视觉SLAM十四讲——ch9实践(后端1)

news2025/1/4 19:50:31

视觉SLAM十四讲——ch9的实践操作及避坑

  • 0.实践前小知识介绍
    • 0.1 数据集的使用
  • 1. 实践操作前的准备工作
  • 2. 实践过程
    • 2.1 Ceres BA
    • 2.2 g2o求解BA
  • 3. 遇到的问题及解决办法
    • 3.1 查看.ply文件时报警告

0.实践前小知识介绍

0.1 数据集的使用

Ceres BA使用的是BAL数据集。在本例中,使用problem-16-22106-pre.txt文件。
BAL的数据集自身存在的特殊

BAL的相机内参模型由焦距f和畸变参数k1,k2给出。
因为BAL数据在投影时假设投影平面在相机光心之后,所以按照我们之前用的模型计算,需要在投影之后乘以系数-1。

1. 实践操作前的准备工作

  1. 安装meshlab,因为会生成两个后缀名为.ply的文件,这两个文件需要用meshlab来查看。
    安装命令:
 sudo apt-get update
 sudo apt-get install meshlab
  1. 在终端中进入ch9文件夹下,顺序执行以下命令进行编译。
mkdir build
cd build
cmake ..
//注意,j8还是其他主要看自己的电脑情况
make -j8
  1. 在build文件中进行运行。
    注意: 在make过程中,会出现warning,但是对我们此实践的过程几乎没有影响。

2. 实践过程

2.1 Ceres BA

代码:

#include <iostream>
#include <ceres/ceres.h>
#include "common.h"
#include "SnavelyReprojectionError.h"

using namespace std;

void SolveBA(BALProblem &bal_problem);

int main(int argc, char **argv) {
    if (argc != 2) {
        cout << "usage: bundle_adjustment_ceres bal_data.txt" << endl;
        return 1;
    }

    BALProblem bal_problem(argv[1]);
    bal_problem.Normalize();
    bal_problem.Perturb(0.1, 0.5, 0.5);
    bal_problem.WriteToPLYFile("initial.ply");
    SolveBA(bal_problem);
    bal_problem.WriteToPLYFile("final.ply");

    return 0;
}

void SolveBA(BALProblem &bal_problem) {
    const int point_block_size = bal_problem.point_block_size();
    const int camera_block_size = bal_problem.camera_block_size();
    double *points = bal_problem.mutable_points();
    double *cameras = bal_problem.mutable_cameras();

    // Observations is 2 * num_observations long array observations
    // [u_1, u_2, ... u_n], where each u_i is two dimensional, the x
    // and y position of the observation.
    const double *observations = bal_problem.observations();
    ceres::Problem problem;

    for (int i = 0; i < bal_problem.num_observations(); ++i) {
        ceres::CostFunction *cost_function;

        // Each Residual block takes a point and a camera as input
        // and outputs a 2 dimensional Residual
        cost_function = SnavelyReprojectionError::Create(observations[2 * i + 0], observations[2 * i + 1]);

        // If enabled use Huber's loss function.
        ceres::LossFunction *loss_function = new ceres::HuberLoss(1.0);

        // Each observation corresponds to a pair of a camera and a point
        // which are identified by camera_index()[i] and point_index()[i]
        // respectively.
        double *camera = cameras + camera_block_size * bal_problem.camera_index()[i];
        double *point = points + point_block_size * bal_problem.point_index()[i];

        problem.AddResidualBlock(cost_function, loss_function, camera, point);
    }

    // show some information here ...
    std::cout << "bal problem file loaded..." << std::endl;
    std::cout << "bal problem have " << bal_problem.num_cameras() << " cameras and "
              << bal_problem.num_points() << " points. " << std::endl;
    std::cout << "Forming " << bal_problem.num_observations() << " observations. " << std::endl;

    std::cout << "Solving ceres BA ... " << endl;
    ceres::Solver::Options options;
    options.linear_solver_type = ceres::LinearSolverType::SPARSE_SCHUR;
    options.minimizer_progress_to_stdout = true;
    ceres::Solver::Summary summary;
    ceres::Solve(options, &problem, &summary);
    std::cout << summary.FullReport() << "\n";
}

在build中执行语句:

 ./bundle_adjustment_ceres /home/fighter/slam/slambook2/ch9/problem-16-22106-pre.txt

运行结果:

Header: 16 22106 83718bal problem file loaded...
bal problem have 16 cameras and 22106 points.
Forming 83718 observations.
Solving ceres BA ...
iter      cost      cost_change  |gradient|   |step|    tr_ratio  tr_radius  ls_iter  iter_time  total_time
   0  1.842900e+07    0.00e+00    2.04e+06   0.00e+00   0.00e+00  1.00e+04        0    1.84e-01    6.03e-01
   1  1.449093e+06    1.70e+07    1.75e+06   2.16e+03   1.84e+00  3.00e+04        1    2.79e-01    8.82e-01
   2  5.848543e+04    1.39e+06    1.30e+06   1.55e+03   1.87e+00  9.00e+04        1    1.37e-01    1.02e+00
   3  1.581483e+04    4.27e+04    4.98e+05   4.98e+02   1.29e+00  2.70e+05        1    1.28e-01    1.15e+00
   4  1.251823e+04    3.30e+03    4.64e+04   9.96e+01   1.11e+00  8.10e+05        1    1.24e-01    1.27e+00
   5  1.240936e+04    1.09e+02    9.78e+03   1.33e+01   1.42e+00  2.43e+06        1    1.27e-01    1.40e+00
   6  1.237699e+04    3.24e+01    3.91e+03   5.04e+00   1.70e+00  7.29e+06        1    1.29e-01    1.53e+00
   7  1.236187e+04    1.51e+01    1.96e+03   3.40e+00   1.75e+00  2.19e+07        1    1.26e-01    1.65e+00
   8  1.235405e+04    7.82e+00    1.03e+03   2.40e+00   1.76e+00  6.56e+07        1    1.24e-01    1.78e+00
   9  1.234934e+04    4.71e+00    5.04e+02   1.67e+00   1.87e+00  1.97e+08        1    1.26e-01    1.90e+00
  10  1.234610e+04    3.24e+00    4.31e+02   1.15e+00   1.88e+00  5.90e+08        1    1.29e-01    2.03e+00
  11  1.234386e+04    2.24e+00    3.27e+02   8.44e-01   1.90e+00  1.77e+09        1    1.28e-01    2.16e+00
  12  1.234232e+04    1.54e+00    3.44e+02   6.69e-01   1.82e+00  5.31e+09        1    1.26e-01    2.29e+00
  13  1.234126e+04    1.07e+00    2.21e+02   5.45e-01   1.91e+00  1.59e+10        1    1.24e-01    2.41e+00
  14  1.234047e+04    7.90e-01    1.12e+02   4.84e-01   1.87e+00  4.78e+10        1    1.25e-01    2.54e+00
  15  1.233986e+04    6.07e-01    1.02e+02   4.22e-01   1.95e+00  1.43e+11        1    1.28e-01    2.66e+00
  16  1.233934e+04    5.22e-01    1.03e+02   3.82e-01   1.97e+00  4.30e+11        1    1.30e-01    2.79e+00
  17  1.233891e+04    4.25e-01    1.07e+02   3.46e-01   1.93e+00  1.29e+12        1    1.22e-01    2.92e+00
  18  1.233855e+04    3.59e-01    1.04e+02   3.15e-01   1.96e+00  3.87e+12        1    1.23e-01    3.04e+00
  19  1.233825e+04    3.06e-01    9.27e+01   2.88e-01   1.98e+00  1.16e+13        1    1.21e-01    3.16e+00
  20  1.233799e+04    2.61e-01    1.17e+02   2.16e-01   1.97e+00  3.49e+13        1    1.22e-01    3.28e+00
  21  1.233777e+04    2.18e-01    1.22e+02   1.15e-01   1.97e+00  1.05e+14        1    1.20e-01    3.40e+00
  22  1.233760e+04    1.73e-01    1.10e+02   9.59e-02   1.89e+00  3.14e+14        1    1.22e-01    3.53e+00
  23  1.233746e+04    1.37e-01    1.14e+02   1.68e-01   1.98e+00  9.41e+14        1    1.24e-01    3.65e+00
  24  1.233735e+04    1.13e-01    1.17e+02   2.36e-01   1.96e+00  2.82e+15        1    1.28e-01    3.78e+00
  25  1.233725e+04    9.50e-02    1.18e+02   1.28e+00   1.99e+00  8.47e+15        1    1.23e-01    3.90e+00
WARNING: Logging before InitGoogleLogging() is written to STDERR
W0615 16:19:52.003427  5230 levenberg_marquardt_strategy.cc:116] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  26  1.233725e+04    0.00e+00    1.18e+02   0.00e+00   0.00e+00  4.24e+15        1    4.75e-02    3.95e+00
W0615 16:19:52.048473  5230 levenberg_marquardt_strategy.cc:116] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  27  1.233725e+04    0.00e+00    1.18e+02   0.00e+00   0.00e+00  1.06e+15        1    4.46e-02    3.99e+00
  28  1.233718e+04    6.92e-02    5.68e+01   3.52e-01   1.70e+00  3.18e+15        1    1.23e-01    4.12e+00
W0615 16:19:52.217936  5230 levenberg_marquardt_strategy.cc:116] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  29  1.233718e+04    0.00e+00    5.68e+01   0.00e+00   0.00e+00  1.59e+15        1    4.63e-02    4.16e+00
W0615 16:19:52.263574  5230 levenberg_marquardt_strategy.cc:116] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  30  1.233718e+04    0.00e+00    5.68e+01   0.00e+00   0.00e+00  3.97e+14        1    4.56e-02    4.21e+00
  31  1.233714e+04    3.65e-02    5.88e+01   9.90e-02   1.93e+00  1.19e+15        1    1.21e-01    4.33e+00
  32  1.233711e+04    3.32e-02    5.99e+01   2.59e-01   2.00e+00  3.57e+15        1    1.20e-01    4.45e+00
W0615 16:19:52.551789  5230 levenberg_marquardt_strategy.cc:116] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  33  1.233711e+04    0.00e+00    5.99e+01   0.00e+00   0.00e+00  1.79e+15        1    4.67e-02    4.50e+00
  34  1.233708e+04    3.14e-02    6.16e+01   1.08e+00   2.00e+00  5.36e+15        1    1.20e-01    4.62e+00
W0615 16:19:52.721449  5230 levenberg_marquardt_strategy.cc:116] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  35  1.233708e+04    0.00e+00    6.16e+01   0.00e+00   0.00e+00  2.68e+15        1    4.93e-02    4.67e+00
W0615 16:19:52.765900  5230 levenberg_marquardt_strategy.cc:116] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  36  1.233708e+04    0.00e+00    6.16e+01   0.00e+00   0.00e+00  6.70e+14        1    4.44e-02    4.71e+00
  37  1.233705e+04    2.50e-02    2.04e+01   9.75e-02   1.68e+00  2.01e+15        1    1.31e-01    4.84e+00
  38  1.233704e+04    1.58e-02    1.87e+01   7.15e-01   1.95e+00  6.03e+15        1    1.22e-01    4.96e+00
W0615 16:19:53.064455  5230 levenberg_marquardt_strategy.cc:116] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  39  1.233704e+04    0.00e+00    1.87e+01   0.00e+00   0.00e+00  3.02e+15        1    4.59e-02    5.01e+00
W0615 16:19:53.108860  5230 levenberg_marquardt_strategy.cc:116] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  40  1.233704e+04    0.00e+00    1.87e+01   0.00e+00   0.00e+00  7.54e+14        1    4.44e-02    5.05e+00
  41  1.233702e+04    1.51e-02    2.06e+01   1.12e-01   2.00e+00  2.26e+15        1    1.19e-01    5.17e+00
  42  1.233701e+04    1.48e-02    2.10e+01   8.72e-01   1.99e+00  6.79e+15        1    1.24e-01    5.30e+00
W0615 16:19:53.398123  5230 levenberg_marquardt_strategy.cc:116] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  43  1.233701e+04    0.00e+00    2.10e+01   0.00e+00   0.00e+00  3.39e+15        1    4.64e-02    5.34e+00
  44  1.233700e+04    1.42e-02    1.57e+01   1.28e+00   1.99e+00  1.00e+16        1    1.20e-01    5.46e+00
W0615 16:19:53.564965  5230 levenberg_marquardt_strategy.cc:116] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  45  1.233700e+04    0.00e+00    1.57e+01   0.00e+00   0.00e+00  5.00e+15        1    4.65e-02    5.51e+00
W0615 16:19:53.609803  5230 levenberg_marquardt_strategy.cc:116] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  46  1.233700e+04    0.00e+00    1.57e+01   0.00e+00   0.00e+00  1.25e+15        1    4.47e-02    5.55e+00
  47  1.233698e+04    1.39e-02    2.11e+01   1.94e-01   2.00e+00  3.75e+15        1    1.22e-01    5.68e+00
W0615 16:19:53.777860  5230 levenberg_marquardt_strategy.cc:116] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  48  1.233698e+04    0.00e+00    2.11e+01   0.00e+00   0.00e+00  1.88e+15        1    4.61e-02    5.72e+00
  49  1.233697e+04    1.36e-02    2.01e+01   7.07e-01   2.00e+00  5.62e+15        1    1.20e-01    5.84e+00
W0615 16:19:53.943998  5230 levenberg_marquardt_strategy.cc:116] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  50  1.233697e+04    0.00e+00    2.01e+01   0.00e+00   0.00e+00  2.81e+15        1    4.62e-02    5.89e+00

Solver Summary (v 2.0.0-eigen-(3.3.7)-lapack-suitesparse-(5.7.1)-cxsparse-(3.2.0)-eigensparse-no_openmp)

                                     Original                  Reduced
Parameter blocks                        22122                    22122
Parameters                              66462                    66462
Residual blocks                         83718                    83718
Residuals                              167436                   167436

Minimizer                        TRUST_REGION

Sparse linear algebra library    SUITE_SPARSE
Trust region strategy     LEVENBERG_MARQUARDT

                                        Given                     Used
Linear solver                    SPARSE_SCHUR             SPARSE_SCHUR
Threads                                     1                        1
Linear solver ordering              AUTOMATIC                 22106,16
Schur structure                         2,3,9                    2,3,9

Cost:
Initial                          1.842900e+07
Final                            1.233697e+04
Change                           1.841667e+07

Minimizer iterations                       51
Successful steps                           37
Unsuccessful steps                         14

Time (in seconds):
Preprocessor                         0.419711

  Residual only evaluation           0.517138 (36)
  Jacobian & residual evaluation     1.818814 (37)
  Linear solver                      2.616899 (50)
Minimizer                            5.472081

Postprocessor                        0.007762
Total                                5.899554

Termination:                   NO_CONVERGENCE (Maximum number of iterations reached. Number of iterations: 50.)

总体的误差应该随着迭代次数的增长不断下降;

运行结束后会输出两个文件,优化前的点云输出为initial.ply,优化后的点云输出为final.ply。
查看两个点云的命令如下:

meshlab initial.ply
meshlab final.ply

生成的图像如下所示:
初始图片:
图片中右下角的输出信息在终端也会输出

Current Plugins Dir is: /usr/lib/x86_64-linux-gnu/meshlab/plugins
Shader directory found '/usr/share/meshlab/shaders', and it contains 19 gdp files
LOG: 0 Opened mesh initial.ply in 453 msec
LOG: 0 All files opened in 454 msec

初始图片

优化后:
图片中右下角的输出信息在终端也会输出

Current Plugins Dir is: /usr/lib/x86_64-linux-gnu/meshlab/plugins
Shader directory found '/usr/share/meshlab/shaders', and it contains 19 gdp files
LOG: 0 Opened mesh final.ply in 435 msec
LOG: 0 All files opened in 436 msec

优化后图片

2.2 g2o求解BA

代码:

#include <g2o/core/base_vertex.h>
#include <g2o/core/base_binary_edge.h>
#include <g2o/core/block_solver.h>
#include <g2o/core/optimization_algorithm_levenberg.h>
#include <g2o/solvers/csparse/linear_solver_csparse.h>
#include <g2o/core/robust_kernel_impl.h>
#include <iostream>

#include "common.h"
#include "sophus/se3.hpp"

using namespace Sophus;
using namespace Eigen;
using namespace std;

/// 姿态和内参的结构
struct PoseAndIntrinsics {
    PoseAndIntrinsics() {}

    /// set from given data address
    explicit PoseAndIntrinsics(double *data_addr) {
        rotation = SO3d::exp(Vector3d(data_addr[0], data_addr[1], data_addr[2]));
        translation = Vector3d(data_addr[3], data_addr[4], data_addr[5]);
        focal = data_addr[6];
        k1 = data_addr[7];
        k2 = data_addr[8];
    }

    /// 将估计值放入内存
    void set_to(double *data_addr) {
        auto r = rotation.log();
        for (int i = 0; i < 3; ++i) data_addr[i] = r[i];
        for (int i = 0; i < 3; ++i) data_addr[i + 3] = translation[i];
        data_addr[6] = focal;
        data_addr[7] = k1;
        data_addr[8] = k2;
    }

    SO3d rotation;
    Vector3d translation = Vector3d::Zero();
    double focal = 0;
    double k1 = 0, k2 = 0;
};

/// 位姿加相机内参的顶点,9维,前三维为so3,接下去为t, f, k1, k2
class VertexPoseAndIntrinsics : public g2o::BaseVertex<9, PoseAndIntrinsics> {
public:
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW;

    VertexPoseAndIntrinsics() {}

    virtual void setToOriginImpl() override {
        _estimate = PoseAndIntrinsics();
    }

    virtual void oplusImpl(const double *update) override {
        _estimate.rotation = SO3d::exp(Vector3d(update[0], update[1], update[2])) * _estimate.rotation;
        _estimate.translation += Vector3d(update[3], update[4], update[5]);
        _estimate.focal += update[6];
        _estimate.k1 += update[7];
        _estimate.k2 += update[8];
    }

    /// 根据估计值投影一个点
    Vector2d project(const Vector3d &point) {
        Vector3d pc = _estimate.rotation * point + _estimate.translation;
        pc = -pc / pc[2];
        double r2 = pc.squaredNorm();
        double distortion = 1.0 + r2 * (_estimate.k1 + _estimate.k2 * r2);
        return Vector2d(_estimate.focal * distortion * pc[0],
                        _estimate.focal * distortion * pc[1]);
    }

    virtual bool read(istream &in) {}

    virtual bool write(ostream &out) const {}
};

class VertexPoint : public g2o::BaseVertex<3, Vector3d> {
public:
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW;

    VertexPoint() {}

    virtual void setToOriginImpl() override {
        _estimate = Vector3d(0, 0, 0);
    }

    virtual void oplusImpl(const double *update) override {
        _estimate += Vector3d(update[0], update[1], update[2]);
    }

    virtual bool read(istream &in) {}

    virtual bool write(ostream &out) const {}
};

class EdgeProjection :
    public g2o::BaseBinaryEdge<2, Vector2d, VertexPoseAndIntrinsics, VertexPoint> {
public:
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW;

    virtual void computeError() override {
        auto v0 = (VertexPoseAndIntrinsics *) _vertices[0];
        auto v1 = (VertexPoint *) _vertices[1];
        auto proj = v0->project(v1->estimate());
        _error = proj - _measurement;
    }

    // use numeric derivatives
    virtual bool read(istream &in) {}

    virtual bool write(ostream &out) const {}

};

void SolveBA(BALProblem &bal_problem);

int main(int argc, char **argv) {

    if (argc != 2) {
        cout << "usage: bundle_adjustment_g2o bal_data.txt" << endl;
        return 1;
    }

    BALProblem bal_problem(argv[1]);
    bal_problem.Normalize();
    bal_problem.Perturb(0.1, 0.5, 0.5);
    bal_problem.WriteToPLYFile("initial.ply");
    SolveBA(bal_problem);
    bal_problem.WriteToPLYFile("final.ply");

    return 0;
}

void SolveBA(BALProblem &bal_problem) {
    const int point_block_size = bal_problem.point_block_size();
    const int camera_block_size = bal_problem.camera_block_size();
    double *points = bal_problem.mutable_points();
    double *cameras = bal_problem.mutable_cameras();

    // pose dimension 9, landmark is 3
    typedef g2o::BlockSolver<g2o::BlockSolverTraits<9, 3>> BlockSolverType;
    typedef g2o::LinearSolverCSparse<BlockSolverType::PoseMatrixType> LinearSolverType;
    // use LM
    auto solver = new g2o::OptimizationAlgorithmLevenberg(
        g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));
    g2o::SparseOptimizer optimizer;
    optimizer.setAlgorithm(solver);
    optimizer.setVerbose(true);

    /// build g2o problem
    const double *observations = bal_problem.observations();
    // vertex
    vector<VertexPoseAndIntrinsics *> vertex_pose_intrinsics;
    vector<VertexPoint *> vertex_points;
    for (int i = 0; i < bal_problem.num_cameras(); ++i) {
        VertexPoseAndIntrinsics *v = new VertexPoseAndIntrinsics();
        double *camera = cameras + camera_block_size * i;
        v->setId(i);
        v->setEstimate(PoseAndIntrinsics(camera));
        optimizer.addVertex(v);
        vertex_pose_intrinsics.push_back(v);
    }
    for (int i = 0; i < bal_problem.num_points(); ++i) {
        VertexPoint *v = new VertexPoint();
        double *point = points + point_block_size * i;
        v->setId(i + bal_problem.num_cameras());
        v->setEstimate(Vector3d(point[0], point[1], point[2]));
        // g2o在BA中需要手动设置待Marg的顶点
        v->setMarginalized(true);
        optimizer.addVertex(v);
        vertex_points.push_back(v);
    }

    // edge
    for (int i = 0; i < bal_problem.num_observations(); ++i) {
        EdgeProjection *edge = new EdgeProjection;
        edge->setVertex(0, vertex_pose_intrinsics[bal_problem.camera_index()[i]]);
        edge->setVertex(1, vertex_points[bal_problem.point_index()[i]]);
        edge->setMeasurement(Vector2d(observations[2 * i + 0], observations[2 * i + 1]));
        edge->setInformation(Matrix2d::Identity());
        edge->setRobustKernel(new g2o::RobustKernelHuber());
        optimizer.addEdge(edge);
    }

    optimizer.initializeOptimization();
    optimizer.optimize(40);

    // set to bal problem
    for (int i = 0; i < bal_problem.num_cameras(); ++i) {
        double *camera = cameras + camera_block_size * i;
        auto vertex = vertex_pose_intrinsics[i];
        auto estimate = vertex->estimate();
        estimate.set_to(camera);
    }
    for (int i = 0; i < bal_problem.num_points(); ++i) {
        double *point = points + point_block_size * i;
        auto vertex = vertex_points[i];
        for (int k = 0; k < 3; ++k) point[k] = vertex->estimate()[k];
    }
}

在build中执行语句:

 ./bundle_adjustment_g2o /home/fighter/slam/slambook2/ch9/problem-16-22106-pre.txt

运行结果:

Header: 16 22106 83718iteration= 0       chi2= 8894422.962194    time= 0.253426  cumTime= 0.253426       edges= 83718    schur= 1        lambda= 227.832660      levenbergIter= 1
iteration= 1     chi2= 1772145.543625    time= 0.21523   cumTime= 0.468656       edges= 83718    schur= 1        lambda= 75.944220       levenbergIter= 1
iteration= 2     chi2= 752585.321418     time= 0.212928  cumTime= 0.681584       edges= 83718    schur= 1        lambda= 25.314740       levenbergIter= 1
iteration= 3     chi2= 402814.285609     time= 0.210998  cumTime= 0.892582       edges= 83718    schur= 1        lambda= 8.438247        levenbergIter= 1
iteration= 4     chi2= 284879.389455     time= 0.232436  cumTime= 1.12502        edges= 83718    schur= 1        lambda= 2.812749        levenbergIter= 1
iteration= 5     chi2= 238356.210033     time= 0.243281  cumTime= 1.3683         edges= 83718    schur= 1        lambda= 0.937583        levenbergIter= 1
iteration= 6     chi2= 193550.729802     time= 0.228287  cumTime= 1.59659        edges= 83718    schur= 1        lambda= 0.312528        levenbergIter= 1
iteration= 7     chi2= 146861.192839     time= 0.212535  cumTime= 1.80912        edges= 83718    schur= 1        lambda= 0.104176        levenbergIter= 1
iteration= 8     chi2= 122873.392728     time= 0.214303  cumTime= 2.02342        edges= 83718    schur= 1        lambda= 0.069451        levenbergIter= 1
iteration= 9     chi2= 97812.478436      time= 0.213007  cumTime= 2.23643        edges= 83718    schur= 1        lambda= 0.046300        levenbergIter= 1
iteration= 10    chi2= 80336.316621      time= 0.210887  cumTime= 2.44732        edges= 83718    schur= 1        lambda= 0.030867        levenbergIter= 1
iteration= 11    chi2= 65654.850651      time= 0.210773  cumTime= 2.65809        edges= 83718    schur= 1        lambda= 0.020578        levenbergIter= 1
iteration= 12    chi2= 55967.141021      time= 0.209642  cumTime= 2.86773        edges= 83718    schur= 1        lambda= 0.013719        levenbergIter= 1
iteration= 13    chi2= 53270.115686      time= 0.210373  cumTime= 3.07811        edges= 83718    schur= 1        lambda= 0.009146        levenbergIter= 1
iteration= 14    chi2= 35981.369897      time= 0.266059  cumTime= 3.34416        edges= 83718    schur= 1        lambda= 0.006097        levenbergIter= 2
iteration= 15    chi2= 32092.173309      time= 0.316057  cumTime= 3.66022        edges= 83718    schur= 1        lambda= 0.016259        levenbergIter= 3
iteration= 16    chi2= 31154.877381      time= 0.261828  cumTime= 3.92205        edges= 83718    schur= 1        lambda= 0.021679        levenbergIter= 2
iteration= 17    chi2= 30773.690800      time= 0.211655  cumTime= 4.1337         edges= 83718    schur= 1        lambda= 0.014453        levenbergIter= 1
iteration= 18    chi2= 29079.971263      time= 0.266129  cumTime= 4.39983        edges= 83718    schur= 1        lambda= 0.012508        levenbergIter= 2
iteration= 19    chi2= 28481.944292      time= 0.26298   cumTime= 4.66281        edges= 83718    schur= 1        lambda= 0.016678        levenbergIter= 2
iteration= 20    chi2= 28439.938323      time= 0.210573  cumTime= 4.87339        edges= 83718    schur= 1        lambda= 0.011118        levenbergIter= 1
iteration= 21    chi2= 27171.835892      time= 0.264091  cumTime= 5.13748        edges= 83718    schur= 1        lambda= 0.011153        levenbergIter= 2
iteration= 22    chi2= 26749.623597      time= 0.265487  cumTime= 5.40296        edges= 83718    schur= 1        lambda= 0.014871        levenbergIter= 2
iteration= 23    chi2= 26674.555645      time= 0.209385  cumTime= 5.61235        edges= 83718    schur= 1        lambda= 0.009914        levenbergIter= 1
iteration= 24    chi2= 26089.998120      time= 0.262896  cumTime= 5.87524        edges= 83718    schur= 1        lambda= 0.010288        levenbergIter= 2
iteration= 25    chi2= 25877.861699      time= 0.264081  cumTime= 6.13933        edges= 83718    schur= 1        lambda= 0.013717        levenbergIter= 2
iteration= 26    chi2= 25834.638622      time= 0.213956  cumTime= 6.35328        edges= 83718    schur= 1        lambda= 0.009145        levenbergIter= 1
iteration= 27    chi2= 25570.298632      time= 0.264777  cumTime= 6.61806        edges= 83718    schur= 1        lambda= 0.011127        levenbergIter= 2
iteration= 28    chi2= 25457.520755      time= 0.26327   cumTime= 6.88133        edges= 83718    schur= 1        lambda= 0.011716        levenbergIter= 2
iteration= 29    chi2= 25380.650160      time= 0.26591   cumTime= 7.14724        edges= 83718    schur= 1        lambda= 0.012090        levenbergIter= 2
iteration= 30    chi2= 25362.215118      time= 0.211995  cumTime= 7.35923        edges= 83718    schur= 1        lambda= 0.008060        levenbergIter= 1
iteration= 31    chi2= 25202.452901      time= 0.263831  cumTime= 7.62306        edges= 83718    schur= 1        lambda= 0.008800        levenbergIter= 2
iteration= 32    chi2= 25122.596797      time= 0.263859  cumTime= 7.88692        edges= 83718    schur= 1        lambda= 0.009613        levenbergIter= 2
iteration= 33    chi2= 25115.107638      time= 0.214994  cumTime= 8.10192        edges= 83718    schur= 1        lambda= 0.006408        levenbergIter= 1
iteration= 34    chi2= 24967.189622      time= 0.269087  cumTime= 8.371  edges= 83718    schur= 1        lambda= 0.006268        levenbergIter= 2
iteration= 35    chi2= 24910.138884      time= 0.263436  cumTime= 8.63444        edges= 83718    schur= 1        lambda= 0.008358        levenbergIter= 2
iteration= 36    chi2= 24867.273980      time= 0.261406  cumTime= 8.89584        edges= 83718    schur= 1        lambda= 0.006277        levenbergIter= 2
iteration= 37    chi2= 24848.840518      time= 0.262723  cumTime= 9.15857        edges= 83718    schur= 1        lambda= 0.008370        levenbergIter= 2
iteration= 38    chi2= 24847.135479      time= 0.210439  cumTime= 9.36901        edges= 83718    schur= 1        lambda= 0.005580        levenbergIter= 1
iteration= 39    chi2= 24798.075555      time= 0.26268   cumTime= 9.63169        edges= 83718    schur= 1        lambda= 0.007249        levenbergIter= 2

同样的,我们可以查看优化前后两个点云的图像,查看结果如下所示:
优化前:
优化前
优化后:
优化后
初始图片:
图片中右下角的输出信息在终端也会输出

Current Plugins Dir is: /usr/lib/x86_64-linux-gnu/meshlab/plugins
Shader directory found '/usr/share/meshlab/shaders', and it contains 19 gdp files
LOG: 0 Opened mesh initial.ply in 534 msec
LOG: 0 All files opened in 535 msec

优化后:
图片中右下角的输出信息在终端也会输出

Current Plugins Dir is: /usr/lib/x86_64-linux-gnu/meshlab/plugins
Shader directory found '/usr/share/meshlab/shaders', and it contains 19 gdp files
LOG: 0 Opened mesh final.ply in 673 msec
LOG: 0 All files opened in 676 msec

3. 遇到的问题及解决办法

3.1 查看.ply文件时报警告

  1. 在首次运行查看文件的命令时,终端出现警告:
Current Plugins Dir is: /usr/lib/x86_64-linux-gnu/meshlab/plugins
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
Warning! a default param was not found in the saved settings. This should happen only on the first run...
..........

解决办法:
在对应的文件所在的位置,再次运行命令即可。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/650346.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

为什么说2023年最难招聘的岗位是高性能计算工程师?

随着毕业季的临近&#xff0c;高校毕业生将进入就业关键阶段。据统计&#xff0c;2023届全国高校毕业生预计达到1158万人&#xff0c;同比增加82万人&#xff0c;再创新高。尽管有千万的大学毕业生&#xff0c;但是企业反馈依然很难招聘到合适的高性能计算工程师。 这主要归因于…

看到就赚到的5款小众软件

今天推荐5款十分小众的软件&#xff0c;知道的人不多&#xff0c;但是每个都是非常非常好用的&#xff0c;有兴趣的小伙伴可以自行搜索下载。 图文识别——PandaOCR PandaOCR是一款用于识别和转换图片中的文字的工具。它可以让你对任何格式的图片进行文字识别&#xff0c;并输…

STM32速成笔记—按键检测

如果需要本文程序工程&#xff0c;请评论区留邮箱或者私信。 文章目录 一、按键检测原理二、硬件连接三、程序设计3.1 初始化GPIO3.2 按键扫描函数 四、按键控制LED4.1 初始化LED和KEY的GPIO4.2 编写按键扫描函数4.2 编写LED控制函数4.3 编写按键服务函数 五、拓展5.1 一个按键…

如何使用二维码实现配电箱巡检

施工工地的外部环境条件恶劣,加之工地上机动车辆的运行和机械设备的应用&#xff0c;均易导致电气故障的发生。现场配电箱缺乏专业技术人员的管理,易造成触电伤害、火灾等事故。现场纸质巡检存在以下问题&#xff1a; 1、信息查询不便:配电箱信息、负责人&#xff0c;历史巡检维…

Flowable服务组件-扩展组件

Flowable服务组件-扩展组件 扩展组件 文章目录 Flowable服务组件-扩展组件前言Flowable给我们提供了非常丰富的组件&#xff0c;但是在实际场景中&#xff0c;我们有需要企业个性化的组件&#xff0c;如何扩展自己的组件至关重要 一、扩展微服务回调组件二、程序步骤1.定义我们…

618父亲节,感恩的祝福送给父亲!

父亲节&#xff08;Fathers Day&#xff09;&#xff0c;是感恩父亲的节日。Fathers day, is a day of thanksgiving for fathers. 第一个提出父亲节理念的人是1906年的多德夫人。她想用一个特殊的日子来纪念她的父亲&#xff0c;她的妈妈多年前就去世了。起初&#xff0c;多德…

1.4 场效应管

1.什么是场效应管&#xff1f; 场效应管&#xff08;Field-Effect Transistor&#xff0c;简称FET&#xff09;是一种基于电场效应调控电流的三端器件。它是一种用于电子电路中的重要元件&#xff0c;常用于放大信号、开关电路和模拟电路等应用。 场效应管主要由一个导电的沟…

git 的详细介绍使用

点击下载&#xff1a;Git下载地址 下载完成后在本地文件夹空白位置右键能看到即为安装成功 git简介&#xff1a;git是一个版本控制系统&#xff0c;见下方图详解 快速查看git的全局配置项 git config --list --global 查看指定的全局配置项 git config user.name git conf…

【Git删除大文件失败,提示WARNING: Ref ‘refs/heads/master‘ is unchanged的解决思路】

1. 问题描述 最近使用Gitee一直在独立开发某个项目&#xff0c;某次因为某个测试文件比较大&#xff0c;超过了100MB&#xff0c;gitee无法接受&#xff0c;上传失败。但是当时我没有发现上传失败&#xff0c;就没有处理&#xff0c;等到今天发现的时候&#xff0c;已经提交过…

Low-Light Image Enhancement with Wavelet-based Diffusion Models

Abstract 扩散模型在图像恢复任务中取得了很好的效果&#xff0c;但存在时间长、计算资源消耗大、恢复不稳定等问题。为了解决这些问题&#xff0c;我们提出了一种鲁棒和高效的基于扩散的微光图像增强方法&#xff0c;称为DiffLL。具体来说&#xff0c;我们提出了一个基于小波…

Vulnhub靶机:ME AND MY GIRLFRIEND_ 1

目录 介绍信息收集主机发现主机信息探测 网站探测SSH爆破 & 提权 介绍 系列&#xff1a;Me and My Girlfriend&#xff08;此系列共1台&#xff09; 发布日期&#xff1a;2019 年 12 月 13 日 难度&#xff1a;初级 运行环境&#xff1a;VMware 目标&#xff1a;取得 root…

Linux——MySQL数据库部署及自建数据库mysql-yum仓库

&#x1f618;作者简介&#xff1a;正在努力的99年打工人。 &#x1f44a;宣言&#xff1a;人生就是B&#xff08;birth&#xff09;和D&#xff08;death&#xff09;之间的C&#xff08;choise&#xff09;&#xff0c;做好每一个选择。 &#x1f64f;创作不易&#xff0c;动…

如何有效提升英文口语水平?这 15 个方法值得学习!

要提升英文口语水平&#xff0c;除了多说多练&#xff0c;还有很多方法可以尝试。下面&#xff0c;小编为大家整理了15个有效的方法&#xff0c;让你说英语更自信流利&#xff01; Record yourself speaking English and listen back to your pronunciation and intonation, i…

Docker:启动,停止

1.启动一个容器&#xff1a; docker run 可选参数 镜像名 [COMMAND] [ARG...] docker run -it ubuntu /bin/bash &#xff0c;启动一个使用ubuntu的docker&#xff0c;并使用/bin/bash做为dcoker中执行的命令。 其中818d5a1c32ac为容器ID 在宿主机上&#xff0c;可以通过docke…

Citespace软件基础应用

CiteSpace软件是Citation Space的简称&#xff0c;可以译为“引文空间”&#xff0c;由美国德雷赛尔大学计算机与情报学教授陈超美博士基于Java语言开发、基于引文分析理论的信息可视化软件。 它是一款分析科学文献中蕴含的潜在知识&#xff0c;并在科学计量学、数据和信息可视…

【Git原理与使用】-- 初步认识

目录 Git版本控制器的引入 版本控制器 Git安装&#xff08;已安装可以跳过&#xff09; Linux-centos Linux-ubuntu Git基本操作 创建Git本地仓库 配置 Git 认识工作区、暂存区、版本库 工作区、版本库 stage暂存区 工作区内容使用Git管理 Git版本控制器的引入 #&…

4端到端协议-4.3【实验】【计算机网络】

4端到端协议-4.3【实验】【计算机网络】 前言推荐4端到端协议4.2 TCP协议流捕获与TCP协议分析4.3 TCP连接管理实验目的实验内容及实验环境实验原理TCP连接管理的三个阶段TCP的连接建立TCP连接建立时的各状态TCP的数据传输TCP 的连接释放为什么A 必须等待 2MSL 的时间&#xff1…

京东到家机器学习平台建设

目录 前言 机器学习平台总体架构 模型训练平台 特征模型管理平台 在线模型预测服务 算法应用实践 总结和展望 1. 前言 京东到家作为行业领先的即时零售平台&#xff0c;一直把为消费者提供快捷便利高效高质量的即时零售服务作为自己的责任。到家算法团队作为支持京东到家各个…

Linux服务第一章:web基础与http协议

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 一、DNS与域名1.什么是域名&#xff1f;2.域名注册2.1阿里云域名申请流程 3.DNS解析 二、网页的概念1.网页&#xff08;HTTP/HTTPS&#xff09;的基本概念2.HTML概述…

【python】flask+pymysql 实现Web端操作数据库!

Flask是一个使用 Python 编写的轻量级 Web 应用框架。其 WSGI 工具箱采用 Werkzeug &#xff0c;模板引擎则使用 Jinja2 。Flask使用 BSD 授权。 Flask也被称为 “microframework” &#xff0c;因为它使用简单的核心&#xff0c;用 extension 增加其他功能。Flask没有默认使用…