OpenGL 光照贴图

news2024/11/17 21:24:13

1.简介

现实世界中的物体通常并不只包含有一种材质,而是由多种材质所组成。想想一辆汽车:它的外壳非常有光泽,车窗会部分反射周围的环境,轮胎不会那么有光泽,所以它没有镜面高光,轮毂非常闪亮。

2.漫反射贴图

用一张覆盖物体的图像,让我们能够逐片段索引其独立的颜色值,它是一个表现了物体所有的漫反射颜色的纹理图像。

这次我们会将纹理储存为Material结构体中的一个sampler2D。我们将之前定义的vec3漫反射颜色向量替换为漫反射贴图。移除了环境光材质颜色向量,因为环境光颜色在几乎所有情况下都等于漫反射颜色,所以我们不需要将它们分开储存:

struct Material {
    sampler2D diffuse;
    vec3      specular;
    float     shininess;
}; 
...
in vec2 TexCoords;

接下来我们只需要从纹理中采样片段的漫反射颜色值即可:

    vec3 diffuseTexColor = vec3(texture(material.diffuse,TexCoords));

    //diffuse
    vec3 norm = normalize(outNormal);
    vec3 lightDir = normalize(lightPos - FragPos);
    float diff = max(dot(norm, lightDir), 0.0);
    vec3 diffuse = light.diffuse * diff * diffuseTexColor;

不要忘记将环境光的材质颜色设置为漫反射材质颜色同样的值。

    //ambinet
    vec3 ambient = light.ambient * diffuseTexColor;

3.镜面光贴图

你可能会注意到,镜面高光看起来有些奇怪,因为我们的物体大部分都是木头,我们知道木头不应该有这么强的镜面高光的。我们可以将物体的镜面光材质设置为vec3(0.0)来解决这个问题,但这也意味着箱子钢制的边框将不再能够显示镜面高光了,我们知道钢铁应该是有一些镜面高光的。

我们同样可以使用一个专门用于镜面高光的纹理贴图。这也就意味着我们需要生成一个黑白的纹理,来定义物体每部分的镜面光强度。

由于箱子大部分都由木头所组成,而且木头材质应该没有镜面高光,所以漫反射纹理的整个木头部分全部都转换成了黑色。箱子钢制边框的镜面光强度是有细微变化的,钢铁本身会比较容易受到镜面高光的影响,而裂缝则不会。

接下来更新片段着色器的材质属性,让其接受一个sampler2D而不是vec3作为镜面光分量:

struct Material {
    sampler2D diffuse;
    sampler2D specular;
    float     shininess;
};

4.示例 

 

#include "myopenglwidget.h"
#include <QMatrix4x4>
#include <QTime>
#include <QTimer>
#include <math.h>
#include <QDebug>

float vertices[] = {
    // positions          // normals           // texture coords
    -0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,  0.0f, 0.0f,
     0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,  1.0f, 0.0f,
     0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,  1.0f, 1.0f,
     0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,  1.0f, 1.0f,
    -0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,  0.0f, 1.0f,
    -0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,  0.0f, 0.0f,

    -0.5f, -0.5f,  0.5f,  0.0f,  0.0f, 1.0f,   0.0f, 0.0f,
     0.5f, -0.5f,  0.5f,  0.0f,  0.0f, 1.0f,   1.0f, 0.0f,
     0.5f,  0.5f,  0.5f,  0.0f,  0.0f, 1.0f,   1.0f, 1.0f,
     0.5f,  0.5f,  0.5f,  0.0f,  0.0f, 1.0f,   1.0f, 1.0f,
    -0.5f,  0.5f,  0.5f,  0.0f,  0.0f, 1.0f,   0.0f, 1.0f,
    -0.5f, -0.5f,  0.5f,  0.0f,  0.0f, 1.0f,   0.0f, 0.0f,

    -0.5f,  0.5f,  0.5f, -1.0f,  0.0f,  0.0f,  1.0f, 0.0f,
    -0.5f,  0.5f, -0.5f, -1.0f,  0.0f,  0.0f,  1.0f, 1.0f,
    -0.5f, -0.5f, -0.5f, -1.0f,  0.0f,  0.0f,  0.0f, 1.0f,
    -0.5f, -0.5f, -0.5f, -1.0f,  0.0f,  0.0f,  0.0f, 1.0f,
    -0.5f, -0.5f,  0.5f, -1.0f,  0.0f,  0.0f,  0.0f, 0.0f,
    -0.5f,  0.5f,  0.5f, -1.0f,  0.0f,  0.0f,  1.0f, 0.0f,

     0.5f,  0.5f,  0.5f,  1.0f,  0.0f,  0.0f,  1.0f, 0.0f,
     0.5f,  0.5f, -0.5f,  1.0f,  0.0f,  0.0f,  1.0f, 1.0f,
     0.5f, -0.5f, -0.5f,  1.0f,  0.0f,  0.0f,  0.0f, 1.0f,
     0.5f, -0.5f, -0.5f,  1.0f,  0.0f,  0.0f,  0.0f, 1.0f,
     0.5f, -0.5f,  0.5f,  1.0f,  0.0f,  0.0f,  0.0f, 0.0f,
     0.5f,  0.5f,  0.5f,  1.0f,  0.0f,  0.0f,  1.0f, 0.0f,

    -0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,  0.0f, 1.0f,
     0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,  1.0f, 1.0f,
     0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,  1.0f, 0.0f,
     0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,  1.0f, 0.0f,
    -0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,  0.0f, 0.0f,
    -0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,  0.0f, 1.0f,

    -0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f,  0.0f, 1.0f,
     0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f,  1.0f, 1.0f,
     0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,  1.0f, 0.0f,
     0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,  1.0f, 0.0f,
    -0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,  0.0f, 0.0f,
    -0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f,  0.0f, 1.0f
};

GLuint indices[] = {
    0, 1, 3,
    1, 2, 3
};


GLuint VBO, VAO,EBO,lightVAO;
GLuint shaderProgram;

QVector3D lightPos(1.2f,1.0f,2.0f);
QVector3D lightColor(1.0f,1.0f,1.0f);
QVector3D objectColor(1.0f,0.5f,0.31f);

QTimer *timer;
QTime gtime;

QVector<QVector3D> cubePositions = {
  QVector3D( 0.0f,  0.0f,  0.0f),
  QVector3D( 2.0f,  5.0f, -15.0f),
  QVector3D(-1.5f, -2.2f, -2.5f),
  QVector3D(-3.8f, -2.0f, -12.3f),
  QVector3D( 2.4f, -0.4f, -3.5f),
  QVector3D(-1.7f,  3.0f, -7.5f),
  QVector3D( 1.3f, -2.0f, -2.5f),
  QVector3D( 1.5f,  2.0f, -2.5f),
  QVector3D( 1.5f,  0.2f, -1.5f),
  QVector3D(-1.3f,  1.0f, -1.5f)
};

float fov = 45.0f;

MyOpenGLWidget::MyOpenGLWidget(QWidget *parent)
    : QOpenGLWidget(parent)
{
    cameraPos = QVector3D( 0.0f,  0.0f,  5.0f);//摄像机位置
    cameraTarget = QVector3D( 0.0f,  0.0f,  0.0f);//摄像机看到的位置
    cameraDirection = QVector3D(cameraPos - cameraTarget);//摄像机的方向
    cameraDirection.normalize();

    up = QVector3D(0.0f,  1.0f,  0.0f);
    cameraRight = QVector3D::crossProduct(up,cameraDirection);//两个向量叉乘的结果会同时垂直于两向量,因此我们会得到指向x轴正方向的那个向量
    cameraRight.normalize();

    cameraUp = QVector3D::crossProduct(cameraDirection,cameraRight);
    cameraFront = QVector3D( 0.0f,  0.0f,  -1.0f);

    timer = new QTimer();
    timer->start(50);
    gtime.start();
    connect(timer,&QTimer::timeout,[=]{
        update();
    });

    setFocusPolicy(Qt::StrongFocus);
    //setMouseTracking(true);


}

void MyOpenGLWidget::initializeGL()
{
    initializeOpenGLFunctions();

    m_program = new QOpenGLShaderProgram();
    m_program->addShaderFromSourceFile(QOpenGLShader::Vertex,":/shapes.vert");
    m_program->addShaderFromSourceFile(QOpenGLShader::Fragment,":/shapes.frag");
    m_program->link();
    qDebug()<<m_program->log();

    m_lightProgram = new QOpenGLShaderProgram();
    m_lightProgram->addShaderFromSourceFile(QOpenGLShader::Vertex,":/light.vert");
    m_lightProgram->addShaderFromSourceFile(QOpenGLShader::Fragment,":/light.frag");
    m_lightProgram->link();


    glGenVertexArrays(1, &VAO);
    glGenBuffers(1, &VBO);

    glBindVertexArray(VAO);//绑定VAO
    glBindBuffer(GL_ARRAY_BUFFER, VBO);//顶点缓冲对象的缓冲类型是GL_ARRAY_BUFFER
    glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);//把顶点数据复制到缓冲的内存中GL_STATIC_DRAW :数据不会或几乎不会改变。

    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)0);
    glEnableVertexAttribArray(0);

    glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(3*sizeof(GLfloat)));
    glEnableVertexAttribArray(1);

    glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(6*sizeof(GLfloat)));
    glEnableVertexAttribArray(2);

    glGenBuffers(1, &EBO);
    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);
    glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);


    glGenVertexArrays(1, &lightVAO);
    glGenBuffers(1, &VBO);

    glBindVertexArray(lightVAO);//绑定VAO
    glBindBuffer(GL_ARRAY_BUFFER, VBO);//顶点缓冲对象的缓冲类型是GL_ARRAY_BUFFER
    glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);//把顶点数据复制到缓冲的内存中GL_STATIC_DRAW :数据不会或几乎不会改变。

    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)0);
    glEnableVertexAttribArray(0);

    glBindBuffer(GL_ARRAY_BUFFER, 0);


    m_program->bind();
    m_program->setUniformValue("lightPos",lightPos);
    m_program->setUniformValue("viewPos",cameraPos);
    m_program->setUniformValue("material.shininess", 32.0f);

    m_diffseTexture = new QOpenGLTexture(QImage(":/container2.png").mirrored());
    m_program->setUniformValue("material.diffuse",0);

    m_specularTexture = new QOpenGLTexture(QImage(":/container2_specular.png").mirrored());
    m_program->setUniformValue("material.specular",1);

    m_lightProgram->bind();
    m_lightProgram->setUniformValue("lightColor",lightColor);

    glBindVertexArray(0);//解绑VAO


}

void MyOpenGLWidget::paintGL()
{
    glClearColor(0.2f,0.3f,0.3f,1.0f);
    glEnable(GL_DEPTH_TEST);
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

    QMatrix4x4 model;
    QMatrix4x4 view;
    float time = gtime.elapsed()/50.0;
    //int time = QTime::currentTime().msec();

    QMatrix4x4 projection;
    projection.perspective(fov,(float)( width())/(height()),0.1,100);

    view.lookAt(cameraPos,cameraPos + cameraFront,up);

    m_program->bind();
    m_program->setUniformValue("projection",projection);
    m_program->setUniformValue("view",view);
    lightColor.setX(sin(time/100 * 2.0f));
    lightColor.setY(sin(time/100 * 0.7f));
    lightColor.setZ(sin(time/100 * 1.3f));
    QVector3D diffuseColor = QVector3D(0.3f,0.3f,0.3f);
    QVector3D ambinetColor = QVector3D(0.7f,0.7f,0.7f);
    m_program->setUniformValue("light.ambient",  ambinetColor);
    m_program->setUniformValue("light.diffuse",  diffuseColor); // 将光照调暗了一些以搭配场景
    m_program->setUniformValue("light.specular", QVector3D(1.0,1.0,1.0));
    m_diffseTexture->bind(0);
    m_specularTexture->bind(1);
    glBindVertexArray(VAO);//绑定VAO


    model.rotate(time,1.0f,1.0f,0.5f);
    m_program->setUniformValue("model",model);
    glDrawArrays(GL_TRIANGLES,0,36);

    m_lightProgram->bind();
    m_lightProgram->setUniformValue("projection",projection);
    m_lightProgram->setUniformValue("view",view);
    //m_lightProgram->setUniformValue("lightColor",lightColor);

    model.setToIdentity();
    model.translate(lightPos);
    model.rotate(1.0f,1.0f,5.0f,0.5f);
    model.scale(0.2);
    m_lightProgram->setUniformValue("model",model);

    glBindVertexArray(lightVAO);//绑定VAO
    glDrawArrays(GL_TRIANGLES,0,36);

//    foreach(auto pos , cubePositions)
//    {
//        model.setToIdentity();
//        model.translate(pos);
//        //model.rotate(time,1.0f,5.0f,3.0f);
//        m_program->setUniformValue("model",model);
//        glDrawArrays(GL_TRIANGLES,0,36);
//    }

}

void MyOpenGLWidget::resizeGL(int w, int h)
{

}

void MyOpenGLWidget::keyPressEvent(QKeyEvent *event)
{
    qDebug()<<event->key();
    cameraSpeed = 2.5 * 100 / 1000.0;
    switch (event->key()) {
    case Qt::Key_W:{
        cameraPos += cameraSpeed * cameraFront;
    }
        break;
    case Qt::Key_S:{
        cameraPos -= cameraSpeed * cameraFront;
    }
        break;
    case Qt::Key_A:{
        cameraPos -= cameraSpeed * cameraRight;
    }
        break;
    case Qt::Key_D:{
        cameraPos += cameraSpeed * cameraRight;
    }
        break;
    default:
        break;

    }
    update();
}
float PI = 3.1415926;
QPoint deltaPos;
void MyOpenGLWidget::mouseMoveEvent(QMouseEvent *event)
{
//    static float yaw = -90;
//    static float pitch = 0;
//    static QPoint lastPos(width()/2,height()/2);
//    auto currentPos = event->pos();
//    deltaPos = currentPos-lastPos;
//    lastPos=currentPos;
//    float sensitivity = 0.1f;
//    deltaPos *= sensitivity;
//    yaw += deltaPos.x();
//    pitch -= deltaPos.y();
//    if(pitch > 89.0f) pitch = 89.0f;
//    if(pitch < -89.0f) pitch = -89.0f;
//    cameraFront.setX(cos(yaw*PI/180.0) * cos(pitch *PI/180));
//    cameraFront.setY(sin(pitch*PI/180));
//    cameraFront.setZ(sin(yaw*PI/180) * cos(pitch *PI/180));
//    cameraFront.normalize();
//    update();
}

void MyOpenGLWidget::wheelEvent(QWheelEvent *event)
{
    if(fov >= 1.0f && fov <= 75.0f)
        fov -= event->angleDelta().y()/120;
    if(fov <= 1.0f)
        fov = 1.0f;
    if(fov >= 75.0f)
        fov = 75.0f;

    update();
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/634252.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Baumer工业相机堡盟工业相机如何使用BGAPISDK对两个万兆网相机进行触发同步(C#)

Baumer工业相机堡盟工业相机如何使用BGAPISDK对两个万兆网相机进行触发同步&#xff08;C#&#xff09; Baumer工业相机Baumer工业相机BGAPISDK和触发同步的技术背景Baumer工业相机使用BGAPISDK进行双相机主从相机触发1.引用合适的类文件2.使用BGAPISDK设置主相机硬件触发从相机…

ReentrantLock 底层原理

目录 一、ReentrantLock入门 二、AQS原理 1、AQS介绍 2、自定义锁 三、ReentrantLock实现原理 1、非公平锁的实现 加锁流程 释放锁流程 2、可重入原理 3、可打断原理 4、公平锁原理 5、条件变量原理 await流程 signal流程 一、ReentrantLock入门 相对于synchron…

对测试外包的一些粗略看法

什么叫外包&#xff0c;外包最直接理解就是让别人做事&#xff1b;外包其中一项目的就是降低企业经营成本。 从外包的含义和目的来看&#xff0c;就是我们帮人做事、听人指挥&#xff0c;当企业经济不好的时候&#xff0c;我们就成为了降低成本的最佳方案。说这些是让大家比较…

高并发编程:线程池

一、概述 线程池首先有几个接口先了解第一个是Executor&#xff0c;第二个是ExecutorService&#xff0c;在后面才是线程池的一个使用ThreadPoolExecutor。 二、Executor Executor看它的名字也能理解&#xff0c;执行者&#xff0c;所以他有一个方法叫执行&#xff0c;那么执…

JVM原理:JVM垃圾回收算法(通俗易懂)

目录 前言正文垃圾标记算法引用类型强引用软引用弱引用虚引用 引用计数法循环引用问题 根可达性分析法虚拟机栈&#xff08;栈帧的局部变量表&#xff09;中的引用方法区中类静态属性引用方法区中常量引用本地方法栈&#xff08;Native方法&#xff09;引用 垃圾回收算法标记清…

Java语法进阶及常用技术(八)--线程池

初识线程池 什么是“池” ---- 软件中的“池”&#xff0c;可以理解为计划经济。 我们的资源是有限的&#xff0c;比如只有十个线程&#xff0c;我们创造十个线程的线程池&#xff0c;可能我们的任务非常多&#xff0c;如1000个任务&#xff0c;我们就把1000个任务放到我们十个…

shell脚本学习记录(流程控制)

前言&#xff1a; 在shell脚本中&#xff0c;()、{}、[]都是用来表示命令或者变量的范围或者属性。它们的具体区别如下&#xff1a; ()&#xff1a;表示命令在子shell中运行。括号中的命令会在一个子shell中运行&#xff0c;并且该子shell拥符有自己的环境变量和文件描述&#…

【youcans动手学模型】DenseNet 模型-CIFAR10图像分类

欢迎关注『youcans动手学模型』系列 本专栏内容和资源同步到 GitHub/youcans 【youcans动手学模型】DenseNet 模型-CIFAR10图像分类 1. DenseNet 神经网络模型1.1 模型简介1.2 论文介绍1.3 改进方法与后续工作1.4 分析与讨论 2. 在 PyTorch 中定义 DenseNet 模型类2.1 DenseBlo…

性能测试实战——登录接口的性能测试(超详细总结)

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 在实际业务场景中…

python:六个模块,概括全书(上万字最详细版)

拍摄于——无锡南长街 文章目录 模块一&#xff1a;基础知识1、python语言2、常见数字类型3、字符串4、数字类型转换5、标识符命名6、常见关键字7、运算符与表达式&#xff08;1&#xff09;算术运算符&#xff08;2&#xff09;关系运算符&#xff08;3&#xff09;逻辑运算符…

循序渐进,搞懂什么是动态规划

循序渐进&#xff0c;搞懂什么是动态规划 写在前面 温馨提示&#xff0c;本文的篇幅很长&#xff0c;需要花很长的时间阅读。如果要完全理解所有内容&#xff0c;还需要花更多的时间学习。如果打算认真学习动态规划&#xff0c;又不能一次看完&#xff0c;建议您收藏本文以便后…

《深入理解计算机系统》(6)存储器层次结构

1、存储技术 随机访问存储器&#xff0c;分为两类&#xff1a; RAM&#xff0c;同时也是易失性存储器&#xff0c;也分为两类&#xff1a; - SRAM&#xff1a;静态随机访问存储器&#xff0c;速度快&#xff0c;价格高。多用来作为高速缓存存储器。 - DRAM&#xff1a;动态随机…

WinDbg安装入坑1(C#)

由于作者水平有限&#xff0c;如有写得不对的地方&#xff0c;请指正。 使用WinDbg的过程中&#xff0c;坑特别的多&#xff0c;对版本要求比较严格&#xff0c;如&#xff1a; 1 32位应用程序导出的Dump文件要用32位的WinDbg打开&#xff0c;想要没有那么多的问题&#xff…

chatgpt赋能python:Python删除内容:掌握三种删除方式

Python删除内容&#xff1a;掌握三种删除方式 删除变量中的值 删除变量中的值是Python编程中常见的操作。Python提供了del语句用于删除变量中的值&#xff1a; x "Hello World" del x上述代码中&#xff0c;del x语句将删除变量x中的值。如果我们在执行print(x)时…

从C语言到C++_18(stack和queue的常用函数+相关练习)力扣

目录 1. stack 1.1 栈的概念 1.2 stack 的介绍和使用 2. queue 2.1 队列的概念 2.2 queue 的介绍和使用 3. 栈和队列的相关选择题 答案&#xff1a; 4. 栈和队列的相关OJ题 155. 最小栈 - 力扣&#xff08;LeetCode&#xff09; 解析代码&#xff1a; 剑指 Offer 3…

python学习-代码调试器

目录 为什么学习调试器Pycharm Debugger示例所用代码布局调试工具栏 Debug Bar程序控制工具栏 pdb查看源代码 l list查看当前函数源代码 ll longlist打印变量 p查看调用栈w where向上移动当前帧 u up向上移动当前帧 d down运行当前行代码,在第一个可以停止的位置停下 s step继续…

Selenium基础篇之八大元素定位方式

文章目录 前言一、如何进行元素定位&#xff1f;1.右击元素-检查2.F12-选择工具点击元素3.借助selenium IDE 二、八大元素定位方式1.ID1.1 方法1.2 举例1.3 代码1.4 截图 2.NAME2.1 方法2.2 举例2.3 代码2.4 截图 3.CLASS_NAME3.1 方法3.2 举例3.3 代码3.4 截图 4.TAG_NAME4.1 …

再也不用担心组件跨层级的数据共享和方法驱动了

文章目录 兄弟组件的传值和方法调用多个独立组件的数据共享和方法调用多个组件内的方法和数据互相驱动&#xff1a;eventBus多个组件的数据共享以及数据修改&#xff1a;vuex 项目中关于组件的使用经常会碰到这种情况&#xff1a;父子组件传和方法调用、兄弟组件的传值和方法调…

Selenium该如何实现微博自动化运营:关注、点赞、评论

目录 前言&#xff1a; Selenium 是什么&#xff1f; 一、核心代码 二、步骤分解 三、自动化运营常用工具 前言&#xff1a; 使用 Selenium 实现微博自动化运营&#xff0c;可以提高效率、减少工作量&#xff0c;下面讲解如何使用 Selenium 实现微博的关注、点赞和评论功…

webSocket 学习

引子 WebSocket 是一种在单个 TCP 连接上进行全双工通信的网络协议。它是 HTML5 中的一种新特性&#xff0c;能够实现 Web 应用程序和服务器之间的实时通信&#xff0c;比如在线聊天、游戏、数据可视化等。 相较于 HTTP 协议的请求-响应模式&#xff0c;使用 WebSocket 可以建…