Python实现ACO蚁群优化算法优化XGBoost分类模型(XGBClassifier算法)项目实战

news2024/11/20 16:29:27

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。



 


1.项目背景

蚁群优化算法(Ant Colony Optimization, ACO)是一种源于大自然生物世界的新的仿生进化算法,由意大利学者M. Dorigo, V. Maniezzo和A.Colorni等人于20世纪90年代初期通过模拟自然界中蚂蚁集体寻径行为而提出的一种基于种群的启发式随机搜索算法"。蚂蚁有能力在没有任何提示的情形下找到从巢穴到食物源的最短路径,并且能随环境的变化,适应性地搜索新的路径,产生新的选择。其根本原因是蚂蚁在寻找食物时,能在其走过的路径上释放一种特殊的分泌物——信息素(也称外激素),随着时间的推移该物质会逐渐挥发,后来的蚂蚁选择该路径的概率与当时这条路径上信息素的强度成正比。当一条路径上通过的蚂蚁越来越多时,其留下的信息素也越来越多,后来蚂蚁选择该路径的概率也就越高,从而更增加了该路径上的信息素强度。而强度大的信息素会吸引更多的蚂蚁,从而形成一种正反馈机制。通过这种正反馈机制,蚂蚁最终可以发现最短路径。

本项目通过ACO蚁群优化算法寻找最优的参数值来优化XGBoost分类模型。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

数据详情如下(部分展示):

 

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

 

3.2数据缺失查看

使用Pandas工具的info()方法查看数据信息:

从上图可以看到,总共有9个变量,数据中无缺失值,共1000条数据。

关键代码:

 

3.3数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:

 

4.探索性数据分析

4.1 y变量柱状图

用Matplotlib工具的plot()方法绘制直方图:

4.2 y=1样本x1变量分布直方图

用Matplotlib工具的hist()方法绘制直方图:

4.3 相关性分析

 

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

6.构建ACO蚁群优化算法优化XGBoost分类模型

主要使用ACO蚁群优化算法优化XGBoost分类算法,用于目标分类。

6.1 ACO蚁群优化算法寻找的最优参数

关键代码:

最优参数:

 

 6.2 最优参数值构建模型

7.模型评估

7.1 评估指标及结果

评估指标主要包括准确率、查准率、查全率、F1分值等等。

从上表可以看出,F1分值为0.9246,说明模型效果较好。

关键代码如下:

 

7.2 分类报告

 

从上图可以看出,分类为0的F1分值为0.93;分类为1的F1分值为0.92。

7.3 混淆矩阵

从上图可以看出,实际为0预测不为0的 有4个样本;实际为1预测不为1的 有11个样本,整体预测准确率良好。

8.结论与展望

综上所述,本文采用了ACO蚁群优化算法寻找XGBoost分类算法的最优参数值来构建分类模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

 

# ====定义惩罚项函数======
def calc_e(X):
    """计算蚂蚁的惩罚项,X 的维度是 size * 2 """
    ee = 0
    """计算第一个约束的惩罚项"""
    e1 = X[0] + X[1] - 6


# ******************************************************************************
 
# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:
 
# 链接:https://pan.baidu.com/s/1c6mQ_1YaDINFEttQymp2UQ
 
# 提取码:thgk
 
# ******************************************************************************


# ===定义子代和父辈之间的选择操作函数====
def update_best(parent, parent_fitness, parent_e, child, child_fitness, child_e, X_train, X_test, y_train, y_test):
    """
        针对不同问题,合理选择惩罚项的阈值。本例中阈值为0.1
        :param parent: 父辈个体
        :param parent_fitness:父辈适应度值
        :param parent_e    :父辈惩罚项
        :param child:  子代个体
        :param child_fitness 子代适应度值
        :param child_e  :子代惩罚项
        :return: 父辈 和子代中较优者、适应度、惩罚项
        """

    if abs(parent[0]) > 0:  # 判断取值
        n_estimators = int(abs(parent[0])) + 100  # 赋值

 更多项目实战,详见机器学习项目实战合集列表:

机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/640860.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Flutter的Stack和Positioned的控件

简介 Flutter中的Stack控件是一种可用于将多个子控件重叠在一起的布局控件。Stack将所有子控件放在同一个位置,它们可以根据需要进行定位、缩放或旋转。Stack中的子控件可以是任何类型的控件,例如文本、图像、按钮等。 主要属性 Stack控件的主要属性包…

Qcom Camera HAL 流程详解

和你一起终身学习,这里是程序员Android 经典好文推荐,通过阅读本文,您将收获以下知识点: 一、概览二、基本组件概念三、组件结构关系四、关键流程详解 一、概览 回顾高通平台Camera HAL历史,之前高通采用的是QCamera & MM-Cam…

chatgpt赋能python:Python并列输出——让你的数据展示更加美观

Python并列输出——让你的数据展示更加美观 在数据分析和机器学习中,输出数据的格式和展示方式都十分重要。而对于Python程序员来说,如何实现并列输出是一个必须掌握的技能。本文将向您介绍Python的并列输出方式,并教您如何将其结合使用&…

SpringBoot项目实战:自定义异常和统一参数验证(附源码)

你好,我是田哥 在实际开发过程中,不可避免的是需要处理各种异常,异常处理方法随处可见,所以代码中就会出现大量的try {...} catch {...} finally {...} 代码块,不仅会造成大量的冗余代码,而且还影响代码的可…

如何将一个实例的内存二进制内容读出来?

一、读取实例在内存中的字节 如下所示的PrintBytes<T>会将指定实例在内存中的字节输出到控制台上。如代码片段所示&#xff0c;我们先调用《如何计算一个实例占用多少内存&#xff1f;》中定义了SizeCalculator将承载实例内容的字节数计算出来&#xff0c;并创建对应长度…

阅读理解解题思路汇总

阅读理解解题思路汇总 一、规范解题流程&#xff1a; 1&#xff0e;读题&#xff1a; &#xff08;1&#xff09;论据→证明→论点&#xff1b; &#xff08;2&#xff09;题号&#xff1a;命题顺序与行文顺序一致&#xff1b; &#xff08;3&#xff09;题干&#xff1a;找可定…

居然生成这样的答案,AI简直离了大谱...

前文介绍了我认为目前最强的AI工具Claude&#xff1a; &#xff08;1&#xff09;目前最强的内容生成能力&#xff1b; &#xff08;2&#xff09;目前最强的个性化能力&#xff1b; &#xff08;3&#xff09;目前最强的上下文关联能力&#xff1b; &#xff08;4&#xff09;…

岩土工程中振弦采集仪的完整解决方案分析

振弦采集仪是岩土工程中用于测量地震波传播速度和土层结构信息的重要仪器。其完整解决方案包括以下几个方面&#xff1a; 1. 仪器选择&#xff1a;要选择合适的振弦采集仪&#xff0c;需要考虑测量范围、精度、可靠性、操作简便等因素。市场上常见的振弦采集仪品牌有多种&#…

chatgpt赋能python:Python并行处理介绍

Python并行处理介绍 Python是一种高级编程语言&#xff0c;通常用于数据分析&#xff0c;人工智能&#xff0c;机器学习等领域。随着数据量的增加和计算要求的增加&#xff0c;使用单个Python线程可能会变得不够快。在这种情况下&#xff0c;我们需要并行处理&#xff0c;以在…

职场上除了「躺」与「卷」,是否有第三种选择存在?

大家好&#xff0c;我是校长。 昨天在知乎上看到一个问题&#xff1a;职场上除了「躺」与「卷」&#xff0c;是否有第三种选择存在&#xff1f; 当我看到这个问题的时候&#xff0c;我想到了两本书&#xff0c;以及我看到的一些最新的观点&#xff0c;我试图结合我看到的书以及…

淘宝拍照基于端云协同的视频流实时搜索实践

本文介绍了实时视频流的主体识别场景&#xff0c;未来实时搜将会融合图搜主链路并在XR场景发力&#xff0c;未来的场景我们取名为“元视界”&#xff08;MetaSight&#xff09; 引言 很多熟悉淘宝的用户知道&#xff0c;点击首页搜索框的相机icon&#xff0c;就可以使用淘宝拍照…

助力长城汽车数据管道平台连接“数据孤岛”,加强数据一元化,Apache DolphinScheduler 的角色定位...

点击蓝字 关注我们 讲师简介 长城汽车-IDC-数据中台部-刘永飞 高级工程师 我是长城汽车 IDC-数据中台部的刘永飞&#xff0c;给大家分享一下我们自研的一个数据同步工具平台&#xff0c;以及在使用这个工具过程中遇到的问题。今天的分享主要有四个部分&#xff1a; 1. 我们自研…

语法——时态总结

一般现在时 1.概念&#xff1a;经常、反复发生的动作或行为及现在的某种状况。 2.基本结构&#xff1a;①is/am/are;②do/does否定形式&#xff1a;①am/is/are not;②此时态的谓语动词若为行为动词&#xff0c;则在其前加don‘t&#xff0c;如主语为第三人称单数&#xff0…

软考A计划-系统架构师-论文应试技巧

点击跳转专栏>Unity3D特效百例点击跳转专栏>案例项目实战源码点击跳转专栏>游戏脚本-辅助自动化点击跳转专栏>Android控件全解手册点击跳转专栏>Scratch编程案例点击跳转>软考全系列 &#x1f449;关于作者 专注于Android/Unity和各种游戏开发技巧&#xff…

Collection接口详细介绍(上)

前言&#xff1a; 本篇文章主要讲解Java中的Collection接口以及相关实现类的知识。该专栏比较适合刚入坑Java的小白以及准备秋招的大佬阅读。 如果文章有什么需要改进的地方欢迎大佬提出&#xff0c;对大佬有帮助希望可以支持下哦~ 小威在此先感谢各位小伙伴儿了&#x1f601…

利用神经网络重建三维数字孪生

利用神经网络重建三维数字孪生 从点云重建光滑表面是创建真实世界对象和场景的数字孪生的基本步骤。 表面重建算法出现在各种应用中&#xff0c;例如工业模拟、视频游戏开发、建筑设计、医学成像和机器人技术。 神经核表面重建 (NKSR) 是新的 NVIDIA 算法&#xff0c;用于从大…

Java学习路线一条龙

作者 | 磊哥 来源 | Java中文社群&#xff08;ID&#xff1a;javacn666&#xff09; 转载请联系授权&#xff08;微信ID&#xff1a;GG_Stone&#xff09; Java 要掌握的技术点如下&#xff1a; JavaSE&#xff08;Java Standard Edition&#xff0c;Java 基础&#xff09;计算…

常用命令之Proxmox qm命令

一、Proxmox简介 Proxmox是一款基于Debian Linux的开源虚拟化平台&#xff0c;它允许用户在单个物理主机上运行多个虚拟机&#xff0c;并提供了许多高级功能&#xff0c;如高可用性、备份和恢复、集群管理等。Proxmox支持多种虚拟化技术&#xff0c;包括KVM和LXC&#xff0c;而…

【RISC_V课程笔记】导论

目标 完成以cpu的设计&#xff0c;三级流水线结构。取指(if), 译码(id), 执行(ex)cpu中断系统的设计以cpu为核心的SOC设计&#xff0c;完成rom,ram,time的外设的设计用uvm对cpu进行验证(system verilog) 理论 数字逻辑电路 数字信号&#xff1a;用二进制表示的信号&#xf…

一起看 I/O | 隆重推出 AI 驱动的编码助手 Studio Bot

作者 / Android Studio 高级产品经理 Adarsh Fernando 我们在 2013 年 Google I/O 大会上首次宣布推出 Android Studio&#xff0c;并承诺为 Android 应用开发者提供一流的集成开发环境 (IDE)。10 年后的今天&#xff0c;我们对提高开发者工作效率的承诺仍然推动着团队开发新的…