ChatGPT 背后的技术重点:RLHF、IFT、CoT、红蓝对抗

news2024/11/24 18:43:10

近段时间,ChatGPT 横空出世并获得巨大成功,使得 RLHF、SFT、IFT、CoT 等这些晦涩的缩写开始出现在普罗大众的讨论中。这些晦涩的首字母缩略词究竟是什么意思?为什么它们如此重要?我们调查了相关的所有重要论文,以对这些工作进行分类,总结迄今为止的工作,并对后续工作进行展望。

我们先来看看基于语言模型的会话代理的全景。ChatGPT 并非首创,事实上很多组织在 OpenAI 之前就发布了自己的语言模型对话代理 (dialog agents),包括 Meta 的 BlenderBot 10,Google 的 LaMDA 9,DeepMind 的 Sparrow 2,以及 Anthropic 的 Assistant 7 (Anthropic 的 Claude 就是部分基于 Assitant 继续开发而得的)。

语言模型对话代理产品论文地址:

  • Meta 的 BlenderBot: [2208.03188] BlenderBot 3: a deployed conversational agent that continually learns to responsibly engage 10
  • Google 的 LaMDA: [2201.08239] LaMDA: Language Models for Dialog Applications 9
  • DeepMind 的 Sparrow: [2209.14375] Improving alignment of dialogue agents via targeted human judgements 2
  • Anthropic 的 Assistant: [2204.05862] Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback 7

其中一些团队还公布了他们构建开源聊天机器人的计划,并公开分享了路线图 (比如 LAION 团队的 Open Assistant 37),其他团队肯定也有类似的内容,但尚未宣布。你可以在 Open Assistant 的 GitHub 仓库中找到其愿景 & 路线图文档:
GitHub - LAION-AI/Open-Assistant: OpenAssistant is a chat-based assistant that understands tasks, can interact with third-party systems, and retrieve information dynamically to do so. 37

下表根据是否能公开访问、训练数据、模型架构和评估方向的详细信息对这些 AI 聊天机器人进行了比较。 ChatGPT 没有这些信息的记录,因此我们改为使用 InstructGPT 的详细信息,这是一个来自 OpenAI 的指令微调模型,据信它是 ChatGPT 的基础。

LaMDABlenderBot 3SparrowChatGPT / InstructGPTAssistant
组织GoogleMetaDeepMindOpenAIAnthropic
能否公开访问有限
大小137B175B70B175B52B
预训练
基础模型
未知OPTChinchillaGPT-3.5未知
预训练语料库大小 (词数)2.81T180B1.4T未知400B
模型是否可以
访问网络

有监督
微调

微调
数据大小
质量:6.4K
安全性:8K
真实性:4K
IR:49K
大小从 18K 到 1.2M 不等的 20 个 NLP 数据集未知12.7K (此为 InstructGPT,ChatGPT 可能更多)150K+ LM 生成的数据
RLHF

人为制定的安全规则

评价标准1、质量 (合情性、具体性、趣味性)
2、安全性 (偏见) 3、真实性
1、质量 (参与度、知识运用)
2、安全性 (毒性、偏见)
1、校直 (有帮助,无害,正确)
2、证据 (来自网络)
3、是否违反规则
4、偏见和刻板印象
5、诚信度
1、 校直 (有帮助、无害、真实)
2、偏见
1、校直 (有帮助、无害、诚实)
2、偏见
用于数据标注的众包平台美国供应商亚马逊 MTurk未知Upwork 和 Scale AISurge AI、Amazon MTurk 和 Upwork

我们观察到,尽管在训练数据、模型和微调方面存在许多差异,但也存在一些共性。上述所有聊天机器人的一个共同目标是「指令依从 (instruction following)」,即遵循用户指定的指令。例如,要求 ChatGPT 写一首关于微调的诗。

预测文本到遵循指令

通常,基础模型的语言建模目标不足以让模型学会以有用的方式遵循用户的指令。模型创建者使用「指令微调 (Instruction Fine-Tuning,IFT)」方法来达到该目的,该方法除了使用情感分析、文本分类、摘要等经典 NLP 任务来微调模型外,还在非常多样化的任务集上向基础模型示范各种书面指令及其输出,从而实现对基础模型的微调。这些指令示范由三个主要部分组成 —— 指令、输入和输出。输入是可选的,一些任务只需要指令,如上文使用 ChatGPT 做开放式文本生成的示例。当存在输入时,输入和输出组成一个「实例 (instance)」。给定指令可以有多个输入和输出实例。如下例 (摘自 Wang 等,'22):

IFT(指令微调)的训练数据通常是人工编写的指令及用语言模型自举 (bootstrap) 生成的实例的集合。在自举时,先使用少样本技术输入一些样本给 LM 用于提示它 (如上图所示),随后要求 LM 生成新的指令、输入和输出。每一轮都会从人工编写的样本和模型生成的样本中各选择一些送给模型。人类和模型对创建数据集的贡献构成了一个谱图,见下图:

谱图的一端是纯模型生成的 IFT (指令微调)数据集,例如 Unnatural Instructions (Honovich 等,'22 6);另一端是经由社区的大量努力精心制作的指令如 Super-natural instructions (Wang 等,'22 13)。在这两者之间的工作是使用一小组高质量的种子数据集,然后进行自举生成最终数据集,如 Self-Instruct (Wang 等,'22 1)。为 IFT 整理数据集的另一种方法是将现有的用于各种任务 (包括提示)的高质量众包 NLP 数据集使用统一模式或不同模板转换为指令。这一系列工作包括 T0 (Sanh 等,'22 1)、Natural instructions 数据集 (Mishra 等,'22)、FLAN LM (Wei 等,'22) 和 OPT-IML (Iyer 等,'22 1)。

论文链接:

  • Unnatural Instructions (Honovich 等, '22): [2212.09689] Unnatural Instructions: Tuning Language Models with (Almost) No Human Labor 6
  • Super-natural instructions (Wang 等, '22): [2204.07705] Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks 13
  • Self-Instruct (Wang 等, '22): [2212.10560] Self-Instruct: Aligning Language Model with Self Generated Instructions 2
  • T0 (Sanh 等, '22): [2110.08207] Multitask Prompted Training Enables Zero-Shot Task Generalization 1
  • Natural instructions 数据集 (Mishra 等, '22): [2104.08773] Cross-Task Generalization via Natural Language Crowdsourcing Instructions 1
  • FLAN LM (Wei 等, '22): [2109.01652] Finetuned Language Models Are Zero-Shot Learners 3
  • OPT-IML (Iyer 等, '22): [2212.12017] OPT-IML: Scaling Language Model Instruction Meta Learning through the Lens of Generalization 3

安全地遵循指令

然而,经过指令微调的 LM 并不总是能生成 有帮助的 和 安全的 响应。 这种行为的例子包括通过总是给出无益的回应来逃避,例如 “对不起,我不明白。” 或对敏感话题的用户输入生成不安全的响应。为了减轻这种行为,模型开发人员使用 有监督微调 (Supervised Fine-tuning,SFT),在高质量的人类标注数据上微调基础语言模型,以提高有用性和无害性。例如,请参阅下面的表格(摘自 Sparrow 论文的附录 F)。

SFT 和 IFT 联系非常紧密。指令微调可以看作是有监督微调的一个子集。在最近的文献中,SFT 阶段经常被用于提高响应的安全性,而不是接在 IFT 后面提高指令相应的具体性。将来,这种分类和划分应该日臻成熟,形成更清晰的使用场景和方法论。

谷歌的 LaMDA 也根据一组规则 (论文附录 A) 在带有安全标注的对话数据集上进行微调。这些规则通常由模型创建者预先定义和开发,涵盖广泛的主题,包括伤害、歧视、错误信息。

微调模型

同时,OpenAI 的 InstructGPT、DeepMind 的 Sparrow 和 Anthropic 的 Constitutional AI 使用 类反馈强化学习 (Reinforcement Learning From Human Feedback,RLHF) 来微调模型,该方法使用基于人类偏好的标注数据。在 RLHF 中,根据人类反馈来对模型的响应进行排序标注 (如,根据人类偏好选择文本简介)。然后,用这些带标注的响应来训练偏好模型,该模型用于返回 RL 优化器的标量奖励。最后,通过强化学习训练对话代理来模拟偏好模型。有关更多详细信息,请参阅我们之前关于 RLHF 的文章: ChatGPT 背后的“功臣”——RLHF 技术详解 111。

思维链 (Chain-of-thought,CoT) 提示 (Wei 等,'22 29) 是指令示范的一种特殊情况,它通过引发对话代理的逐步推理来生成输出。使用 CoT 微调的模型使用带有逐步推理的人工标注的指令数据集。这是 Let’s think step by step 20 这一著名提示的由来。下面的示例取自 Chung 等,'22 10,橙色高亮的部分是指令,粉色是输入和输出,蓝色是 CoT 推理。

如 Chung 等,'22 10 中所述,使用 CoT 微调的模型在涉及常识、算术和符号推理的任务上表现得更好。

如 Bai 等,'22 2 的工作所示,CoT 微调也显示出对无害性非常有效 (有时比 RLHF 做得更好),而且对敏感提示,模型不会回避并生成 “抱歉,我无法回答这个问题” 这样的回答。更多示例,请参见其论文的附录 D。

论文链接:

  • 思维链提示 (Wei 等, '22): [2201.11903] Chain-of-Thought Prompting Elicits Reasoning in Large Language Models 29
  • Let’s think step by step: [2205.11916] Large Language Models are Zero-Shot Reasoners 20
  • CoT 图解示例 (Chung 等, '22): [2210.11416] Scaling Instruction-Finetuned Language Models 22
  • CoT 微调也显示出对无害性非常有效 (Bai 等, '22): ttps://www.anthropic.com/constitutional.pdf

要点

  1. 与预训练数据相比,您只需要非常小的一部分数据来进行指令微调 (几百个数量级);
  2. 使用人工标注的有监督微调使模型输出更安全和有用;
  3. CoT 微调提高了模型在需要逐步思考的任务上的性能,并使它们在敏感话题上不那么回避。

对话代理的进一步工作

这个博客总结了许多关于使对话代理有用的现有工作。但仍有许多悬而未决的问题有待探索。我们在这里列出了其中的一些。

  1. RL 在从人类反馈中学习有多重要?我们能否通过在 IFT 或 SFT 中使用更高质量的数据进行训练来获得 RLHF 的性能?
  2. 为了安全的角度看,Sparrow 中的 SFT+RLHF 与 LaMDA 中仅使用 SFT 相比如何?
  3. 鉴于我们有 IFT、SFT、CoT 和 RLHF,预训练有多大的必要性?如何折衷?人们应该使用的最佳基础模型是什么 (公开的和非公开的)?
  4. 本文中引用的许多模型都经过 红蓝对抗 (red-teaming) 45 的精心设计,工程师特地搜寻故障模式并基于已被揭示的问题改进后续的训练 (提示和方法)。我们如何系统地记录这些方法的效果并重现它们?

红蓝对抗 (red-teaming) 论文地址:
[2209.07858] Red Teaming Language Models to Reduce Harms: Methods, Scaling Behaviors, and Lessons Learned 45

P.s. 如果您发现本博客中的任何信息缺失或不正确,请告知我们。

引用

Rajani et al.,"What Makes a Dialog Agent Useful?", Hugging Face Blog, 2023.

BibTeX 引用:

 

@article {rajani2023ift, author = {Rajani, Nazneen and Lambert, Nathan and Sanh, Victor and Wolf, Thomas}, title = {What Makes a Dialog Agent Useful?}, journal = {Hugging Face Blog}, year = {2023}, note = {https://huggingface.co/blog/dialog-agents}, }

英文原文: What Makes a Dialog Agent Useful? 28

译者: Matrix Yao (姚伟峰)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/644528.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Go1.21 速览:go.mod 的 Go 版本号将会约束 Go 程序构建,要特别注意了!

大家好,我是煎鱼。 之前 Go 核心团队的负责人 Russ Cox 针对 Go 的向前兼容(指的是旧版本的 Go 编译新的 Go 代码),进行了进一步的设计。 重点内容如下: 新增 GOTOOLCHAIN 环境变量的设置。改变在工作模块(…

阿里云弹性公网EIP收费价格表

阿里云弹性公网EIP怎么收费?EIP地域不同价格不同,EIP计费模式分为包年包月和按量付费,弹性公网IP可以按带宽收费也可以按使用流量收费,阿里云百科分享阿里云弹性公网IP不同地域、不同计费模式、按带宽和按使用流量详细收费价格表&…

cpp新小点1

这里写目录标题 argc argv继承虚继承多态override不加override overload纯虚函数和抽象类虚析构和纯虚析构 static和 constexternself前置 后置默认构造 析构继承构造函数不能是虚函数派⽣类的override虚函数定义必须和⽗类完全⼀致。 有特列何时共享虚函数地址表 智能指针arrm…

【数据库必备知识】上手表设计

目录 📖前言 1. 基本步骤 1.1 梳理清楚需求中的实体 1.2 梳理清楚实体间的关系 2. 实体间的三种关系 2.1 一对一 2.2 一对多 2.3 多对多 🎉小结ending 📖前言 本文讲解的是基本的表设计, 设计一般只有在有一定实际项目经验后, 才能…

MAVEN - 使用maven-dependency-plugin的应用场景是什么?

简述 maven-dependency-plugin是MAVEN的一个插件。 作用 该插件主要用于管理项目中的依赖,使用该插件可以方便地查看、下载、复制和解压缩依赖,还支持生成依赖树和依赖报告。 功能 该插件有很多可用的GOAL,大部分与依赖构建、依赖分析和依…

《面试1v1》Map

我是 javapub,一名 Markdown 程序员从👨‍💻,八股文种子选手。 《面试1v1》 连载中… 面试官: 小伙子,又来挑战你了。听说你对Java集合中的Map也很在行? 候选人: 谢谢夸奖,Map这个接口的确非常重要且强大…

SpringMVC原理分析 | JSON、Jackson、FastJson

💗wei_shuo的个人主页 💫wei_shuo的学习社区 🌐Hello World ! JSON JSON(JavaScriptObject Notation,JS对象简谱)是一种轻量级的数据交换格式。它基于 ECMAScript(European Computer…

无自注意力照样高效!RIFormer开启无需token mixer的Transformer结构新篇章

©PaperWeekly 原创 作者 | 岳廷 研究方向 | 计算机视觉 引言 论文地址: https://openaccess.thecvf.com/content/CVPR2023/papers/Wang_RIFormer_Keep_Your_Vision_Backbone_Effective_but_Removing_Token_Mixer_CVPR_2023_paper.pdf 问题:Vision …

如何将代码中的相关调试信息输出到对应的日志文件中

一、将调试信息输出到屏幕中 1.1 一般写法 我们平常在写代码时&#xff0c;肯定会有一些调试信息的输出&#xff1a; #include <stdio.h> #include <stdlib.h>int main() {char szFileName[] "test.txt";FILE *fp fopen(szFileName, "r")…

R语言 tidyverse系列学习笔记(系列5)dplyr 数据分析之across

成绩单 score install.packages("dplyr") library(dplyr)install.packages("tibble") library(tibble)install.packages("stringr") library(stringr)score tibble(IDc("1222-1","2001-0","3321-1","4898-…

MySQL(八):排序与分页

排序与分页 前言一、排序数据1、排序规则2、单列排序3、多列排序 二、分页1、背景2、实现规则3、拓展 前言 本博主将用CSDN记录软件开发求学之路上亲身所得与所学的心得与知识&#xff0c;有兴趣的小伙伴可以关注博主&#xff01;也许一个人独行&#xff0c;可以走的很快&…

从零开始Vue项目中使用MapboxGL开发三维地图教程(三)添加全屏,缩放旋转和比例控制面板以及自定义图标、标记点击弹窗、地图平移等功能

文章目录 1、添加各种控制面板1.1、添加全屏1.2、缩放旋转控制1.3、比例尺 2、获取并显示鼠标移动位置的经纬度坐标3、添加图标3.1、添加图片图层的图标3.2、添加带有标记的自定义图标3.3、悬停时显示弹出窗口 1、添加各种控制面板 1.1、添加全屏 //添加全屏控制this.map.addC…

管理类联考——逻辑——知识篇——第一章 性质命题

第一章 性质命题&#xff08;最基础&#xff0c;最难*****&#xff09; 一、性质命题定义&#xff08;必考&#xff09; 判断事物具有或不具有某种性质的命题。 二、性质命题的四种基本形式 全称肯定&#xff1a;①所有的A都是B 全称否定&#xff1a;②所有的A不是B 特称肯…

Nature子刊:光遗传在绒猴执行检测任务中的行为效应

狨猴体型小&#xff0c;具有巨大的基因修饰潜力&#xff0c;并可表现复杂的行为&#xff0c;已经成为神经科学领域的一个关键模型。 德国恩斯特斯特朗格曼神经科学研究所与马克斯普朗克学会的研究人员设计了一种轻质的、3D打印的植入物&#xff0c;利用高密度硅基微电极阵列&am…

Monorepo vs. Microrepo: 选择适合你的代码仓库策略

简介 在软件开发领域&#xff0c;选择合适的代码仓库策略对于优化协作、可扩展性和代码质量至关重要。Monorepo和Microrepo是两种流行的方法&#xff0c;它们提供了各自的优势和考虑因素。本文将探讨这两种策略的特点&#xff0c;解释为何不同的公司选择不同的选项&#xff0c;…

基于Hexo和Butterfly创建个人技术博客,(5) 使用Hexo的Tags Plugin插件增强博客文章内容和视觉表现力

Hexo官司网查看 这里 注意&#xff1a; Tags语法是Hexo插件提供的&#xff0c;是非标准语言&#xff0c;写文章时要注意以下几点&#xff1a; 用于在文章中快速插入特定的内容&#xff0c;作用等同于其它语言&#xff0c;可理解为一种增强版本的markdown&#xff1b;可混合Mark…

Linux系统编程学习 NO.7 ——sudo配置、编译器的使用

引言&#xff1a; 现在是北京时间2023年6月14日8点16分&#xff0c;期末考试在即&#xff0c;重心可能得转移到考试上了。不过想到马上就可以回家陪家人过端午节&#xff0c;还是非常开心的。放暑假了就可以好好陪家人了。尝试一下换个环境复习吧&#xff0c;洗漱一下就去图书…

智见|比亚迪廉玉波:2023年销量目标300万辆

营收4240亿元&#xff0c;同比增长96%&#xff1b;归属上市公司股东净利润166亿元&#xff0c;同比增长445.86%&#xff1b;累计销售186.85万辆&#xff0c;同比增长152.5%……这是2022年比亚迪的成绩单。 据比亚迪披露&#xff0c;仅2022年一年新能源汽车的销量&#xff0c;就…

【重要】MThings V0.5.0更新要点

再见了BUG&#xff0c;为了改善质量&#xff0c;我们已修正了一些问题&#xff0c;以便您能继续富有成效且令人敬畏。 下载地址&#xff1a; http://gulink.cn/download 01. [新增]支持数据网关功能。 数据网关功能提供协议转换和数据汇聚功能&#xff0c;可实现不同的通道类型…

1--Gradle入门 - 简介、安装、目录结构、创建项目

1--Gradle入门 - 简介、安装、目录结构、创建项目 Gradle 官网 Gradle官网地址&#xff1a;Gradle Build Tool Gradle官方下载安装教程页面&#xff1a;https://gradle.org/install/ Gradle官方用户手册&#xff1a;https://docs.gradle.org/current/userguide/userguide.html …