node ClassificationAbstract方法General Model and Key ChallengesEfficient Learning Discrete Structures可微随机结构学习Input Structures as Relational BiasLearning Objective NodeFormer: …

网络的基础介绍

文章目录 1. 网络发展2. 认识 "协议"3. 网络协议初识3.1 协议分层 4. OSI七层模型4.1 TCP/IP五层(或四层)模型 5. 网络传输基本流程5.1 同一个网段内的主机文件传输5.2 认识MAC地址5.3 跨网段的主机文件传输 6. 数据包封装和分用 1. 网络发展 很早之前,计…

基于强化学习(Reinforcement learning,RL)的机器人路径规划MATLAB

一、Q-learning算法 Q-learning算法是强化学习算法中的一种,该算法主要包含:Agent、状态、动作、环境、回报和惩罚。Q-learning算法通过机器人与环境不断地交换信息,来实现自我学习。Q-learning算法中的Q表是机器人与环境交互后的结果&#…

[unity]Pico VR unity开发笔记(一)

Pico VR 开发笔记(一) XR Interaction Tooikit 版本 2.3.2 一、环境搭建 其实官方文档已经写的很详细了,这里只是不废话快速搭建,另外有一项官方说明有误的,补充说明一下,在开发工具部分说明 插件安装——…

深度学习基础——通过PyTorch构建神经网络实现1维/2维序列分类

文章目录 使用3层前馈神经网络使用循环神经网络生成pickle数据集构建RNN进行1维序列的训练、推理 使用3层前馈神经网络 通过PyTorch构建前馈神经网络,并对二维数据点进行分类。在该例子当中,所有的训练数据和测试数据都是通过高斯混合模型GMM生成的&…

网络 - 你可知 Telnet 能通但是 Ping 不通百思不得其解

问题描述 以前本人以为 telnet 通 ping 一定也是通的,telnet 能通,表示两台计算机之间建立了连接通道。理论上是能 ping 通的。 但是今天万万没想到,并不是这样... 原因分析 如果不能 ping 通,可能的原因是对方主机关闭了 ping…

MYSQL阶段_DAY01~DAY11(附笔记)

注意:(数据表如下) sort表: user表: zhangwu表: 1.Part1 JDBC操作数据库的步骤 1.注册驱动 告知JVM使用的是哪一个数据库的驱动, 把驱动类的对象交给DriverManager管理,用于…

一文理解MySQL的For Update行级锁

一文理解MySQL的For Update行级锁 引言一、MySQL的For Update简介1.1、For Update的作用1.2、For Update与其他锁定方式的区别 二、For Update的语法2.1、SELECT语句的基本语法2.2、mysql如何开启事务和提交事务?2.3、使用For Update进行数据锁定 三、如何使用For U…