数据库优化可以从哪些维度入手?(建议收藏)

news2025/1/22 23:53:06

当有人问你如何对数据库进行优化时,很多人第一反应想到的就是SQL优化,如何创建索引,如何改写SQL,他们把数据库优化与SQL优化划上了等号。

当然这不能算是完全错误的回答,只不过思考的角度稍微片面了些,太“程序员思维”化了,没有站在更高层次来思考回答。那今天我们就将视角拔高,站在架构的角度来聊聊这一问题,数据库优化可以从哪些维度入手?

正如上图所示,数据库优化可以从架构优化,硬件优化,DB优化,SQL优化四个维度入手

此上而下,位置越靠前优化越明显,对数据库的性能提升越高。我们常说的SQL优化反而是对性能提高最小的优化。

接下来我们再看看每种优化该如何实施。

一、架构优化

一般来说在高并发的场景下对架构层进行优化其效果最为明显,常见的优化手段有:分布式缓存,读写分离,分库分表等,每种优化手段又适用于不同的应用场景。

1.1 分布式缓存

有句老话说的好,性能不够,缓存来凑。当需要在架构层进行优化时我们第一时间就会想到缓存这个神器,在应用与数据库之间增加一个缓存服务,如Redis或Memcache。

当接收到查询请求后,我们先查询缓存,判断缓存中是否有数据,有数据就直接返回给应用,如若没有再查询数据库,并加载到缓存中,这样就大大减少了对数据库的访问次数,自然而然也提高了数据库性能。

不过需要注意的是,引入分布式缓存后系统需要考虑如何应对缓存穿透、缓存击穿和缓存雪崩的问题。

简单理解一下 缓存穿透、缓存击穿 和 缓存雪崩

缓存穿透:它是指当用户在查询一条数据的时候,而此时数据库和缓存都没有关于这条数据的任何记录。这条数据在缓存中没找到就会向数据库请求获取数据。它拿不到数据时,是会一直查询数据库,这样会对数据库的访问造成很大的压力。

缓存击穿:一个热点key刚好在某个时间点失效了,但是这时候突然来了大量对这个key的并发访问请求,导致大并发请求直接穿透缓存直达数据库,瞬间对数据库的访问压力增大。

缓存雪崩:某一个时间段内,缓存集中过期失效,如果这个时间段内有大量请求,而查询数据量巨大,所有的请求都会达到存储层,存储层的调用量会暴增,引起数据库压力过大甚至宕机。

1.2 读写分离

一主多从,读写分离,主动同步,是一种常见的数据库架构优化手段。

一般来说当你的应用是读多写少,数据库扛不住读压力的时候,采用读写分离,通过增加从库数量可以线性提升系统读性能。

 

主库,提供数据库写服务;从库,提供数据库读能力;主从之间,通过binlog同步数据。

当准备实施读写分离时,为了保证高可用,需要实现故障的自动转移,主从架构会有潜在主从不一致性问题。

1.3 水平切分

水平切分,也是一种常见的数据库架构优化手段。

当你的应用业务数据量很大,单库容量成为性能瓶颈后,采用水平切分,可以降低数据库单库容量,提升数据库写性能。

当准备实施水平切分时,需要结合实际业务选取合理的分片键(sharding-key),有时候为了解决非分片键查询问题还需要将数据写到单独的查询组件,如ElasticSearch。

架构优化小结

  1. 读写分离主要是用于解决 “数据库读性能问题”

  2. 水平切分主要是用于解决“数据库数据量大的问题”

  3. 分布式缓存架构可能比读写分离更适用于高并发、大数据量大场景。

二、硬件优化

我们使用数据库,不管是读操作还是写操作,最终都是要访问磁盘,所以说磁盘的性能决定了数据库的性能。一块PCIE固态硬盘的性能是普通机械硬盘的几十倍不止。这里我们可以从吞吐率、IOPS两个维度看一下机械硬盘、普通固态硬盘、PCIE固态硬盘之间的性能指标。

吞吐率:单位时间内读写的数据量

  • 机械硬盘:约100MB/s ~ 200MB/s

  • 普通固态硬盘:200MB/s ~ 500MB/s

  • PCIE固态硬盘:900MB/s ~ 3GB/s

IOPS:每秒IO操作的次数

  • 机械硬盘:100 ~200

  • 普通固态硬盘:30000 ~ 50000

  • PCIE固态硬盘:数十万

通过上面的数据可以很直观的看到不同规格的硬盘之间的性能差距非常大,当然性能更好的硬盘价格会更贵,在资金充足并且迫切需要提升数据库性能时,尝试更换一下数据库的硬盘不失为一个非常好的举措,你之前遇到SQL执行缓慢问题在你更换硬盘后很可能将不再是问题。

三、DB优化

SQL执行慢有时候不一定完全是SQL问题,手动安装一台数据库而不做任何参数调整,再怎么优化SQL都无法让其性能最大化。要让一台数据库实例完全发挥其性能,首先我们就得先优化数据库的实例参数。

数据库实例参数优化遵循三句口诀:日志不能小、缓存足够大、连接要够用。

数据库事务提交后需要将事务对数据页的修改刷( fsync)到磁盘上,才能保证数据的持久性。这个刷盘,是一个随机写,性能较低,如果每次事务提交都要刷盘,会极大影响数据库的性能。数据库在架构设计中都会采用如下两个优化手法:

  • 先将事务写到日志文件RedoLog(WAL),将随机写优化成顺序写

  • 加一层缓存结构Buffer,将单次写优化成顺序写

所以日志跟缓存对数据库实例尤其重要。而连接如果不够用,数据库会直接抛出异常,系统无法访问。

接下来我们以Oracle、MySQL(InnoDB)、POSTGRES、达梦为例,看看每种数据库的参数该如何配置。

3.1 Oracle

参数分类参数名参数值备注
数据缓存SGA_TAGET、MEMORY_TARGET物理内存70-80%越大越好
数据缓存DB_CACHE_SIZE物理内存70-80%越大越好
SQL解析SHARED_POOL_SIZE4-16G不建议设置过大
监听及连接PROCESSES、SESSIONS、OPEN_CURSORS根据业务需求设置一般为业务预估连接数的120%
其他SESSION_CACHED_CURSORS大于200软软解析

3.2 MySQL

参数分类参数名参数值备注
数据缓存INNODB_BUFFER_POOL_SIZE物理内存50-80%一般来说越大性能越好
日志相关Innodb_log_buffer_size16-32M根据运行情况调整
日志相关sync_binlog1、100、01安全性最好
监听及连接max_connections根据业务情况调整可以预留一部分值
文件读写性能innodb_flush_log_at_trx_commit2安全和性能的折中考虑
其他wait_timeout,interactive_timeout28800避免应用连接定时中断

3.3 POSTGRES

参数分类参数名参数值备注
数据缓存SHARED_BUFFERS物理内存10-25%
数据缓存CACHE_BUFFER_SIZE物理内存50-60%
日志相关wal_buffer8-64M不建议设置过大过小
监听及连接max_connections根据业务情况调整一般为业务预估连接数的120%
其他maintenance_work_mem512M或更大
其他work_mem8-16M原始配置1M过小
其他checkpoint_segments32或者更大

3.4 达梦数据库

参数分类参数名参数值备注
数据缓存MEMROY_TARGET、MEMROY_POOL物理内存90%
数据缓存BUFFER物理内存60%数据缓存
数据缓存MAX_BUFFER物理内存70%最大数据缓存
监听及连接max_sessions根据业务需求设置一般为业务预估连接数的120%

四、SQL优化

SQL优化很容易理解,就是通过给查询字段添加索引或者改写SQL提高其执行效率,一般而言,SQL编写有以下几个通用的技巧:

  • 合理使用索引

索引少了查询慢;索引多了占用空间大,执行增删改语句的时候需要动态维护索引,影响性能 选择率高(重复值少)且被where频繁引用需要建立B树索引;一般join列需要建立索引;复杂文档类型查询采用全文索引效率更好;索引的建立要在查询和DML性能之间取得平衡;复合索引创建时要注意基于非前导列查询的情况

  • 使用UNION ALL替代UNION

UNION ALL的执行效率比UNION高,UNION执行时需要排重;UNION需要对数据进行排序

  • 避免select * 写法

执行SQL时优化器需要将 * 转成具体的列;每次查询都要回表,不能走覆盖索引。

  • JOIN字段建议建立索引

一般JOIN字段都提前加上索引

  • 避免复杂SQL语句

提升可阅读性;避免慢查询的概率;可以转换成多个短查询,用业务端处理

  • 避免where 1=1写法

  • 避免order by rand()类似写法

RAND()导致数据列被多次扫描

4.1 执行计划

要想优化SQL必须要会看执行计划,执行计划会告诉你哪些地方效率低,哪里可以需要优化。我们以MYSQL为例,来认识一下执行计划。

通过explain sql 可以查看执行计划,如:

 

字段解释
id每个被独立执行的操作标识,标识对象被操作的顺序,id值越大,先被执行,如果相同,执行顺序从上到下
select_type查询中每个select 字句的类型
table被操作的对象名称,通常是表名,但有其他格式
partitions匹配的分区信息(对于非分区表值为NULL)
type连接操作的类型
possible_keys可能用到的索引
key优化器实际使用的索引(最重要的列) 从最好到最差的连接类型为consteq_regrefrangeindexALL。当出现ALL时表示当前SQL出现了“坏味道”
key_len被优化器选定的索引键长度,单位是字节
ref表示本行被操作对象的参照对象,无参照对象为NULL
rows查询执行所扫描的元组个数(对于innodb,此值为估计值)
filtered条件表上数据被过滤的元组个数百分比
extra执行计划的重要补充信息,当此列出现Using filesort , Using temporary 字样时就要小心了,很可能SQL语句需要优化

4.2 SQL优化实战

这里为大家准备了一套SQL优化的综合实战,一步一步带你走一遍完整SQL优化的过程。

在执行优化之前我们需要先认识一下原始表及待优化的SQL。

1.原数据库表结构

CREATE TABLE `a`
(
    `id`          int(11) NOT NULL AUTO_INCREMENT,
    `seller_id`   bigint(20)                                       DEFAULT NULL,
    `seller_name` varchar(100) CHARACTER SET utf8 COLLATE utf8_bin DEFAULT NULL,
    `gmt_create`  varchar(30)                                      DEFAULT NULL,
    PRIMARY KEY (`id`)
);
CREATE TABLE `b`
(
    `id`          int(11) NOT NULL AUTO_INCREMENT,
    `seller_name` varchar(100) DEFAULT NULL,
    `user_id`     varchar(50)  DEFAULT NULL,
    `user_name`   varchar(100) DEFAULT NULL,
    `sales`       bigint(20)   DEFAULT NULL,
    `gmt_create`  varchar(30)  DEFAULT NULL,
    PRIMARY KEY (`id`)
);
CREATE TABLE `c`
(
    `id`         int(11) NOT NULL AUTO_INCREMENT,
    `user_id`    varchar(50)  DEFAULT NULL,
    `order_id`   varchar(100) DEFAULT NULL,
    `state`      bigint(20)   DEFAULT NULL,
    `gmt_create` varchar(30)  DEFAULT NULL,
    PRIMARY KEY (`id`)
);

2.待优化的SQL(查询当前用户在当前时间前后10个小时的订单情况,并根据订单创建时间升序排列)

select a.seller_id,
       a.seller_name,
       b.user_name,
       c.state
from a,
     b,
     c
where a.seller_name = b.seller_name
  and b.user_id = c.user_id
  and c.user_id = 17
  and a.gmt_create
    BETWEEN DATE_ADD(NOW(), INTERVAL – 600 MINUTE)
    AND DATE_ADD(NOW(), INTERVAL 600 MINUTE)
order by a.gmt_create;

3.原表数据量:

4.原执行时间

0.21s,执行速度还挺快

5.原执行计划

真是糟糕的执行计划。(全表扫描,没有索引;临时表;排序)

初步优化思路:

  1. SQL中 where条件字段类型要跟表结构一致,表中user_id 为varchar(50)类型,实际SQL用的int类型,存在隐式转换,也未添加索引。将b和c表user_id 字段改成int类型。

  2. 因存在b表和c表关联,将b和c表user_id创建索引

  3. 因存在a表和b表关联,将a和b表seller_name字段创建索引

  4. 利用复合索引消除临时表和排序

初步优化SQL

alter table b modify `user_id` int(10) DEFAULT NULL;
alter table c modify `user_id` int(10) DEFAULT NULL;
alter table c add index `idx_user_id`(`user_id`);
alter table b add index `idx_user_id_sell_name`(`user_id`,`seller_name`);
alter table a add index `idx_sellname_gmt_sellid`(`gmt_create`,`seller_name`,`seller_id`);

查看优化后的执行时间

通过执行计划可以看到,执行时间从0.21s优化成了0.01s,执行时间近乎缩短20倍。

查看优化后的执行计划

执行计划显示从全表扫描优化成了走索引,rows减少,但是此时出现了2个告警。

通过show warning语句 查看告警信息

 提示gmt_crteate 的格式不对,mysql进行了隐式转换导致不能使用索引。

继续优化,修改gmtc-create的格式

alter table a modify "gmt_create" datetime DEFAULT NULL;

再次查看执行时间

 

再次查看执行计划

 

至此,我们的优化过程结束,结果非常完美。

SQL优化小结

这里给大家总结一下SQL优化的套路:

  1. 查看执行计划 explain sql

  2. 如果有告警信息,查看告警信息 show warnings;

  3. 查看SQL涉及的表结构和索引信息

  4. 根据执行计划,思考可能的优化点

  5. 按照可能的优化点执行表结构变更、增加索引、SQL改写等操作

  6. 查看优化后的执行时间和执行计划

  7. 如果优化效果不明显,重复第四步操作

五、小结

我们今天分别从架构优化、硬件优化、DB优化、SQL优化四个角度探讨了如何实施优化,提升数据库性能。但是大家还是要记住一句话,数据库系统没有银弹, 要让适合的系统,做合适的事情。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/652736.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

还在争论WPS、Office哪个更好用?3款云办公平台深度评测!

随着当下智能化产业发展,办公系统也逐渐升级。像答主所在公司就已经使用了简道云办公平台,真正实现无纸化办公,极大地提升了工作效率。什么是云办公平台;相较于传统办公平台,云办公平台又哪些独特的优势呢,…

Vue-props配置

props配置 像el,data,watch,methods…都是vue的配置项,props也是一个配置项 props主要用来实现组件复用,并且动态绑定数据,它有3种使用方式,下面一一说明 通过案例进行分析使用props配置学习如何使用以及…

手写STM32IIC协议

本文使用正点原子战舰v4开发板,用软件模拟iic协议而非使用硬件iic。 STEP1: 定义、声明引脚功能。我们用PB6、PB7模拟IIC的SCL、SDA。另外定义IO方向 #define IIC_SCL PBout(6) //SCL #define IIC_SDA PBout(7) //SDA #define READ_SDA PBin(7…

chatgpt赋能python:Python绘制彩色蟒蛇-让你的绘图更加有趣

Python绘制彩色蟒蛇-让你的绘图更加有趣 如果你是一名喜欢使用Python语言进行绘图的程序员,你可能会遇到无聊的绘图任务,这时候你就需要一个有趣的绘图项目来激发你的创造力。在本文中,我将介绍如何使用Python代码绘制一条彩色的蟒蛇&#x…

Unity与Android交互(3)——需要了解的Andorid基础知识

【前言】 在上一篇文章中只是说了如何实现unity和android交互的问题,要了解其中的原理还必须要先了解一些Android的基础知识,了解后也能搞清楚如何接入SDK或者写Native插件。 (以下只是简要介绍,详细的内容需要自己去看链接&…

Oracle 查询优化改写(第四章)

第四章 插入、更新与删除 1.阻止对某几列插入 2. 用with check option 限制数据录入 当约束条件比较简单时,可以直接加在表中,如工资必须大于0: alter table emp add constraint ch_sal check(sal>0) 但有些复杂或特殊的约束条件是不能…

MySQL高级篇-索引分析与优化、数据库锁机制与主从复制

MySQL高级 基于MySQL版本5.5 MySQL的架构介绍 MySQL简介 概述 MySQL是一个关系型数据库管理系统,由瑞典MySQL AB公司开发,目前属于Oracle公司。 MySQL是一种关联数据库管理系统,将数据保存在不同的表中,而不是将所有的数据放在…

化工企业针对消防安全的具体防火对策介绍 安科瑞 许敏

摘要:我们国家对化工企业的消防安全问题是非常关注的,而且化工企业当中生产的产品都是具有危险性的,极容易发生爆炸等危险事故,所以化工企业出现泄漏就会产生严重后果。下面这篇文章我们就对化工企业的消防安全问题进行具体的探讨…

机器人视觉梳理(下)

原创 | 文 BFT机器人 03 机器人3D视觉应用案例 1.波士顿动力Atlas Atlas 使用 TOF 深度相机以每秒 15 帧的速度生成环境的点云,点云是测距的大规模集合。Atlas 的感知软件使用一种名为多平面分割的算法从点云中提取平面。多平面分割算法的输入馈入到一个映射系统…

Linux运维监控学习笔记3

通过Zabbix-agent监控远程主机 1、在agent1上安装abbix-agent包: yum install -y zabbix-agent 2、配置zabbix-agent端的配置文件,启动服务器并进行开机自启动配置: vim /etc/zabbix/zabbix-agentd.confServer192.168.17.11 # 被动模式s…

【数据分析】如何使用docker部署程序并移植(算法、接口)

原文作者:我辈李想 版权声明:文章原创,转载时请务必加上原文超链接、作者信息和本声明。 文章目录 前言一、Docker的基本使用1.安装Docker2.列出本地镜像3.获取镜像,创建本地ubuntu:13.10镜像4.查找镜像5.删除本地镜像6.创建自定义镜像7.镜像…

数学专业毕业生做高性能计算工程师合适吗?

一般人看到数学专业都会很奇怪,学数学有什么用呢,能就业吗?其实不然。像数学、应用数学、物理、地球物理、化工等传统工科专业,在当今形式多变的就业环境下,反而是通用的香饽饽。 拿数学专业来举例,就有有许…

MATLAB | 如何使用MATLAB获取顶刊cell全部绘图(附带近3年全部图像)

众所周知,学习科研绘图、配色最好的办法就是去观摩顶级期刊上的作图,本来想着收集各个顶级期刊绘图提供给大家,但是每年的图像加起来大约3-5G,撑死也就能提供三四年的图像,再多内存可能不太够了,于是我写了…

【python】pandas-DataFrame类型数据重命名列表头

目录 0.环境 1.将DataFrame类型数据某一列重命名 0.环境 windows jupyter notebook python 使用场景: 在处理数据对齐的问题时,两个表格的对齐列名不相同(一个数据集是DataFrame类型,一个数据集是geopandas类型)&…

加速金融营销科技价值发现,神策数据双引擎赋能数字化客户经营

6 月 9 日,「开放融合,引领营销 5.0 新纪元——暨 2023 年金融营销科技价值发现论坛」在中国杭州成功举办。 神策数据创始人 & CEO 桑文锋发表了《双引擎赋能数字化客户经营》的主题演讲,并与数十位来自银行、证券、保险、互联网金融等领…

基于Eclipse+Java+Swing+Mysql实现进销存管理系统

基于EclipseJavaSwingMysql实现进销存管理系统 一、系统介绍二、功能展示1.登陆2.商品列表3.购买清单4.个人中心5.商品采购6、采购记录7、商品预警 三、数据库四、其它1.其他系统实现五.获取源码 一、系统介绍 用户:商品列表、购买清单、个人中心 管理员&#xff1…

腾讯安全升级三大原子能力,助力企业构建数字安全免疫力

数字化时代,企业如何治好“发展”与“安全”失调症?近日,腾讯安全、IDC、腾讯研究院等联合举办研讨论坛,发布“数字安全免疫力”模型框架,提出用免疫思维应对新时期下安全建设与企业发展难以协同的挑战。 (腾讯安全联合IDC发布“…

Redis入门 - Redis概念和基础

原文首更地址,阅读效果更佳!Redis入门 - Redis概念和基础 https://www.codermast.com/database/redis/introduce-redis.html 什么是NoSQL NoSQL,泛指非关系型的数据库。NoSQL最常见的解释是 "non-relational", 很多人…

Spring Boot整合Redis

文章目录 一、Redis概述二、使用Spring Boot 整合 Redis(一)搭建Redis环境(二)下载和安装Redis可视化管理工具(三)创建Spring Boot项目RedisDemo(四)创建实体类1、创建地址实体类 - …

建立和使用Python自定义模块

文章目录 (一)现状以及问题(二)Python模块(2.1)包的结构(2.2)包的位置(2.2.1)site-packages目录(2.2.2)dist-packages目录 &#xff0…