【C++】的继承

news2024/10/7 8:27:51

继承的概念及定义

继承的概念

继承(inheritance)机制是面向对象程序设计使代码可以复用的最重要的手段,它允许程序员在保持原有类特性的基础上进行扩展,增加功能,这样产生新的类,称派生类。继承呈现了面向对象程序设计的层次结构,体现了由简单到复杂的认知过程。以前我们接触的复用都是函数复用,继承是类设计层次的复用

#include <iostream>
#include <string>
using namespace std;

class Person
{
public:
	void Print()
	{
		cout << "name:" << _name << endl;
		cout << "age:" << _age << endl;
	}
protected:
	string _name = "peter"; // 姓名
	int _age = 18; // 年龄
};
// 继承后父类的Person的成员(成员函数+成员变量)都会变成子类的一部分。这里体现出了
//Student和Teacher复用了Person的成员。下面我们使用监视窗口查看Student和Teacher对象,可
//以看到变量的复用。调用Print可以看到成员函数的复用。
class Student : public Person
{
protected:
	int _stuid; // 学号
};

class Teacher : public Person
{
protected:
	int _jobid; // 工号
};

int main()
{
	Student s;
	Teacher t;
	s.Print();
	t.Print();
	return 0;
}

继承定义

定义格式

下面我们看到Person是父类,也称作基类。Student是子类,也称作派生类。
在这里插入图片描述

继承关系和访问限定符

在这里插入图片描述

继承基类成员访问方式的变化

类成员/继承方式public继承protected继承private继承
基类的public成员派生类的public成员派生类的protected成员派生类的private成员
基类的protected成员派生类的protected成员派生类的protected成员派生类的private成员
基类的private成员在派生类中不可见在派生类中不可见在派生类中不可见

总结:

  1. 基类private成员在派生类中无论以什么方式继承都是不可见的。这里的不可见是指基类的私有成员还是被继承到了派生类对象中,但是语法上限制派生类对象不管在类里面还是类外面都不能去访问它。
  2. 基类private成员在派生类中是不能被访问,如果基类成员不想在类外直接被访问,但需要在派生类中能访问,就定义为protected。可以看出保护成员限定符是因继承才出现的。
  3. 实际上面的表格我们进行一下总结会发现,基类的私有成员在子类都是不可见。基类的其他成员在子类的访问方式 == Min(成员在基类的访问限定符,继承方式),public > protected > private。
  4. 使用关键字class时默认的继承方式(就是继承方式不写)是private,使用struct时默认的继承方式(就是继承方式不写)是public,不过最好显示的写出继承方式。
  5. 在实际运用中一般使用都是public继承,几乎很少使用protetced/private继承,也不提倡使用protetced/private继承,因为protetced/private继承下来的成员都只能在派生类的类里面使用,实际中扩展维护性不强。
// 实例演示三种继承关系下基类成员的各类型成员访问关系的变化  
class Person
{
public:
	void Print()
	{
		cout << _name << endl;
		cout << _age << endl;

	}
protected:// 在子类可见的(在子类中能用) 只能防外面(类外面不能用)
	string _name = "张三"; // 姓名
private:// 在子类是不可见(在子类中不能用)  不仅仅可以放外人还可以防儿子
	int _age = 18; // 年龄
};
//class Student :  Person  默认继承,继承方式为private
//class Student : protected Person
//class Student : private Person
class Student : public Person
{

protected:
	int _stunum; // 学号
};

int main()
{
	Student b1;
	b1.Print();//子类通过public 和 protected 虽然不能访问父类的private,
	//但可以通过调用父类的具有public 和 protected的函数访问父类的private

	return 0;
}

基类和派生类对象赋值转换

  • 派生类对象 可以赋值给 基类的对象 / 基类的指针 / 基类的引用。这里有个形象的说法叫切片或者切割。寓意把派生类中父类那部分切来赋值过去。
  • 基类对象不能赋值给派生类对象。
  • 基类的指针或者引用可以通过强制类型转换赋值给派生类的指针或者引用。但是必须是基类的指针是指向派生类对象时才是安全的。
class Person
{
public:
	void Print()
	{
		cout << _name << endl;
		cout << _age << endl;

	}
//protected:// 在子类可见的(在子类中能用) 只能防外面(类外面不能用)
	string _name = "张三"; // 姓名
//private:// 在子类是不可见(在子类中不能用)  不仅仅可以放外人还可以防儿子
	int _age = 18; // 年龄
};

class Student : public Person
{
public:
	void func()
	{
		cout << "void func()" << endl;
	}
//protected:
	int _stuid; // 学号
};

class Teacher : public Person
{
protected:
	int _jobid; // 工号
};

int main()
{
	double d = 1.1;
	int i = d;  // 隐式类型转换
	const int& ri = d;
	//产生的临时变量具有常性,所以要加上const

	Student s;
	// 1.子类对象可以赋值给父类对象/指针/引用
	Person p = s;//天然支持的不存在类型转换的发生,不产生临时变量,调用基类的拷贝构造函数
	p._age--;
	Person& rp = s;//证明没有临时变量产生
	rp._age++;
	Person* ptrp = &s;
	ptrp->_age++;
	//2.基类对象不能赋值给派生类对象
	s = p;

	return 0;
}

在这里插入图片描述

继承中的作用域

  1. 在继承体系中基类和派生类都有独立的作用域。
  2. 子类和父类中有同名成员,子类成员将屏蔽父类对同名成员的直接访问,这种情况叫隐藏,也叫重定义。(在子类成员函数中,可以使用 基类::基类成员 显示访问
  3. 需要注意的是如果是成员函数的隐藏,只需要函数名相同就构成隐藏(不考虑参数,不考虑返回值)。
  4. 注意在实际中在继承体系里面最好不要定义同名的成员。

成员变量构成隐藏(重定义)

// Student的_num和Person的_num构成隐藏关系,可以看出这样代码虽然能跑,但是非常容易混淆
class Person
{
protected:
	string _name = "李四"; // 姓名
	int _num = 111;// 身份证号
};
class Student : public Person
{
public:
	void Print()
	{
		cout << " 姓名:" << _name << endl;
		cout << " 身份证号:" << Person::_num << endl;//如果想访问父类的_num要用区域限定符
		cout << " 学号:" << _num << endl;//局部优先
	}
protected:
	int _num = 999; // 学号
};
void Test()
{
	Student s1;
	s1.Print();
};

成员函数构成隐藏(重定义)

// B中的fun和A中的fun不是构成重载,因为不是在同一作用域
// B中的fun和A中的fun构成隐藏,成员函数满足函数名相同就构成隐藏。
class A
{
public:
	void fun()
	{
		cout << "func()" << endl;
	}
};
class B : public A
{
public:
	void fun(int i)
	{
		cout << "func(int i)->" << i << endl;
	}
};

void Test()
{
	B b;
	b.fun(10);//参数正确,局部优先
	b.A::fun();//b默认的用fun默认调的是自己的fun函数,传参不正确所以才报错,加上区域限定符才能指定调基类
};

int main()
{
	Test();
	return 0;
}

只有父类(基类)与子类(派生类)才会有隐藏,在使用时最好不要构成同名(隐藏),不然就把自己给坑了

派生类的默认成员函数

6个默认成员函数,“默认”的意思就是指我们不写,编译器会变我们自动生成一个,那么在派生类中,这几个成员函数是如何生成的呢?

  1. 派生类的构造函数必须调用基类的构造函数初始化基类的那一部分成员。如果基类没有默认的构造函数,则必须在派生类构造函数的初始化列表阶段显示调用。
  2. 派生类的拷贝构造函数必须调用基类的拷贝构造完成基类的拷贝初始化。
  3. 派生类的operator=必须要调用基类的operator=完成基类的复制。
  4. 派生类的析构函数会在被调用完成后自动调用基类的析构函数清理基类成员。因为这样才能保证派生类对象先清理派生类成员再清理基类成员的顺序。
  5. 派生类对象初始化先调用基类构造再调派生类构造。
  6. 派生类对象析构清理先调用派生类析构再调基类的析构。
  7. 因为后续一些场景析构函数需要构成重写,重写的条件之一是函数名相同。那么编译器会对析构函数名进行特殊处理,处理destrutor(),所以父类析构函数不加virtual的情况下,子类析构函数和父类析构函数构成隐藏关系。
class Person
{
public:
	Person(const char* name = "peter")
		: _name(name)
	{
		cout << name << endl;
		cout << "Person()" << endl;
	}

	Person(const Person& p)
		: _name(p._name)
	{
		cout << "Person(const Person& p)" << endl;
	}

	Person& operator=(const Person& p)
	{
		cout << "Person operator=(const Person& p)" << endl;
		if (this != &p)
			_name = p._name;

		return *this;
	}

	~Person()
	{
		cout << "~Person()" << endl;
	}
protected:
	string _name; // 姓名
};

class Student : public Person
{
public:
	Student(const char* name, int num)
		: Person(name)//派生类显示调用基类语法的规定
		, _num(num)
	{
		//如果不显示调用,初始化列表会调用默认的构造函数(无参的构造函数)
		cout << "Student()" << endl;
	}

	Student(const Student& s)
		: Person(s)//调用时会发生切片
		, _num(s._num)
	{
		//如果不显示调用,初始化列表会调用默认的构造函数(无参的构造函数),也会发生切片
		cout << "Student(const Student& s)" << endl;
	}

	Student& operator = (const Student& s)
	{
		cout << "Student& operator= (const Student& s)" << endl;
		if (this != &s)
		{
			Person::operator =(s);//构成隐藏,由于局部优先的原则,所以要指定区域
			_num = s._num;
		}
		return *this;
	}
	//析构函数会被处理成destructor,如果显示调用析构,两个析构函数都被处理成destructor
	//构成了隐藏,又因为析构函数要符合栈的先创建后销毁的原则,
	~Student()
	{
		//Person::~Person(); 错误使用
		//派生类的析构函数,不能显示调用基类的析构函数,派生类的析构函数会自动调用基类的析构函数,使其保证
		//先子后父的析构顺序,所以显示调用父类的析构就多析构了一次,因为是打乱这个顺序
		//子类可能用父类的资源,但是父类不可能用子类的成员,也可以这样理解
		cout << "~Student()" << endl;
	}
protected:
	int _num; //学号
};

void Test()
{
	Student s1("jack", 18);
	Student s2(s1);
	Student s3("rose", 17);
	s1 = s3;
}

继承与友元

友元关系不能继承,也就是说基类友元不能访问子类私有和保护成员

class Student;
class Person
{
public:
	friend void Display(const Person& p, const Student& s);
protected:
	string _name; // 姓名
};
class Student : public Person
{
protected:
	int _stuNum; // 学号
};
void Display(const Person& p, const Student& s)
{
	cout << p._name << endl;
	//cout << s._stuNum << endl;  友元关系不能继承
}
int main()
{
	Person p;
	Student s;
	Display(p, s);
	return 0;
}

如果想访问子类成员需要在子类中定义友元。

继承与静态成员

class Person
{
public:
	Person() { ++_count; }
protected:
	string _name; // 姓名
public:
	static int _count; // 统计人的个数。
};
int Person::_count = 0;

class Student : public Person
{
protected:
	int _stuNum; // 学号
};

class Graduate : public Student
{
protected:
	string _seminarCourse; // 研究科目
};

int main()
{
	Person s1;
	Student s2;
	Graduate s3;
	cout << &Person::_count << endl;
	cout << &Student::_count << endl;
	cout << &Graduate::_count << endl;

	cout << "人数 :" << Person::_count << endl;
	return 0;
}

在这里插入图片描述

复杂的菱形继承及菱形虚拟继承

单继承:一个子类只有一个直接父类时称这个继承关系为单继承
在这里插入图片描述
多继承:一个子类有两个或以上直接父类时称这个继承关系为多继承
在这里插入图片描述
菱形继承:菱形继承是多继承的一种特殊情况。
在这里插入图片描述
菱形继承的问题:从下面的对象成员模型构造,可以看出菱形继承有数据冗余和二义性的问题。在Assistant的对象中Person成员会有两份。

class Person
{
public:
	string _name; // 姓名
};

class Student : public Person
{
protected:
	int _num; //学号
};

class Teacher : public Person
{
protected:
	int _id; // 职工编号
};

class Assistant : public Student, public Teacher
{
protected:
	string _majorCourse; // 主修课程
};

int main()
{
	// 这样会有二义性无法明确知道访问的是哪一个
	Assistant a;
	//a._name = "peter";
	// 需要显示指定访问哪个父类的成员可以解决二义性问题,但是数据冗余问题无法解决
	a.Student::_name = "xxx";
	a.Teacher::_name = "yyy";

	cout << &a.Student::_name << endl;
	cout << &a.Teacher::_name << endl;
	return 0;
}

在这里插入图片描述
在这里插入图片描述
虚拟继承可以解决菱形继承的二义性和数据冗余的问题。如上面的继承关系,在Student和Teacher的继承Person时使用虚拟继承,即可解决问题。需要注意的是,虚拟继承不要在其他地方去使用。

C++2.0出现菱形继承的问题,C++3.0就开始填空填坑了.。 在菱形继承的腰部加上virtual,就能解决菱形继承的问题。
谁先被继承,谁先被声明

class Person
{
public:
	string _name; // 姓名
};

class Student : virtual public Person
{
protected:
	int _num; //学号
};

class Teacher : virtual public Person
{
protected:
	int _id; // 职工编号
};

class Assistant : public Student, public Teacher
{
protected:
	string _majorCourse; // 主修课程
};

int main()
{
	Assistant a;
	a.Student::_name = "xxx";
	a.Teacher::_name = "yyy";
	a._name = "peter";
	cout << &a._name << endl;
	cout << &a.Student::_name << endl;
	cout << &a.Teacher::_name << endl;
	return 0;
}

在这里插入图片描述
虚拟继承解决数据冗余和二义性的原理
为了研究虚拟继承原理,我们给出了一个简化的菱形继承继承体系,再借助内存窗口观察对象成员的模型。
谁先被继承,谁先被声明,以下面为例声明顺序为A,B,C,D

class A
{
public:
	int _a;
};

// class B : public A
class B : virtual public A
{
public:
	int _b;
};

//class C : public A
class C : virtual public A
{
public:
	int _c;
};

class D : public B, public C
{
public:
	int _d;
};

int main()
{
	D d;
	d.B::_a = 1;
	d.C::_a = 2;
	d._b = 3;
	d._c = 4;
	d._d = 5;
	return 0;
}

下图是菱形继承的内存对象成员模型:这里可以看到数据冗余
在这里插入图片描述
下图是菱形虚拟继承的内存对象成员模型:这里可以分析出D对象中将A放到的了对象组成的最下面,这个A同时属于B和C,那么B和C如何去找到公共的A呢?这里是通过了B和C的两个指针,指向的一张表。这两个指针叫虚基表指针,这两个表叫虚基表。虚基表中存的偏移量。通过偏移量可以找到下面的A。
在这里插入图片描述
相同类型的指针查找方式是一样的。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/652067.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

010、体系架构之TiFlash

TiFlash TiFlash 功能架构异步复制一致性读取场景选择是选择TiKV还是TiFLash TiFlash 功能 异步复制一致性读取(写虽然是异步&#xff0c;但读可以做到一致性)引擎智能选择计算加速 架构 TiFLASH 也是通过raft 算法进行同步&#xff0c;但它不怎么消耗资源&#xff0c;因为它…

ProGuard 进阶系列(二)配置解析

书接上文&#xff0c;从开源库中把代码下载到本地后&#xff0c;就可以在 IDE 中进行运行了。从 main 方法入手&#xff0c;可以看到 ProGuard 执行的第一步就是去解析参数。本文的内容主要分析源码中我们配置的规则解析的实现。 在上一篇文章末尾&#xff0c;在 IDE 中&#x…

Vue Router4

后端路由 客户端请求不同的URL服务器匹配URL并给一个Controller处理Controller处理完返回渲染好的HTML页面或数据给前端 优点&#xff1a; 不需要单独加载js和css&#xff0c;直角交给浏览器展示&#xff0c;有利于SEO优化 缺点&#xff1a; 页面有后端人员编写或由前端人员…

告别里程焦虑:深蓝S7超级增程打造超长续航

提起新能源汽车&#xff0c;估计许多人第一时间都会想要查看它的续航里程。 虽然如今的新能源汽车在续航里程上较过去已经有了很大改进&#xff0c;但是稀缺的充电桩和漫长的充电时间&#xff0c;仍然无法让需要长途出行的用户摆脱里程焦虑。 那么问题就来了&#xff1a;有没有…

基于协同过滤算法的外贸出口电子电器产品的推荐系统的设计与实现源码+文档

博主介绍&#xff1a;✌在职Java研发工程师、专注于程序设计、源码分享、技术交流、专注于Java技术领域和毕业设计✌ 项目名称 基于协同过滤算法的外贸出口电子电器产品的推荐系统的设计与实现源码文档 视频演示 https://www.bilibili.com/video/BV1HW4y197Fe/ 系统介绍 摘 要 …

dubbo源码之-ExtensionInjector

dubbo源码之-ExtensionInjector 概述源码入口Extension 是如何获取到&#xff1f;SpiExtensionInjector 概述 其实ExtensionInjector 非常简单&#xff0c; 我们知道dubbo有ioc注入的功能&#xff0c; 是靠的set方法注入&#xff0c;对应的底层源码主要是ExtensionInjector 如…

MySQL数据库语言一、DDL

&#x1f618;作者简介&#xff1a;正在努力的99年打工人。 &#x1f44a;宣言&#xff1a;人生就是B&#xff08;birth&#xff09;和D&#xff08;death&#xff09;之间的C&#xff08;choise&#xff09;&#xff0c;做好每一个选择。 &#x1f64f;创作不易&#xff0c;动…

华为OD机试真题B卷 JavaScript 实现【分班】,附详细解题思路

一、题目描述 幼儿园两个班的小朋友在排队时混在了一起&#xff0c;每位小朋友都知道自己是否与前面一位小朋友是否同班&#xff0c;请你帮忙把同班的小朋友找出来。 小朋友的编号为整数&#xff0c;与前一位小朋友同班用Y表示&#xff0c;不同班用N表示。 二、输入描述 输…

uniapp/手机APP使用支付宝支付(服务端)

博主介绍&#xff1a;✌全网粉丝4W&#xff0c;全栈开发工程师&#xff0c;从事多年软件开发&#xff0c;在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战、定制、远程&#xff0c;博主也曾写过优秀论文&#xff0c;查重率极低&#xff0c;在这方面…

chatgpt赋能python:Python接口应用于SEO的指南

Python接口应用于SEO的指南 Python成为了web开发中最流行的语言之一&#xff0c;而且尤其在SEO领域中被广泛应用。一些Python库和框架可帮助SEO团队实现其目标&#xff0c;如排名跟踪&#xff0c;爬取数据&#xff0c;进行网站分析&#xff0c;等等。在本文中&#xff0c;我们…

基于Hexo和Butterfly创建个人技术博客,(9) 优化butterfly主题配置文章版本

Butterfly官方网站&#xff0c;请 点击进入 本章目标&#xff1a; 掌握butterfly主题对文章的配置&#xff0c;熟悉并可按需配置到个人的博客站点中&#xff0c;本章内容是一个必会章节&#xff0c;不仅包括文章的UI美化、SEO相关配置还包括其它增加的功能&#xff0c;内容不多…

英语不好能不能学编程?

入门教程、案例源码、学习资料、读者群 请访问&#xff1a; python666.cn 大家好&#xff0c;欢迎来到 Crossin的编程教室 &#xff01; 常有人问我&#xff1a;我英语不好&#xff0c;想学编程行不行&#xff1f; 这个问题需要分情况讨论。 1. 可以学 如果你因为担心自己英语不…

chatgpt赋能python:Python怎么用?Python编程的入门指南

Python怎么用&#xff1f;Python编程的入门指南 Python是一种流行的高级编程语言&#xff0c;它被广泛应用于数据分析、机器学习、Web开发、自动化测试等领域。Python语言非常容易学习和使用&#xff0c;因此非常适合初学者和有经验的开发人员。在这篇文章中&#xff0c;我们将…

手把手教你在CentOS7.9上使用docker 安装MySQL5.7

前言 大家好&#xff0c;又见面了&#xff0c;我是沐风晓月&#xff0c;本文主要讲解如何用docker在centos7.9系统上安装MySQL5.7&#xff0c;以及如何设置MySQL的远程登录。 文章收录到【容器管理】和【数据库入门到精通专栏】&#xff0c;此专栏是沐风晓月对linux云计算架构…

chatgpt赋能python:Python怎么清除动点轨迹?

Python怎么清除动点轨迹&#xff1f; 引言 在数据科学和可视化的领域中&#xff0c;动点轨迹是很有用的工具。动点轨迹可以轻松地显示数据点的时间序列&#xff0c;这可以帮助分析者发现有关数据集的有用信息。然而&#xff0c;当轨迹过于密集和复杂时&#xff0c;这种可视化…

Spring Cloud Alibaba - Sentinel源码分析(一)

目录 一、Sentinel核心源码分析 1、Sentinel核心概念 1.1、Node之间的关系 2、Sentinel源码入口 2.0、Sentinel源码启动 2.1、SlotChain解析 2.2、NodeSelectorSlot解析 2.3、ClusterBuilderSlot解析 2.4、StatisticSlot解析 2.5、FlowSlot解析 2.6、DegradeSlot解析…

白鲸优化算法优化VMD参数,最小包络熵为适应度函数,提取最小包络熵对应的IMF分量,采集最佳IMF分量的9种时域指标,提取特征向量。以西储大学数据为例,附MATLAB代码

大家看到这篇文章&#xff0c;肯定会有疑问&#xff0c;难道本篇文章和上一篇文章不是一个意思嘛&#xff0c;这是来凑数的嘛……其实不然&#xff0c;如果各位读者仔细看&#xff0c;就会发现本篇文章和上一篇文章大有不同&#xff0c;这篇文章也是我一直以来想在上一篇文章基…

chatgpt赋能python:Python断言:如何断言等于两个值其中一个?

Python断言&#xff1a;如何断言等于两个值其中一个&#xff1f; Python是一种广泛使用的编程语言&#xff0c;而断言是它的一个重要功能。在编程中&#xff0c;我们可以使用断言来验证代码是否按照预期工作。但是&#xff0c;在某些情况下&#xff0c;我们可能想要断言两个值…

快速上手kettle(四)壶中可以倒出些啥?

快速上手kettle&#xff08;四&#xff09;壶中可以倒出些啥 前言一 、kettle 这壶里能倒出啥&#xff1f;二 、Access输出2.1 Access输出设置2.2 启动转换&#xff0c;查看输出 三 、Excel输出3.1 选择excel扩展名3.2 1 将表中数据分别写入到excel中 四、JSON output4.1 JSON …

常见骨干网络介绍

骨干网络 骨干网络&#xff08;backbone network&#xff09;顾名思义&#xff0c;是深度学习中最核心的网络组成。本文按时间顺序&#xff0c;简要介绍几种影响重大的backbone设计思路&#xff0c;我们或许可以从窥探前人的设计思路中获得启发和灵感。 1.1 AlexNet, 2012 这…