SpringCloudAlibaba之Sentinel源码分析--protoc-3.17.3-win64

news2024/12/26 2:52:02

Sentinel源码分析

文章目录

  • Sentinel源码分析
  • 1.Sentinel的基本概念
    • 1.1.ProcessorSlotChain
    • 1.2.Node
    • 1.3.Entry
      • 1.3.1.自定义资源
      • 1.3.2.基于注解标记资源
    • 1.4.Context
      • 1.4.1.什么是Context
      • 1.4.2.Context的初始化
        • 1.4.2.1.自动装配
        • 1.4.2.2.AbstractSentinelInterceptor
        • 1.4.2.3.ContextUtil
  • 2.ProcessorSlotChain执行流程
    • 2.1.入口
    • 2.2.DefaultProcessorSlotChain
    • 2.3.NodeSelectorSlot
    • 2.4.ClusterBuilderSlot
    • 2.5.StatisticSlot
    • 2.6.AuthoritySlot
    • 2.7.SystemSlot
    • 2.8.ParamFlowSlot
      • 2.8.1.令牌桶
    • 2.9.FlowSlot
      • 2.9.1.核心流程
      • 2.9.2.滑动时间窗口
        • 2.9.2.1.时间窗口请求量统计
        • 2.9.2.2.滑动窗口QPS计算
      • 2.9.3.漏桶
    • 2.10.DegradeSlot
      • 2.10.1.CircuitBreaker
      • 2.10.2.触发断路器

1.Sentinel的基本概念

Sentinel实现限流、隔离、降级、熔断等功能,本质要做的就是两件事情:

  • 统计数据:统计某个资源的访问数据(QPS、RT等信息)
  • 规则判断:判断限流规则、隔离规则、降级规则、熔断规则是否满足

这里的资源就是希望被Sentinel保护的业务,例如项目中定义的controller方法就是默认被Sentinel保护的资源。

1.1.ProcessorSlotChain

实现上述功能的核心骨架是一个叫做ProcessorSlotChain的类。这个类基于责任链模式来设计,将不同的功能(限流、降级、系统保护)封装为一个个的Slot,请求进入后逐个执行即可。

其工作流如图:

在这里插入图片描述

责任链中的Slot也分为两大类:

  • 统计数据构建部分(statistic)
    • NodeSelectorSlot:负责构建簇点链路中的节点(DefaultNode),将这些节点形成链路树
    • ClusterBuilderSlot:负责构建某个资源的ClusterNode,ClusterNode可以保存资源的运行信息(响应时间、QPS、block 数目、线程数、异常数等)以及来源信息(origin名称)
    • StatisticSlot:负责统计实时调用数据,包括运行信息、来源信息等
  • 规则判断部分(rule checking)
    • AuthoritySlot:负责授权规则(来源控制)
    • SystemSlot:负责系统保护规则
    • ParamFlowSlot:负责热点参数限流规则
    • FlowSlot:负责限流规则
    • DegradeSlot:负责降级规则

1.2.Node

Sentinel中的簇点链路是由一个个的Node组成的,Node是一个接口,包括下面的实现:

在这里插入图片描述

所有的节点都可以记录对资源的访问统计数据,所以都是StatisticNode的子类。

按照作用分为两类Node:

  • DefaultNode:代表链路树中的每一个资源,一个资源出现在不同链路中时,会创建不同的DefaultNode节点。而树的入口节点叫EntranceNode,是一种特殊的DefaultNode
  • ClusterNode:代表资源,一个资源不管出现在多少链路中,只会有一个ClusterNode。记录的是当前资源被访问的所有统计数据之和。

DefaultNode记录的是资源在当前链路中的访问数据,用来实现基于链路模式的限流规则。ClusterNode记录的是资源在所有链路中的访问数据,实现默认模式、关联模式的限流规则。

例如:我们在一个SpringMVC项目中,有两个业务:

  • 业务1:controller中的资源/order/query访问了service中的资源/goods
  • 业务2:controller中的资源/order/save访问了service中的资源/goods

创建的链路图如下:

在这里插入图片描述

1.3.Entry

默认情况下,Sentinel会将controller中的方法作为被保护资源,那么问题来了,我们该如何将自己的一段代码标记为一个Sentinel的资源呢?

Sentinel中的资源用Entry来表示。声明Entry的API示例:

// 资源名可使用任意有业务语义的字符串,比如方法名、接口名或其它可唯一标识的字符串。
try (Entry entry = SphU.entry("resourceName")) {
  // 被保护的业务逻辑
  // do something here...
} catch (BlockException ex) {
  // 资源访问阻止,被限流或被降级
  // 在此处进行相应的处理操作
}

1.3.1.自定义资源

例如,我们在order-service服务中,将OrderServicequeryOrderById()方法标记为一个资源。

1)首先在order-service中引入sentinel依赖

<!--sentinel-->
<dependency>
    <groupId>com.alibaba.cloud</groupId>
    <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
</dependency>

2)然后配置Sentinel地址

spring:
  cloud:
    sentinel:
      transport:
        dashboard: localhost:8089 # 这里我的sentinel用了8089的端口

3)修改OrderService类的queryOrderById方法

代码这样来实现:

public Order queryOrderById(Long orderId) {
    // 创建Entry,标记资源,资源名为resource1
    try (Entry entry = SphU.entry("resource1")) {
        // 1.查询订单,这里是假数据
        Order order = Order.build(101L, 4999L, "小米 MIX4", 1, 1L, null);
        // 2.查询用户,基于Feign的远程调用
        User user = userClient.findById(order.getUserId());
        // 3.设置
        order.setUser(user);
        // 4.返回
        return order;
    }catch (BlockException e){
        log.error("被限流或降级", e);
        return null;
    }
}

4)访问

打开浏览器,访问order服务:http://localhost:8080/order/101

然后打开sentinel控制台,查看簇点链路:

在这里插入图片描述

1.3.2.基于注解标记资源

在之前学习Sentinel的时候,我们知道可以通过给方法添加@SentinelResource注解的形式来标记资源。

在这里插入图片描述

这个是怎么实现的呢?

来看下我们引入的Sentinel依赖包:

在这里插入图片描述

其中的spring.factories声明需要就是自动装配的配置类,内容如下:

在这里插入图片描述

我们来看下SentinelAutoConfiguration这个类:

在这里插入图片描述

可以看到,在这里声明了一个Bean,SentinelResourceAspect


/**
 * Aspect for methods with {@link SentinelResource} annotation.
 *
 * @author Eric Zhao
 */
@Aspect
public class SentinelResourceAspect extends AbstractSentinelAspectSupport {
	// 切点是添加了 @SentinelResource注解的类
    @Pointcut("@annotation(com.alibaba.csp.sentinel.annotation.SentinelResource)")
    public void sentinelResourceAnnotationPointcut() {
    }
	
    // 环绕增强
    @Around("sentinelResourceAnnotationPointcut()")
    public Object invokeResourceWithSentinel(ProceedingJoinPoint pjp) throws Throwable {
        // 获取受保护的方法
        Method originMethod = resolveMethod(pjp);
		// 获取 @SentinelResource注解
        SentinelResource annotation = originMethod.getAnnotation(SentinelResource.class);
        if (annotation == null) {
            // Should not go through here.
            throw new IllegalStateException("Wrong state for SentinelResource annotation");
        }
        // 获取注解上的资源名称
        String resourceName = getResourceName(annotation.value(), originMethod);
        EntryType entryType = annotation.entryType();
        int resourceType = annotation.resourceType();
        Entry entry = null;
        try {
            // 创建资源 Entry
            entry = SphU.entry(resourceName, resourceType, entryType, pjp.getArgs());
            // 执行受保护的方法
            Object result = pjp.proceed();
            return result;
        } catch (BlockException ex) {
            return handleBlockException(pjp, annotation, ex);
        } catch (Throwable ex) {
            Class<? extends Throwable>[] exceptionsToIgnore = annotation.exceptionsToIgnore();
            // The ignore list will be checked first.
            if (exceptionsToIgnore.length > 0 && exceptionBelongsTo(ex, exceptionsToIgnore)) {
                throw ex;
            }
            if (exceptionBelongsTo(ex, annotation.exceptionsToTrace())) {
                traceException(ex);
                return handleFallback(pjp, annotation, ex);
            }

            // No fallback function can handle the exception, so throw it out.
            throw ex;
        } finally {
            if (entry != null) {
                entry.exit(1, pjp.getArgs());
            }
        }
    }
}

简单来说,@SentinelResource注解就是一个标记,而Sentinel基于AOP思想,对被标记的方法做环绕增强,完成资源(Entry)的创建。

1.4.Context

上一节,我们发现簇点链路中除了controller方法、service方法两个资源外,还多了一个默认的入口节点:

sentinel_spring_web_context,是一个EntranceNode类型的节点

这个节点是在初始化Context的时候由Sentinel帮我们创建的。

1.4.1.什么是Context

那么,什么是Context呢?

  • Context 代表调用链路上下文,贯穿一次调用链路中的所有资源( Entry),基于ThreadLocal。
  • Context 维持着入口节点(entranceNode)、本次调用链路的 curNode(当前资源节点)、调用来源(origin)等信息。
  • 后续的Slot都可以通过Context拿到DefaultNode或者ClusterNode,从而获取统计数据,完成规则判断
  • Context初始化的过程中,会创建EntranceNode,contextName就是EntranceNode的名称

对应的API如下:

// 创建context,包含两个参数:context名称、 来源名称
ContextUtil.enter("contextName", "originName");

1.4.2.Context的初始化

那么这个Context又是在何时完成初始化的呢?

1.4.2.1.自动装配

来看下我们引入的Sentinel依赖包:

在这里插入图片描述

其中的spring.factories声明需要就是自动装配的配置类,内容如下:

在这里插入图片描述

我们先看SentinelWebAutoConfiguration这个类:

在这里插入图片描述

这个类实现了WebMvcConfigurer,我们知道这个是SpringMVC自定义配置用到的类,可以配置HandlerInterceptor:

在这里插入图片描述

可以看到这里配置了一个SentinelWebInterceptor的拦截器。

SentinelWebInterceptor的声明如下:

在这里插入图片描述

发现它继承了AbstractSentinelInterceptor这个类。

在这里插入图片描述

HandlerInterceptor拦截器会拦截一切进入controller的方法,执行preHandle前置拦截方法,而Context的初始化就是在这里完成的。

1.4.2.2.AbstractSentinelInterceptor

HandlerInterceptor拦截器会拦截一切进入controller的方法,执行preHandle前置拦截方法,而Context的初始化就是在这里完成的。

我们来看看这个类的preHandle实现:

@Override
public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler)
    throws Exception {
    try {
        // 获取资源名称,一般是controller方法的@RequestMapping路径,例如/order/{orderId}
        String resourceName = getResourceName(request);
        if (StringUtil.isEmpty(resourceName)) {
            return true;
        }
        // 从request中获取请求来源,将来做 授权规则 判断时会用
        String origin = parseOrigin(request);
        
        // 获取 contextName,默认是sentinel_spring_web_context
        String contextName = getContextName(request);
        // 创建 Context
        ContextUtil.enter(contextName, origin);
        // 创建资源,名称就是当前请求的controller方法的映射路径
        Entry entry = SphU.entry(resourceName, ResourceTypeConstants.COMMON_WEB, EntryType.IN);
        request.setAttribute(baseWebMvcConfig.getRequestAttributeName(), entry);
        return true;
    } catch (BlockException e) {
        try {
            handleBlockException(request, response, e);
        } finally {
            ContextUtil.exit();
        }
        return false;
    }
}

1.4.2.3.ContextUtil

创建Context的方法就是 ContextUtil.enter(contextName, origin);

我们进入该方法:

public static Context enter(String name, String origin) {
    if (Constants.CONTEXT_DEFAULT_NAME.equals(name)) {
        throw new ContextNameDefineException(
            "The " + Constants.CONTEXT_DEFAULT_NAME + " can't be permit to defined!");
    }
    return trueEnter(name, origin);
}

进入trueEnter方法:

protected static Context trueEnter(String name, String origin) {
    // 尝试获取context
    Context context = contextHolder.get();
    // 判空
    if (context == null) {
        // 如果为空,开始初始化
        Map<String, DefaultNode> localCacheNameMap = contextNameNodeMap;
        // 尝试获取入口节点
        DefaultNode node = localCacheNameMap.get(name);
        if (node == null) {
            LOCK.lock();
            try {
                node = contextNameNodeMap.get(name);
                if (node == null) {
                    // 入口节点为空,初始化入口节点 EntranceNode
                    node = new EntranceNode(new StringResourceWrapper(name, EntryType.IN), null);
                    // 添加入口节点到 ROOT
                    Constants.ROOT.addChild(node);
                    // 将入口节点放入缓存
                    Map<String, DefaultNode> newMap = new HashMap<>(contextNameNodeMap.size() + 1);
                    newMap.putAll(contextNameNodeMap);
                    newMap.put(name, node);
                    contextNameNodeMap = newMap;
                }
            } finally {
                LOCK.unlock();
            }
        }
        // 创建Context,参数为:入口节点 和 contextName
        context = new Context(node, name);
        // 设置请求来源 origin
        context.setOrigin(origin);
        // 放入ThreadLocal
        contextHolder.set(context);
    }
    // 返回
    return context;
}

2.ProcessorSlotChain执行流程

接下来我们跟踪源码,验证下ProcessorSlotChain的执行流程。

2.1.入口

首先,回到一切的入口,AbstractSentinelInterceptor类的preHandle方法:

在这里插入图片描述

可以看到,任何一个资源必定要执行SphU.entry()这个方法:

public static Entry entry(String name, int resourceType, EntryType trafficType, Object[] args)
    throws BlockException {
    return Env.sph.entryWithType(name, resourceType, trafficType, 1, args);
}

继续进入Env.sph.entryWithType(name, resourceType, trafficType, 1, args);

@Override
public Entry entryWithType(String name, int resourceType, EntryType entryType, int count, boolean prioritized,
                           Object[] args) throws BlockException {
    // 将 资源名称等基本信息 封装为一个 StringResourceWrapper对象
    StringResourceWrapper resource = new StringResourceWrapper(name, entryType, resourceType);
    // 继续
    return entryWithPriority(resource, count, prioritized, args);
}

进入entryWithPriority方法:

private Entry entryWithPriority(ResourceWrapper resourceWrapper, int count, boolean prioritized, Object... args)
    throws BlockException {
    // 获取 Context
    Context context = ContextUtil.getContext();

    if (context == null) {
        // Using default context.
        context = InternalContextUtil.internalEnter(Constants.CONTEXT_DEFAULT_NAME);
    }// 获取 Slot执行链,同一个资源,会创建一个执行链,放入缓存
    ProcessorSlot<Object> chain = lookProcessChain(resourceWrapper);

	// 创建 Entry,并将 resource、chain、context 记录在 Entry中
    Entry e = new CtEntry(resourceWrapper, chain, context);
    try {
        // 执行 slotChain
        chain.entry(context, resourceWrapper, null, count, prioritized, args);
    } catch (BlockException e1) {
        e.exit(count, args);
        throw e1;
    } catch (Throwable e1) {
        // This should not happen, unless there are errors existing in Sentinel internal.
        RecordLog.info("Sentinel unexpected exception", e1);
    }
    return e;
}

在这段代码中,会获取ProcessorSlotChain对象,然后基于chain.entry()开始执行slotChain中的每一个Slot. 而这里创建的是其实现类:DefaultProcessorSlotChain.

获取ProcessorSlotChain以后会保存到一个Map中,key是ResourceWrapper,值是ProcessorSlotChain.

所以,一个资源只会有一个ProcessorSlotChain.

2.2.DefaultProcessorSlotChain

我们进入DefaultProcessorSlotChain的entry方法:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, Object t, int count, boolean prioritized, Object... args)
    throws Throwable {
    // first,就是责任链中的第一个 slot
    first.transformEntry(context, resourceWrapper, t, count, prioritized, args);
}

这里的first,类型是AbstractLinkedProcessorSlot:

在这里插入图片描述

因此,first一定是这些实现类中的一个,按照最早讲的责任链顺序,first应该就是 NodeSelectorSlot

不过,既然是基于责任链模式,所以这里只要记住下一个slot就可以了,也就是next:

在这里插入图片描述

next确实是NodeSelectSlot类型。

而NodeSelectSlot的next一定是ClusterBuilderSlot,依次类推:

在这里插入图片描述

责任链就建立起来了。

2.3.NodeSelectorSlot

NodeSelectorSlot负责构建簇点链路中的节点(DefaultNode),将这些节点形成链路树。

核心代码:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, Object obj, int count, boolean prioritized, Object... args)
    throws Throwable {
  	// 尝试获取 当前资源的 DefaultNode
    DefaultNode node = map.get(context.getName());
    if (node == null) {
        synchronized (this) {
            node = map.get(context.getName());
            if (node == null) {
                // 如果为空,为当前资源创建一个新的 DefaultNode
                node = new DefaultNode(resourceWrapper, null);
                HashMap<String, DefaultNode> cacheMap = new HashMap<String, DefaultNode>(map.size());
                cacheMap.putAll(map);
                // 放入缓存中,注意这里的 key是contextName,
                // 这样不同链路进入相同资源,就会创建多个 DefaultNode
                cacheMap.put(context.getName(), node);
                map = cacheMap;
                // 当前节点加入上一节点的 child中,这样就构成了调用链路树
                ((DefaultNode) context.getLastNode()).addChild(node);
            }

        }
    }
	// context中的curNode(当前节点)设置为新的 node
    context.setCurNode(node);
    // 执行下一个 slot
    fireEntry(context, resourceWrapper, node, count, prioritized, args);
}

这个Slot完成了这么几件事情:

  • 为当前资源创建 DefaultNode
  • 将DefaultNode放入缓存中,key是contextName,这样不同链路入口的请求,将会创建多个DefaultNode,相同链路则只有一个DefaultNode
  • 将当前资源的DefaultNode设置为上一个资源的childNode
  • 将当前资源的DefaultNode设置为Context中的curNode(当前节点)

下一个slot,就是ClusterBuilderSlot

2.4.ClusterBuilderSlot

ClusterBuilderSlot负责构建某个资源的ClusterNode,核心代码:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node,
                  int count, boolean prioritized, Object... args)
    throws Throwable {
    // 判空,注意ClusterNode是共享的成员变量,也就是说一个资源只有一个ClusterNode,与链路无关
    if (clusterNode == null) {
        synchronized (lock) {
            if (clusterNode == null) {
                // 创建 cluster node.
                clusterNode = new ClusterNode(resourceWrapper.getName(), resourceWrapper.getResourceType());
                HashMap<ResourceWrapper, ClusterNode> newMap = new HashMap<>(Math.max(clusterNodeMap.size(), 16));
                newMap.putAll(clusterNodeMap);
                // 放入缓存,可以是nodeId,也就是resource名称
                newMap.put(node.getId(), clusterNode);
                clusterNodeMap = newMap;
            }
        }
    }
    // 将资源的 DefaultNode与 ClusterNode关联
    node.setClusterNode(clusterNode);
	// 记录请求来源 origin 将 origin放入 entry
    if (!"".equals(context.getOrigin())) {
        Node originNode = node.getClusterNode().getOrCreateOriginNode(context.getOrigin());
        context.getCurEntry().setOriginNode(originNode);
    }
	// 继续下一个slot
    fireEntry(context, resourceWrapper, node, count, prioritized, args);
}

2.5.StatisticSlot

StatisticSlot负责统计实时调用数据,包括运行信息(访问次数、线程数)、来源信息等。

StatisticSlot是实现限流的关键,其中基于滑动时间窗口算法维护了计数器,统计进入某个资源的请求次数。

核心代码:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node, 
                  int count, boolean prioritized, Object... args) throws Throwable {
    try {
        // 放行到下一个 slot,做限流、降级等判断
        fireEntry(context, resourceWrapper, node, count, prioritized, args);

        // 请求通过了, 线程计数器 +1 ,用作线程隔离
        node.increaseThreadNum();
        // 请求计数器 +1 用作限流
        node.addPassRequest(count);

        if (context.getCurEntry().getOriginNode() != null) {
            // 如果有 origin,来源计数器也都要 +1
            context.getCurEntry().getOriginNode().increaseThreadNum();
            context.getCurEntry().getOriginNode().addPassRequest(count);
        }

        if (resourceWrapper.getEntryType() == EntryType.IN) {
            // 如果是入口资源,还要给全局计数器 +1.
            Constants.ENTRY_NODE.increaseThreadNum();
            Constants.ENTRY_NODE.addPassRequest(count);
        }

        // 请求通过后的回调.
        for (ProcessorSlotEntryCallback<DefaultNode> handler : StatisticSlotCallbackRegistry.getEntryCallbacks()) {
            handler.onPass(context, resourceWrapper, node, count, args);
        }
    } catch (Throwable e) {
        // 各种异常处理就省略了。。。
        context.getCurEntry().setError(e);

        throw e;
    }
}

另外,需要注意的是,所有的计数+1动作都包括两部分,以 node.addPassRequest(count);为例:

@Override
public void addPassRequest(int count) {
    // DefaultNode的计数器,代表当前链路的 计数器
    super.addPassRequest(count);
    // ClusterNode计数器,代表当前资源的 总计数器
    this.clusterNode.addPassRequest(count);
}

具体计数方式,我们后续再看。

接下来,进入规则校验的相关slot了,依次是:

  • AuthoritySlot:负责授权规则(来源控制)
  • SystemSlot:负责系统保护规则
  • ParamFlowSlot:负责热点参数限流规则
  • FlowSlot:负责限流规则
  • DegradeSlot:负责降级规则

2.6.AuthoritySlot

负责请求来源origin的授权规则判断,如图:

在这里插入图片描述

核心API:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node, int count, boolean prioritized, Object... args)
    throws Throwable {
    // 校验黑白名单
    checkBlackWhiteAuthority(resourceWrapper, context);
    // 进入下一个 slot
    fireEntry(context, resourceWrapper, node, count, prioritized, args);
}

黑白名单校验的逻辑:

void checkBlackWhiteAuthority(ResourceWrapper resource, Context context) throws AuthorityException {
    // 获取授权规则
    Map<String, Set<AuthorityRule>> authorityRules = AuthorityRuleManager.getAuthorityRules();

    if (authorityRules == null) {
        return;
    }

    Set<AuthorityRule> rules = authorityRules.get(resource.getName());
    if (rules == null) {
        return;
    }
	// 遍历规则并判断
    for (AuthorityRule rule : rules) {
        if (!AuthorityRuleChecker.passCheck(rule, context)) {
            // 规则不通过,直接抛出异常
            throw new AuthorityException(context.getOrigin(), rule);
        }
    }
}

再看下AuthorityRuleChecker.passCheck(rule, context)方法:

static boolean passCheck(AuthorityRule rule, Context context) {
    // 得到请求来源 origin
    String requester = context.getOrigin();

    // 来源为空,或者规则为空,都直接放行
    if (StringUtil.isEmpty(requester) || StringUtil.isEmpty(rule.getLimitApp())) {
        return true;
    }

    // rule.getLimitApp()得到的就是 白名单 或 黑名单 的字符串,这里先用 indexOf方法判断
    int pos = rule.getLimitApp().indexOf(requester);
    boolean contain = pos > -1;

    if (contain) {
        // 如果包含 origin,还要进一步做精确判断,把名单列表以","分割,逐个判断
        boolean exactlyMatch = false;
        String[] appArray = rule.getLimitApp().split(",");
        for (String app : appArray) {
            if (requester.equals(app)) {
                exactlyMatch = true;
                break;
            }
        }
        contain = exactlyMatch;
    }
	// 如果是黑名单,并且包含origin,则返回false
    int strategy = rule.getStrategy();
    if (strategy == RuleConstant.AUTHORITY_BLACK && contain) {
        return false;
    }
	// 如果是白名单,并且不包含origin,则返回false
    if (strategy == RuleConstant.AUTHORITY_WHITE && !contain) {
        return false;
    }
	// 其它情况返回true
    return true;
}

2.7.SystemSlot

SystemSlot是对系统保护的规则校验:

在这里插入图片描述

核心API:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node, 
                  int count,boolean prioritized, Object... args) throws Throwable {
    // 系统规则校验
    SystemRuleManager.checkSystem(resourceWrapper);
    // 进入下一个 slot
    fireEntry(context, resourceWrapper, node, count, prioritized, args);
}

来看下SystemRuleManager.checkSystem(resourceWrapper);的代码:

public static void checkSystem(ResourceWrapper resourceWrapper) throws BlockException {
    if (resourceWrapper == null) {
        return;
    }
    // Ensure the checking switch is on.
    if (!checkSystemStatus.get()) {
        return;
    }

    // 只针对入口资源做校验,其它直接返回
    if (resourceWrapper.getEntryType() != EntryType.IN) {
        return;
    }

    // 全局 QPS校验
    double currentQps = Constants.ENTRY_NODE == null ? 0.0 : Constants.ENTRY_NODE.successQps();
    if (currentQps > qps) {
        throw new SystemBlockException(resourceWrapper.getName(), "qps");
    }

    // 全局 线程数 校验
    int currentThread = Constants.ENTRY_NODE == null ? 0 : Constants.ENTRY_NODE.curThreadNum();
    if (currentThread > maxThread) {
        throw new SystemBlockException(resourceWrapper.getName(), "thread");
    }
	// 全局平均 RT校验
    double rt = Constants.ENTRY_NODE == null ? 0 : Constants.ENTRY_NODE.avgRt();
    if (rt > maxRt) {
        throw new SystemBlockException(resourceWrapper.getName(), "rt");
    }

    // 全局 系统负载 校验
    if (highestSystemLoadIsSet && getCurrentSystemAvgLoad() > highestSystemLoad) {
        if (!checkBbr(currentThread)) {
            throw new SystemBlockException(resourceWrapper.getName(), "load");
        }
    }

    // 全局 CPU使用率 校验
    if (highestCpuUsageIsSet && getCurrentCpuUsage() > highestCpuUsage) {
        throw new SystemBlockException(resourceWrapper.getName(), "cpu");
    }
}

2.8.ParamFlowSlot

ParamFlowSlot就是热点参数限流,如图:

在这里插入图片描述

是针对进入资源的请求,针对不同的请求参数值分别统计QPS的限流方式。

  • 这里的单机阈值,就是最大令牌数量:maxCount

  • 这里的统计窗口时长,就是统计时长:duration

含义是每隔duration时间长度内,最多生产maxCount个令牌,上图配置的含义是每1秒钟生产2个令牌。

核心API:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node,
                  int count, boolean prioritized, Object... args) throws Throwable {
    // 如果没有设置热点规则,直接放行
    if (!ParamFlowRuleManager.hasRules(resourceWrapper.getName())) {
        fireEntry(context, resourceWrapper, node, count, prioritized, args);
        return;
    }
	// 热点规则判断
    checkFlow(resourceWrapper, count, args);
    // 进入下一个 slot
    fireEntry(context, resourceWrapper, node, count, prioritized, args);
}

2.8.1.令牌桶

热点规则判断采用了令牌桶算法来实现参数限流,为每一个不同参数值设置令牌桶,Sentinel的令牌桶有两部分组成:

在这里插入图片描述

这两个Map的key都是请求的参数值,value却不同,其中:

  • tokenCounters:用来记录剩余令牌数量
  • timeCounters:用来记录上一个请求的时间

当一个携带参数的请求到来后,基本判断流程是这样的:

在这里插入图片描述

2.9.FlowSlot

FlowSlot是负责限流规则的判断,如图:

在这里插入图片描述

包括:

  • 三种流控模式:直接模式、关联模式、链路模式
  • 三种流控效果:快速失败、warm up、排队等待

三种流控模式,从底层数据统计角度,分为两类:

  • 对进入资源的所有请求(ClusterNode)做限流统计:直接模式、关联模式
  • 对进入资源的部分链路(DefaultNode)做限流统计:链路模式

三种流控效果,从限流算法来看,分为两类:

  • 滑动时间窗口算法:快速失败、warm up
  • 漏桶算法:排队等待效果

2.9.1.核心流程

核心API如下:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node, int count,
                  boolean prioritized, Object... args) throws Throwable {
    // 限流规则检测
    checkFlow(resourceWrapper, context, node, count, prioritized);
	// 放行
    fireEntry(context, resourceWrapper, node, count, prioritized, args);
}

checkFlow方法:

void checkFlow(ResourceWrapper resource, Context context, DefaultNode node, int count, boolean prioritized)
    throws BlockException {
    // checker是 FlowRuleChecker 类的一个对象
    checker.checkFlow(ruleProvider, resource, context, node, count, prioritized);
}

跟入FlowRuleChecker:

public void checkFlow(Function<String, Collection<FlowRule>> ruleProvider, 
                      ResourceWrapper resource,Context context, DefaultNode node,
                      int count, boolean prioritized) throws BlockException {
        if (ruleProvider == null || resource == null) {
            return;
        }
        // 获取当前资源的所有限流规则
        Collection<FlowRule> rules = ruleProvider.apply(resource.getName());
        if (rules != null) {
            for (FlowRule rule : rules) {
                // 遍历,逐个规则做校验
                if (!canPassCheck(rule, context, node, count, prioritized)) {
                    throw new FlowException(rule.getLimitApp(), rule);
                }
            }
        }
    }

这里的FlowRule就是限流规则接口,其中的几个成员变量,刚好对应表单参数:

public class FlowRule extends AbstractRule {
    /**
     * 阈值类型 (0: 线程, 1: QPS).
     */
    private int grade = RuleConstant.FLOW_GRADE_QPS;
    /**
     * 阈值.
     */
    private double count;
    /**
     * 三种限流模式.
     *
     * {@link RuleConstant#STRATEGY_DIRECT} 直连模式;
     * {@link RuleConstant#STRATEGY_RELATE} 关联模式;
     * {@link RuleConstant#STRATEGY_CHAIN} 链路模式.
     */
    private int strategy = RuleConstant.STRATEGY_DIRECT;
    /**
     * 关联模式关联的资源名称.
     */
    private String refResource;
    /**
     * 3种流控效果.
     * 0. 快速失败, 1. warm up, 2. 排队等待, 3. warm up + 排队等待
     */
    private int controlBehavior = RuleConstant.CONTROL_BEHAVIOR_DEFAULT;
	// 预热时长
    private int warmUpPeriodSec = 10;
    /**
     * 队列最大等待时间.
     */
    private int maxQueueingTimeMs = 500;
    // 。。。 略
}

校验的逻辑定义在FlowRuleCheckercanPassCheck方法中:

public boolean canPassCheck(/*@NonNull*/ FlowRule rule, Context context, DefaultNode node, int acquireCount,
                            boolean prioritized) {
    // 获取限流资源名称
    String limitApp = rule.getLimitApp();
    if (limitApp == null) {
        return true;
    }
	// 校验规则
    return passLocalCheck(rule, context, node, acquireCount, prioritized);
}

进入passLocalCheck()

private static boolean passLocalCheck(FlowRule rule, Context context, DefaultNode node,
                                      int acquireCount,  boolean prioritized) {
    // 基于限流模式判断要统计的节点, 
    // 如果是直连模式,关联模式,对ClusterNode统计,如果是链路模式,则对DefaultNode统计
    Node selectedNode = selectNodeByRequesterAndStrategy(rule, context, node);
    if (selectedNode == null) {
        return true;
    }
	// 判断规则
    return rule.getRater().canPass(selectedNode, acquireCount, prioritized);
}

这里对规则的判断先要通过FlowRule#getRater()获取流量控制器TrafficShapingController,然后再做限流。

TrafficShapingController有3种实现:

在这里插入图片描述

  • DefaultController:快速失败,默认的方式,基于滑动时间窗口算法
  • WarmUpController:预热模式,基于滑动时间窗口算法,只不过阈值是动态的
  • RateLimiterController:排队等待模式,基于漏桶算法

最终的限流判断都在TrafficShapingController的canPass方法中。

2.9.2.滑动时间窗口

滑动时间窗口的功能分两部分来看:

  • 一是时间区间窗口的QPS计数功能,这个是在StatisticSlot中调用的
  • 二是对滑动窗口内的时间区间窗口QPS累加,这个是在FlowRule中调用的

先来看时间区间窗口的QPS计数功能。

2.9.2.1.时间窗口请求量统计

回顾2.5章节中的StatisticSlot部分,有这样一段代码:

在这里插入图片描述

发现同时对DefaultNodeClusterNode在做QPS统计,我们知道DefaultNodeClusterNode都是StatisticNode的子类,这里调用addPassRequest()方法,最终都会进入StatisticNode中。

随便跟入一个:

在这里插入图片描述

两个计数器都是ArrayMetric类型,并且传入了两个参数:

// intervalInMs:是滑动窗口的时间间隔,默认为 1 秒
// sampleCount: 时间窗口的分隔数量,默认为 2,就是把 1秒分为 2个小时间窗
public ArrayMetric(int sampleCount, int intervalInMs) {
    this.data = new OccupiableBucketLeapArray(sampleCount, intervalInMs);
}

如图:

在这里插入图片描述

接下来,我们进入ArrayMetric类的addPass方法:

@Override
public void addPass(int count) {
    // 获取当前时间所在的时间窗
    WindowWrap<MetricBucket> wrap = data.currentWindow();
    // 计数器 +1
    wrap.value().addPass(count);
}

那么,计数器如何知道当前所在的窗口是哪个呢?

这里的data是一个LeapArray:

在这里插入图片描述

LeapArray的四个属性:

public abstract class LeapArray<T> {
    // 小窗口的时间长度,默认是500ms ,值 = intervalInMs / sampleCount
    protected int windowLengthInMs;
    // 滑动窗口内的 小窗口 数量,默认为 2
    protected int sampleCount;
    // 滑动窗口的时间间隔,默认为 1000ms
    protected int intervalInMs;
    // 滑动窗口的时间间隔,单位为秒,默认为 1
    private double intervalInSecond;
}

LeapArray是一个环形数组,因为时间是无限的,数组长度不可能无限,因此数组中每一个格子放入一个时间窗(window),当数组放满后,角标归0,覆盖最初的window。

在这里插入图片描述

因为滑动窗口最多分成sampleCount数量的小窗口,因此数组长度只要大于sampleCount,那么最近的一个滑动窗口内的2个小窗口就永远不会被覆盖,就不用担心旧数据被覆盖的问题了。

我们跟入 data.currentWindow();方法:

public WindowWrap<T> currentWindow(long timeMillis) {
    if (timeMillis < 0) {
        return null;
    }
	// 计算当前时间对应的数组角标
    int idx = calculateTimeIdx(timeMillis);
    // 计算当前时间所在窗口的开始时间.
    long windowStart = calculateWindowStart(timeMillis);

    /*
         * 先根据角标获取数组中保存的 oldWindow 对象,可能是旧数据,需要判断.
         *
         * (1) oldWindow 不存在, 说明是第一次,创建新 window并存入,然后返回即可
         * (2) oldWindow的 starTime = 本次请求的 windowStar, 说明正是要找的窗口,直接返回.
         * (3) oldWindow的 starTime < 本次请求的 windowStar, 说明是旧数据,需要被覆盖,创建 
         *     新窗口,覆盖旧窗口
         */
    while (true) {
        WindowWrap<T> old = array.get(idx);
        if (old == null) {
            // 创建新 window
            WindowWrap<T> window = new WindowWrap<T>(windowLengthInMs, windowStart, newEmptyBucket(timeMillis));
            // 基于CAS写入数组,避免线程安全问题
            if (array.compareAndSet(idx, null, window)) {
                // 写入成功,返回新的 window
                return window;
            } else {
                // 写入失败,说明有并发更新,等待其它人更新完成即可
                Thread.yield();
            }
        } else if (windowStart == old.windowStart()) {
            return old;
        } else if (windowStart > old.windowStart()) {
            if (updateLock.tryLock()) {
                try {
                    // 获取并发锁,覆盖旧窗口并返回
                    return resetWindowTo(old, windowStart);
                } finally {
                    updateLock.unlock();
                }
            } else {
                // 获取锁失败,等待其它线程处理就可以了
                Thread.yield();
            }
        } else if (windowStart < old.windowStart()) {
            // 这种情况不应该存在,写这里只是以防万一。
            return new WindowWrap<T>(windowLengthInMs, windowStart, newEmptyBucket(timeMillis));
        }
    }
}

找到当前时间所在窗口(WindowWrap)后,只要调用WindowWrap对象中的add方法,计数器+1即可。

这里只负责统计每个窗口的请求量,不负责拦截。限流拦截要看FlowSlot中的逻辑。

2.9.2.2.滑动窗口QPS计算

在2.9.1小节我们讲过,FlowSlot的限流判断最终都由TrafficShapingController接口中的canPass方法来实现。该接口有三个实现类:

  • DefaultController:快速失败,默认的方式,基于滑动时间窗口算法
  • WarmUpController:预热模式,基于滑动时间窗口算法,只不过阈值是动态的
  • RateLimiterController:排队等待模式,基于漏桶算法

因此,我们跟入默认的DefaultController中的canPass方法来分析:

@Override
public boolean canPass(Node node, int acquireCount, boolean prioritized) {
    // 计算目前为止滑动窗口内已经存在的请求量
    int curCount = avgUsedTokens(node);
    // 判断:已使用请求量 + 需要的请求量(1) 是否大于 窗口的请求阈值
    if (curCount + acquireCount > count) {
        // 大于,说明超出阈值,返回false
        if (prioritized && grade == RuleConstant.FLOW_GRADE_QPS) {
            long currentTime;
            long waitInMs;
            currentTime = TimeUtil.currentTimeMillis();
            waitInMs = node.tryOccupyNext(currentTime, acquireCount, count);
            if (waitInMs < OccupyTimeoutProperty.getOccupyTimeout()) {
                node.addWaitingRequest(currentTime + waitInMs, acquireCount);
                node.addOccupiedPass(acquireCount);
                sleep(waitInMs);

                // PriorityWaitException indicates that the request will pass after waiting for {@link @waitInMs}.
                throw new PriorityWaitException(waitInMs);
            }
        }
        return false;
    }
    // 小于等于,说明在阈值范围内,返回true
    return true;
}

因此,判断的关键就是int curCount = avgUsedTokens(node);

private int avgUsedTokens(Node node) {
    if (node == null) {
        return DEFAULT_AVG_USED_TOKENS;
    }
    return grade == RuleConstant.FLOW_GRADE_THREAD ? node.curThreadNum() : (int)(node.passQps());
}

因为我们采用的是限流,走node.passQps()逻辑:

// 这里又进入了 StatisticNode类
@Override
public double passQps() {
    // 请求量 ÷ 滑动窗口时间间隔 ,得到的就是QPS
    return rollingCounterInSecond.pass() / rollingCounterInSecond.getWindowIntervalInSec();
}

那么rollingCounterInSecond.pass()是如何得到请求量的呢?

// rollingCounterInSecond 本质是ArrayMetric,之前说过
@Override
public long pass() {
    // 获取当前窗口
    data.currentWindow();
    long pass = 0;
    // 获取 当前时间的 滑动窗口范围内 的所有小窗口
    List<MetricBucket> list = data.values();
	// 遍历
    for (MetricBucket window : list) {
        // 累加求和
        pass += window.pass();
    }
    // 返回
    return pass;
}

来看看data.values()如何获取 滑动窗口范围内 的所有小窗口:

// 此处进入LeapArray类中:

public List<T> values(long timeMillis) {
    if (timeMillis < 0) {
        return new ArrayList<T>();
    }
    // 创建空集合,大小等于 LeapArray长度
    int size = array.length();
    List<T> result = new ArrayList<T>(size);
	// 遍历 LeapArray
    for (int i = 0; i < size; i++) {
        // 获取每一个小窗口
        WindowWrap<T> windowWrap = array.get(i);
        // 判断这个小窗口是否在 滑动窗口时间范围内(1秒内)
        if (windowWrap == null || isWindowDeprecated(timeMillis, windowWrap)) {
            // 不在范围内,则跳过
            continue;
        }
        // 在范围内,则添加到集合中
        result.add(windowWrap.value());
    }
    // 返回集合
    return result;
}

那么,isWindowDeprecated(timeMillis, windowWrap)又是如何判断窗口是否符合要求呢?

public boolean isWindowDeprecated(long time, WindowWrap<T> windowWrap) {
    // 当前时间 - 窗口开始时间  是否大于 滑动窗口的最大间隔(1秒)
    // 也就是说,我们要统计的时 距离当前时间1秒内的 小窗口的 count之和
    return time - windowWrap.windowStart() > intervalInMs;
}

2.9.3.漏桶

上一节我们讲过,FlowSlot的限流判断最终都由TrafficShapingController接口中的canPass方法来实现。该接口有三个实现类:

  • DefaultController:快速失败,默认的方式,基于滑动时间窗口算法
  • WarmUpController:预热模式,基于滑动时间窗口算法,只不过阈值是动态的
  • RateLimiterController:排队等待模式,基于漏桶算法

因此,我们跟入默认的RateLimiterController中的canPass方法来分析:

@Override
public boolean canPass(Node node, int acquireCount, boolean prioritized) {
    // Pass when acquire count is less or equal than 0.
    if (acquireCount <= 0) {
        return true;
    }
    // 阈值小于等于 0 ,阻止请求
    if (count <= 0) {
        return false;
    }
	// 获取当前时间
    long currentTime = TimeUtil.currentTimeMillis();
    // 计算两次请求之间允许的最小时间间隔
    long costTime = Math.round(1.0 * (acquireCount) / count * 1000);

    // 计算本次请求 允许执行的时间点 = 最近一次请求的可执行时间 + 两次请求的最小间隔
    long expectedTime = costTime + latestPassedTime.get();
	// 如果允许执行的时间点小于当前时间,说明可以立即执行
    if (expectedTime <= currentTime) {
        // 更新上一次的请求的执行时间
        latestPassedTime.set(currentTime);
        return true;
    } else {
        // 不能立即执行,需要计算 预期等待时长
        // 预期等待时长 = 两次请求的最小间隔 +最近一次请求的可执行时间 - 当前时间
        long waitTime = costTime + latestPassedTime.get() - TimeUtil.currentTimeMillis();
        // 如果预期等待时间超出阈值,则拒绝请求
        if (waitTime > maxQueueingTimeMs) {
            return false;
        } else {
            // 预期等待时间小于阈值,更新最近一次请求的可执行时间,加上costTime
            long oldTime = latestPassedTime.addAndGet(costTime);
            try {
                // 保险起见,再判断一次预期等待时间,是否超过阈值
                waitTime = oldTime - TimeUtil.currentTimeMillis();
                if (waitTime > maxQueueingTimeMs) {
                    // 如果超过,则把刚才 加 的时间再 减回来
                    latestPassedTime.addAndGet(-costTime);
                    // 拒绝
                    return false;
                }
                // in race condition waitTime may <= 0
                if (waitTime > 0) {
                    // 预期等待时间在阈值范围内,休眠要等待的时间,醒来后继续执行
                    Thread.sleep(waitTime);
                }
                return true;
            } catch (InterruptedException e) {
            }
        }
    }
    return false;
}

与我们之前分析的漏桶算法基本一致:

在这里插入图片描述

2.10.DegradeSlot

最后一关,就是降级规则判断了。

Sentinel的降级是基于状态机来实现的:

在这里插入图片描述

对应的实现在DegradeSlot类中,核心API:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node, 
                  int count, boolean prioritized, Object... args) throws Throwable {
    // 熔断降级规则判断
    performChecking(context, resourceWrapper);
	// 继续下一个slot
    fireEntry(context, resourceWrapper, node, count, prioritized, args);
}

继续进入performChecking方法:

void performChecking(Context context, ResourceWrapper r) throws BlockException {
    // 获取当前资源上的所有的断路器 CircuitBreaker
    List<CircuitBreaker> circuitBreakers = DegradeRuleManager.getCircuitBreakers(r.getName());
    if (circuitBreakers == null || circuitBreakers.isEmpty()) {
        return;
    }
    for (CircuitBreaker cb : circuitBreakers) {
        // 遍历断路器,逐个判断
        if (!cb.tryPass(context)) {
            throw new DegradeException(cb.getRule().getLimitApp(), cb.getRule());
        }
    }
}

2.10.1.CircuitBreaker

我们进入CircuitBreaker的tryPass方法中:

@Override
public boolean tryPass(Context context) {
    // 判断状态机状态
    if (currentState.get() == State.CLOSED) {
        // 如果是closed状态,直接放行
        return true;
    }
    if (currentState.get() == State.OPEN) {
        // 如果是OPEN状态,断路器打开
        // 继续判断OPEN时间窗是否结束,如果是则把状态从OPEN切换到 HALF_OPEN,返回true
        return retryTimeoutArrived() && fromOpenToHalfOpen(context);
    }
    // OPEN状态,并且时间窗未到,返回false
    return false;
}

有关时间窗的判断在retryTimeoutArrived()方法:

protected boolean retryTimeoutArrived() {
    // 当前时间 大于 下一次 HalfOpen的重试时间
    return TimeUtil.currentTimeMillis() >= nextRetryTimestamp;
}

OPEN到HALF_OPEN切换在fromOpenToHalfOpen(context)方法:

protected boolean fromOpenToHalfOpen(Context context) {
    // 基于CAS修改状态,从 OPEN到 HALF_OPEN
    if (currentState.compareAndSet(State.OPEN, State.HALF_OPEN)) {
        // 状态变更的事件通知
        notifyObservers(State.OPEN, State.HALF_OPEN, null);
        // 得到当前资源
        Entry entry = context.getCurEntry();
        // 给资源设置监听器,在资源Entry销毁时(资源业务执行完毕时)触发
        entry.whenTerminate(new BiConsumer<Context, Entry>() {
            @Override
            public void accept(Context context, Entry entry) {
                // 判断 资源业务是否异常
                if (entry.getBlockError() != null) {
                    // 如果异常,则再次进入OPEN状态
                    currentState.compareAndSet(State.HALF_OPEN, State.OPEN);
                    notifyObservers(State.HALF_OPEN, State.OPEN, 1.0d);
                }
            }
        });
        return true;
    }
    return false;
}

这里出现了从OPEN到HALF_OPEN、从HALF_OPEN到OPEN的变化,但是还有几个没有:

  • 从CLOSED到OPEN
  • 从HALF_OPEN到CLOSED

2.10.2.触发断路器

请求经过所有插槽 后,一定会执行exit方法,而在DegradeSlot的exit方法中:

在这里插入图片描述

我们这里以异常比例熔断为例来看,进入ExceptionCircuitBreakeronRequestComplete方法:

@Override
public void onRequestComplete(Context context) {
    // 获取资源 Entry
    Entry entry = context.getCurEntry();
    if (entry == null) {
        return;
    }
    // 尝试获取 资源中的 异常
    Throwable error = entry.getError();
    // 获取计数器,同样采用了滑动窗口来计数
    SimpleErrorCounter counter = stat.currentWindow().value();
    if (error != null) {
        // 如果出现异常,则 error计数器 +1
        counter.getErrorCount().add(1);
    }
    // 不管是否出现异常,total计数器 +1
    counter.getTotalCount().add(1);
	// 判断异常比例是否超出阈值
    handleStateChangeWhenThresholdExceeded(error);
}

来看阈值判断的方法:

private void handleStateChangeWhenThresholdExceeded(Throwable error) {
    // 如果当前已经是OPEN状态,不做处理
    if (currentState.get() == State.OPEN) {
        return;
    }
	// 如果已经是 HALF_OPEN 状态,判断是否需求切换状态
    if (currentState.get() == State.HALF_OPEN) {
        if (error == null) {
            // 没有异常,则从 HALF_OPEN 到 CLOSED
            fromHalfOpenToClose();
        } else {
            // 有一次,再次进入OPEN
            fromHalfOpenToOpen(1.0d);
        }
        return;
    }
	// 说明当前是CLOSE状态,需要判断是否触发阈值
    List<SimpleErrorCounter> counters = stat.values();
    long errCount = 0;
    long totalCount = 0;
    // 累加计算 异常请求数量、总请求数量
    for (SimpleErrorCounter counter : counters) {
        errCount += counter.errorCount.sum();
        totalCount += counter.totalCount.sum();
    }
    // 如果总请求数量未达到阈值,什么都不做
    if (totalCount < minRequestAmount) {
        return;
    }
    double curCount = errCount;
    if (strategy == DEGRADE_GRADE_EXCEPTION_RATIO) {
        // 计算请求的异常比例
        curCount = errCount * 1.0d / totalCount;
    }
    // 如果比例超过阈值,切换到 OPEN
    if (curCount > threshold) {
        transformToOpen(curCount);
    }
}

try == null) {
return;
}
// 尝试获取 资源中的 异常
Throwable error = entry.getError();
// 获取计数器,同样采用了滑动窗口来计数
SimpleErrorCounter counter = stat.currentWindow().value();
if (error != null) {
// 如果出现异常,则 error计数器 +1
counter.getErrorCount().add(1);
}
// 不管是否出现异常,total计数器 +1
counter.getTotalCount().add(1);
// 判断异常比例是否超出阈值
handleStateChangeWhenThresholdExceeded(error);
}


来看阈值判断的方法:

```java
private void handleStateChangeWhenThresholdExceeded(Throwable error) {
    // 如果当前已经是OPEN状态,不做处理
    if (currentState.get() == State.OPEN) {
        return;
    }
	// 如果已经是 HALF_OPEN 状态,判断是否需求切换状态
    if (currentState.get() == State.HALF_OPEN) {
        if (error == null) {
            // 没有异常,则从 HALF_OPEN 到 CLOSED
            fromHalfOpenToClose();
        } else {
            // 有一次,再次进入OPEN
            fromHalfOpenToOpen(1.0d);
        }
        return;
    }
	// 说明当前是CLOSE状态,需要判断是否触发阈值
    List<SimpleErrorCounter> counters = stat.values();
    long errCount = 0;
    long totalCount = 0;
    // 累加计算 异常请求数量、总请求数量
    for (SimpleErrorCounter counter : counters) {
        errCount += counter.errorCount.sum();
        totalCount += counter.totalCount.sum();
    }
    // 如果总请求数量未达到阈值,什么都不做
    if (totalCount < minRequestAmount) {
        return;
    }
    double curCount = errCount;
    if (strategy == DEGRADE_GRADE_EXCEPTION_RATIO) {
        // 计算请求的异常比例
        curCount = errCount * 1.0d / totalCount;
    }
    // 如果比例超过阈值,切换到 OPEN
    if (curCount > threshold) {
        transformToOpen(curCount);
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/673099.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【C++初阶】string类常见题目详解(一)—— 仅仅反转字母、字符串中的第一个唯一字母、字符串最后一个单词的长度、验证回文串、字符串相加

​ ​&#x1f4dd;个人主页&#xff1a;Sherry的成长之路 &#x1f3e0;学习社区&#xff1a;Sherry的成长之路&#xff08;个人社区&#xff09; &#x1f4d6;专栏链接&#xff1a;C初阶 &#x1f3af;长路漫漫浩浩&#xff0c;万事皆有期待 上一篇博客&#xff1a;【C初阶】…

【Python 基础篇】Python 集合及集合常用函数

文章目录 导言一、集合的创建和访问二、集合的常用函数len()add()remove()union()intersection()difference()issubset()issuperset()clear() 总结 导言 在Python中&#xff0c;集合&#xff08;Set&#xff09;是一种无序、不重复的数据类型&#xff0c;用于存储多个唯一的元…

HCIP网络笔记分享——广域网协议及BGP协议

第二部分 HCIA回顾一、广域网技术1、HDLC2、PPP3、PAP4、CHAP5、GRE6、运行路由协议 二、动态路由协议1、OSPF2、重发布3、路由策略3.1 抓流量3.2 具体过程 4、BGP 三、BGP边界网关协议1、BGP的数据包2、BGP的状态机3、BGP的工作过程4、BGP的路由黑洞问题5、BGP的防环问题6、BG…

Studio One6.1.1免费中文版电子音乐、摇滚乐制作软件

Studio One6是一款专业的音乐制作软件&#xff0c;该软件提供了全面的音频编辑和混音功能&#xff0c;包括录制、编曲、合成、采样等多种工具&#xff0c;可用于制作各种类型的音乐&#xff0c;如流行音乐、电子音乐、摇滚乐等。 Studio One6.1的主要特点包括&#xff1a; 1. …

深入理解什么是端口(port)

每当看到有人的简历上写着熟悉 tcp/ip, http 等协议时, 我就忍不住问问他们: 你给我说说, 端口是啥吧! 可惜, 很少有人能说得让人满意... 所以这次就来谈谈端口(port), 这个熟悉的陌生人. 在此过程中, 还会谈谈间接层, naming service 等概念, IoC, 依赖倒置等原则以及 TCP 协议…

JavaEE的学习(Spring +Spring MVC + MyBatis)

一、Spring入门 Spring是一个轻量级的控制反转 (IoC-Inversion of Control)和面向切面 (AOP-Aspect Oriented Programming)的容器&#xff08;框架&#xff09;。它采用分层架构&#xff0c;由大约20个模块组成&#xff0c;这些模块分为Core Container、Data Access/Integrati…

什么是计算机蠕虫?

计算机蠕虫诞生的背景 计算机蠕虫的诞生与计算机网络的发展密切相关。20世纪60年代末和70年代初&#xff0c;互联网还处于早期阶段&#xff0c;存在着相对较少的计算机和网络连接。然而&#xff0c;随着计算机技术的进步和互联网的普及&#xff0c;计算机网络得以迅速扩张&…

TC8:SOMEIPSRV_FORMAT_09-10

SOMEIPSRV_FORMAT_09: Undefined bits in the Flag field 目的 Flag字段中的未定义位应静态设置为0 测试步骤 DUT CONFIGURE:启动具有下列信息的服务Service ID:SERVICE-ID-1Instance数量:1Tester:客户端-1监听在网卡上DUT:发送SOME/IP Notification消息Tester:验证接收…

Flutter应用开发,系统样式改不了?SystemChrome 状态栏、导航栏、屏幕方向……想改就改

文章目录 开发场景SystemChrome 介绍SystemChrome的使用导入 SystemChrome 包隐藏状态栏说明 改变状态栏的样式注意事项其他样式说明 锁定屏幕方向锁定屏幕方向实例注意事项 开发场景 开发APP时&#xff0c;我们经常要客制化状态栏、导航栏栏等的样式和风格&#xff0c;Flutte…

网络之网络基础入门

文章目录 前言一、局域网和广域网1.局域网LAN2.广域网WAN3.城域网和校园网4.如何区分广域网和局域网 二、协议1.概念2.理解3.协议分层4.数据传输的条件 三、OSI七层模型&#xff08;了解即可&#xff09;1.概念2.OSI七层模型 四、TCP/IP五层&#xff08;四层&#xff09;模型1.…

TC8:TCP_BASICS_11-17

TCP_BASICS_11: [finwait-2 -> time_wait] delay(2*MSL) -> [closed] 目的 TCP从FINWAIT-2状态到TIME-WAIT状态后,等待2MSL时间后,移动到CLOSED状态 关于为什么要等待2MSL时间,我的文章中讲过太多次了,这里就不提了 测试步骤 Tester:让DUT移动到FINWAIT-2状态Test…

使用Python批量进行数据分析

案例01 批量升序排序一个工作簿中的所有工作表——产品销售统计表.xlsx import xlwings as xw import pandas as pd app xw.App(visible False, add_book False) workbook app.books.open(产品销售统计表.xlsx) worksheet workbook.sheets # 列出工作簿中的所有工作表 fo…

SpringBoot 如何使用 ApplicationEventPublisher 发布事件

SpringBoot 如何使用 ApplicationEventPublisher 发布事件 在 SpringBoot 应用程序中&#xff0c;我们可以使用 ApplicationEventPublisher 接口来发布事件。事件可以是任何对象&#xff0c;当该对象被发布时&#xff0c;所有监听该事件的监听器都会收到通知。 下面是一个简单…

[Leetcode] 0733. 图像渲染

733. 图像渲染 点击上方&#xff0c;跳转至leetcode 题目描述 有一幅以 m x n 的二维整数数组表示的图画 image &#xff0c;其中 image[i][j] 表示该图画的像素值大小。 你也被给予三个整数 sr , sc 和 newColor 。你应该从像素 image[sr][sc] 开始对图像进行 上色填充 。 为…

第八章 MobileNetv3网络详解

系列文章目录 第一章 AlexNet网络详解 第二章 VGG网络详解 第三章 GoogLeNet网络详解 第四章 ResNet网络详解 第五章 ResNeXt网络详解 第六章 MobileNetv1网络详解 第七章 MobileNetv2网络详解 第八章 MobileNetv3网络详解 第九章 ShuffleNetv1网络详解 第十章…

1.RocketMQ的安装与集群架构

RocketMQ快速入门 RocketMQ是阿里巴巴2016年MQ中间件&#xff0c;使用Java语言开发&#xff0c;在阿里内部&#xff0c;RocketMQ承接了例如“双11”等高并发场景的消息流转&#xff0c;能够处理万亿级别的消息。 2.1 准备工作 2.1.1 下载RocketMQ RocketMQ最新版本&#xff1a;…

Redis缓存与数据库如何保证一致性?同步删除+延时双删+异步监听+多重保障方案

导航&#xff1a; 【Java笔记踩坑汇总】Java基础进阶JavaWebSSMSpringBoot瑞吉外卖SpringCloud黑马旅游谷粒商城学成在线MySQL高级篇设计模式常见面试题源码 目录 一、四种基础同步策略 1.1 同步策略 1.2 更新缓存还是删除缓存&#xff1f; 1.2.1 更新缓存的优缺点 1.2.2 …

【PCB专题】Allegro输出光绘文件的基本参数设置和光绘层建立

什么是Gerber PCB设计是一套流程体系,而PCB制造又是另一套流程体系。 PCB设计数据并不等同于PCB制造数据,也就是说PCB制造并不会直接使用我们的PCB设计数据。设计数据需要经过CAM(Computer-Aided Manufacturing 计算机辅助制造)转换成给机器使用的生产数据。 Gerber就是板厂…

【强化学习】动手学强化学习:多臂老虎机问题

动手学强化学习&#xff1a;多臂老虎机问题 强化学习思维导图简介问题介绍问题定义形式化描述累积懊悔估计期望奖励 贪心策略与 ϵ \epsilon ϵ-greedy策略上置信界算法汤普森采样算法参考资料 强化学习思维导图 简介 强化学习关注智能体和环境交互过程中的学习&#xff0c;这…

chatgpt赋能python:Python中的查找方法

Python中的查找方法 Python是一种常用的编程语言&#xff0c;它有很多强大的查找方法。这些方法可以让开发人员轻松地搜索数据、列表和文本。 以下是Python中最常用的查找方法&#xff1a; 列表查找方法 在Python中&#xff0c;可以使用多种方法来查找列表中的元素。以下是…