发布-订阅模式和无线电广播有些类似,在你收听之前发送的消息你将无从得知,收到消息的多少又会取决于你的接收能力。让人吃惊的是,对于那些追求完美的工程师来说,这种机器恰恰符合他们的需求,且广为传播,成为现实生活中分发消息的最佳机制。想想非死不可、推特、BBS新闻、体育新闻等应用就知道了。
但是,在很多情形下,可靠的发布-订阅模式同样是有价值的。正如我们讨论请求-应答模式一样,我们会根据“故障”来定义“可靠性”,下面几项便是发布-订阅模式中可能发生的故障:
1、订阅者连接太慢,因此没有收到发布者最初发送的消息;
2、订阅者速度太慢,同样会丢失消息;
3、订阅者可能会断开,其间的消息也会丢失。
还有一些情况我们碰到的比较少,但不是没有:
1、订阅者崩溃、重启,从而丢失了所有已收到的消息;
2、订阅者处理消息的速度过慢,导致消息在队列中堆砌并溢出;
3、因网络过载而丢失消息(特别是PGM协议下的连接);
4、网速过慢,消息在发布者处溢出,从而崩溃。
其实还会有其他出错的情况,只是以上这些在现实应用中是比较典型的。
我们已经有方法解决上面的某些问题了,比如对于慢速订阅者可以使用自杀的蜗牛模式。但是,对于其他的问题,我们最后能有一个可复用的框架来编写可靠的发布-订阅模式。
难点在于,我们并不知道目标应用程序会怎样处理这些数据。它们会进行过滤、只处理一部分消息吗?它们是否会将消息记录起来供日后使用?它们是否会将消息转发给其下的worker进行处理?需要考虑的情况实在太多了,每种情况都有其所谓的可靠性。
所以,我们将问题抽象出来,供多种应用程序使用。这种抽象应用我们称之为共享的键值缓存,它的功能是通过唯一的键名存储二进制数据块。
不要将这个抽象应用和分布式哈希表混淆起来,它是用来解决节点在分布式网络中相连接的问题的;也不要和分布式键值表混淆,它更像是一个NoSQL数据库。我们要建立的应用是将内存中的状态可靠地传递给一组客户端,它要做到的是:
1、客户端可以随时加入网络,并获得服务端当前的状态;
2、任何客户端都可以改变键值缓存(插入、更新、删除);
3、将这种变化以最短的延迟可靠地传达给所有的客户端;
4、能够处理大量的客户端,成百上千。
克隆模式的要点在于客户端会反过来和服务端进行通信,这在简单的发布-订阅模式中并不常见。所以我这里使用“服务端”、“客户端”而不是“发布者”、“订阅者”这两个词。我们会使用发布-订阅模式作为核心消息模式,不过还需要夹杂其他模式。
分发键值更新事件
我们会分阶段实施克隆模式。首先,我们看看如何从服务器发送键值更新事件给所有的客户端。我们将第一章中使用的天气服务模型进行改造,以键值对的方式发送信息,并让客户端使用哈希表来保存:
以下是服务端代码:
clonesrv1: Clone server, Model One in C
//
// 克隆模式服务端模型1
//
// 让我们直接编译,不生成类库
#include "kvsimple.c"
int main (void)
{
// 准备上下文和PUB套接字
zctx_t *ctx = zctx_new ();
void *publisher = zsocket_new (ctx, ZMQ_PUB);
zsocket_bind (publisher, "tcp://*:5556");
zclock_sleep (200);
zhash_t *kvmap = zhash_new ();
int64_t sequence = 0;
srandom ((unsigned) time (NULL));
while (!zctx_interrupted) {
// 使用键值对分发消息
kvmsg_t *kvmsg = kvmsg_new (++sequence);
kvmsg_fmt_key (kvmsg, "%d", randof (10000));
kvmsg_fmt_body (kvmsg, "%d", randof (1000000));
kvmsg_send (kvmsg, publisher);
kvmsg_store (&kvmsg, kvmap);
}
printf (" 已中止\n已发送 %d 条消息\n", (int) sequence);
zhash_destroy (&kvmap);
zctx_destroy (&ctx);
return 0;
}
以下是客户端代码:
clonecli1: Clone client, Model One in C
//
// 克隆模式客户端模型1
//
// 让我们直接编译,不生成类库
#include "kvsimple.c"
int main (void)
{
// 准备上下文和SUB套接字
zctx_t *ctx = zctx_new ();
void *updates = zsocket_new (ctx, ZMQ_SUB);
zsocket_connect (updates, "tcp://localhost:5556");
zhash_t *kvmap = zhash_new ();
int64_t sequence = 0;
while (TRUE) {
kvmsg_t *kvmsg = kvmsg_recv (updates);
if (!kvmsg)
break; // 中断
kvmsg_store (&kvmsg, kvmap);
sequence++;
}
printf (" 已中断\n收到 %d 条消息\n", (int) sequence);
zhash_destroy (&kvmap);
zctx_destroy (&ctx);
return 0;
}
几点说明:
1、所有复杂的工作都在kvmsg类中完成了,这个类能够处理键值对类型的消息对象,其实质上是一个ZMQ多帧消息,共有三帧:键(ZMQ字符串)、编号(64位,按字节顺序排列)、二进制体(保存所有附加信息)。
2、服务端随机生成消息,使用四位数作为键,这样可以模拟大量而不是过量的哈希表(1万个条目)。
3、服务端绑定套接字后会等待200毫秒,以避免订阅者连接延迟而丢失数据的问题。我们会在后面的模型中解决这一点。
4、我们使用“发布者”和“订阅者”来命名程序中使用的套接字,这样可以避免和后续模型中的其他套接字发生混淆。
以下是kvmsg的代码,已经经过了精简:
kvsimple: Key-value message class in C
/* =====================================================================
kvsimple - simple key-value message class for example applications
---------------------------------------------------------------------
Copyright (c) 1991-2011 iMatix Corporation <www.imatix.com>
Copyright other contributors as noted in the AUTHORS file.
This file is part of the ZeroMQ Guide: http://zguide.zeromq.org
This is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at
your option) any later version.
This software is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this program. If not, see
<http://www.gnu.org/licenses/>.
=====================================================================
*/
#include "kvsimple.h"
#include "zlist.h"
// 键是一个短字符串
#define KVMSG_KEY_MAX 255
// 消息被格式化成三帧
// frame 0: 键(ZMQ字符串)
// frame 1: 编号(8个字节,按顺序排列)
// frame 2: 内容(二进制数据块)
#define FRAME_KEY 0
#define FRAME_SEQ 1
#define FRAME_BODY 2
#define KVMSG_FRAMES 3
// 类结构
struct _kvmsg {
// 消息中某帧是否存在
int present [KVMSG_FRAMES];
// 对应的ZMQ消息帧
zmq_msg_t frame [KVMSG_FRAMES];
// 将键转换为C语言字符串
char key [KVMSG_KEY_MAX + 1];
};
// ---------------------------------------------------------------------
// 构造函数,设置编号
kvmsg_t *
kvmsg_new (int64_t sequence)
{
kvmsg_t
*self;
self = (kvmsg_t *) zmalloc (sizeof (kvmsg_t));
kvmsg_set_sequence (self, sequence);
return self;
}
// ---------------------------------------------------------------------
// 析构函数
// 释放消息中的帧,可供zhash_freefn()函数调用
void
kvmsg_free (void *ptr)
{
if (ptr) {
kvmsg_t *self = (kvmsg_t *) ptr;
// 销毁消息中的帧
int frame_nbr;
for (frame_nbr = 0; frame_nbr < KVMSG_FRAMES; frame_nbr++)
if (self->present [frame_nbr])
zmq_msg_close (&self->frame [frame_nbr]);
// 释放对象本身
free (self);
}
}
void
kvmsg_destroy (kvmsg_t **self_p)
{
assert (self_p);
if (*self_p) {
kvmsg_free (*self_p);
*self_p = NULL;
}
}
// ---------------------------------------------------------------------
// 从套接字中读取键值消息,返回kvmsg实例
kvmsg_t *
kvmsg_recv (void *socket)
{
assert (socket);
kvmsg_t *self = kvmsg_new (0);
// 读取所有帧,出错则销毁对象
int frame_nbr;
for (frame_nbr = 0; frame_nbr < KVMSG_FRAMES; frame_nbr++) {
if (self->present [frame_nbr])
zmq_msg_close (&self->frame [frame_nbr]);
zmq_msg_init (&self->frame [frame_nbr]);
self->present [frame_nbr] = 1;
if (zmq_recvmsg (socket, &self->frame [frame_nbr], 0) == -1) {
kvmsg_destroy (&self);
break;
}
// 验证多帧消息
int rcvmore = (frame_nbr < KVMSG_FRAMES - 1)? 1: 0;
if (zsockopt_rcvmore (socket) != rcvmore) {
kvmsg_destroy (&self);
break;
}
}
return self;
}
// ---------------------------------------------------------------------
// 向套接字发送键值对消息,不检验消息帧的内容
void
kvmsg_send (kvmsg_t *self, void *socket)
{
assert (self);
assert (socket);
int frame_nbr;
for (frame_nbr = 0; frame_nbr < KVMSG_FRAMES; frame_nbr++) {
zmq_msg_t copy;
zmq_msg_init (©);
if (self->present [frame_nbr])
zmq_msg_copy (©, &self->frame [frame_nbr]);
zmq_sendmsg (socket, ©,
(frame_nbr < KVMSG_FRAMES - 1)? ZMQ_SNDMORE: 0);
zmq_msg_close (©);
}
}
// ---------------------------------------------------------------------
// 从消息中获取键值,不存在则返回NULL
char *
kvmsg_key (kvmsg_t *self)
{
assert (self);
if (self->present [FRAME_KEY]) {
if (!*self->key) {
size_t size = zmq_msg_size (&self->frame [FRAME_KEY]);
if (size > KVMSG_KEY_MAX)
size = KVMSG_KEY_MAX;
memcpy (self->key,
zmq_msg_data (&self->frame [FRAME_KEY]), size);
self->key [size] = 0;
}
return self->key;
}
else
return NULL;
}
// ---------------------------------------------------------------------
// 返回消息的编号
int64_t
kvmsg_sequence (kvmsg_t *self)
{
assert (self);
if (self->present [FRAME_SEQ]) {
assert (zmq_msg_size (&self->frame [FRAME_SEQ]) == 8);
byte *source = zmq_msg_data (&self->frame [FRAME_SEQ]);
int64_t sequence = ((int64_t) (source [0]) << 56)
+ ((int64_t) (source [1]) << 48)
+ ((int64_t) (source [2]) << 40)
+ ((int64_t) (source [3]) << 32)
+ ((int64_t) (source [4]) << 24)
+ ((int64_t) (source [5]) << 16)
+ ((int64_t) (source [6]) << 8)
+ (int64_t) (source [7]);
return sequence;
}
else
return 0;
}
// ---------------------------------------------------------------------
// 返回消息内容,不存在则返回NULL
byte *
kvmsg_body (kvmsg_t *self)
{
assert (self);
if (self->present [FRAME_BODY])
return (byte *) zmq_msg_data (&self->frame [FRAME_BODY]);
else
return NULL;
}
// ---------------------------------------------------------------------
// 返回消息内容的大小
size_t
kvmsg_size (kvmsg_t *self)
{
assert (self);
if (self->present [FRAME_BODY])
return zmq_msg_size (&self->frame [FRAME_BODY]);
else
return 0;
}
// ---------------------------------------------------------------------
// 设置消息的键
void
kvmsg_set_key (kvmsg_t *self, char *key)
{
assert (self);
zmq_msg_t *msg = &self->frame [FRAME_KEY];
if (self->present [FRAME_KEY])
zmq_msg_close (msg);
zmq_msg_init_size (msg, strlen (key));
memcpy (zmq_msg_data (msg), key, strlen (key));
self->present [FRAME_KEY] = 1;
}
// ---------------------------------------------------------------------
// 设置消息的编号
void
kvmsg_set_sequence (kvmsg_t *self, int64_t sequence)
{
assert (self);
zmq_msg_t *msg = &self->frame [FRAME_SEQ];
if (self->present [FRAME_SEQ])
zmq_msg_close (msg);
zmq_msg_init_size (msg, 8);
byte *source = zmq_msg_data (msg);
source [0] = (byte) ((sequence >> 56) & 255);
source [1] = (byte) ((sequence >> 48) & 255);
source [2] = (byte) ((sequence >> 40) & 255);
source [3] = (byte) ((sequence >> 32) & 255);
source [4] = (byte) ((sequence >> 24) & 255);
source [5] = (byte) ((sequence >> 16) & 255);
source [6] = (byte) ((sequence >> 8) & 255);
source [7] = (byte) ((sequence) & 255);
self->present [FRAME_SEQ] = 1;
}
// ---------------------------------------------------------------------
// 设置消息内容
void
kvmsg_set_body (kvmsg_t *self, byte *body, size_t size)
{
assert (self);
zmq_msg_t *msg = &self->frame [FRAME_BODY];
if (self->present [FRAME_BODY])
zmq_msg_close (msg);
self->present [FRAME_BODY] = 1;
zmq_msg_init_size (msg, size);
memcpy (zmq_msg_data (msg), body, size);
}
// ---------------------------------------------------------------------
// 使用printf()格式设置消息键
void
kvmsg_fmt_key (kvmsg_t *self, char *format, ...)
{
char value [KVMSG_KEY_MAX + 1];
va_list args;
assert (self);
va_start (args, format);
vsnprintf (value, KVMSG_KEY_MAX, format, args);
va_end (args);
kvmsg_set_key (self, value);
}
// ---------------------------------------------------------------------
// 使用springf()格式设置消息内容
void
kvmsg_fmt_body (kvmsg_t *self, char *format, ...)
{
char value [255 + 1];
va_list args;
assert (self);
va_start (args, format);
vsnprintf (value, 255, format, args);
va_end (args);
kvmsg_set_body (self, (byte *) value, strlen (value));
}
// ---------------------------------------------------------------------
// 若kvmsg结构的键值均存在,则存入哈希表;
// 如果kvmsg结构已没有引用,则自动销毁和释放。
void
kvmsg_store (kvmsg_t **self_p, zhash_t *hash)
{
assert (self_p);
if (*self_p) {
kvmsg_t *self = *self_p;
assert (self);
if (self->present [FRAME_KEY]
&& self->present [FRAME_BODY]) {
zhash_update (hash, kvmsg_key (self), self);
zhash_freefn (hash, kvmsg_key (self), kvmsg_free);
}
*self_p = NULL;
}
}
// ---------------------------------------------------------------------
// 将消息内容打印至标准错误输出,用以调试和跟踪
void
kvmsg_dump (kvmsg_t *self)
{
if (self) {
if (!self) {
fprintf (stderr, "NULL");
return;
}
size_t size = kvmsg_size (self);
byte *body = kvmsg_body (self);
fprintf (stderr, "[seq:%" PRId64 "]", kvmsg_sequence (self));
fprintf (stderr, "[key:%s]", kvmsg_key (self));
fprintf (stderr, "[size:%zd] ", size);
int char_nbr;
for (char_nbr = 0; char_nbr < size; char_nbr++)
fprintf (stderr, "%02X", body [char_nbr]);
fprintf (stderr, "\n");
}
else
fprintf (stderr, "NULL message\n");
}
// ---------------------------------------------------------------------
// 测试用例
int
kvmsg_test (int verbose)
{
kvmsg_t
*kvmsg;
printf (" * kvmsg: ");
// 准备上下文和套接字
zctx_t *ctx = zctx_new ();
void *output = zsocket_new (ctx, ZMQ_DEALER);
int rc = zmq_bind (output, "ipc://kvmsg_selftest.ipc");
assert (rc == 0);
void *input = zsocket_new (ctx, ZMQ_DEALER);
rc = zmq_connect (input, "ipc://kvmsg_selftest.ipc");
assert (rc == 0);
zhash_t *kvmap = zhash_new ();
// 测试简单消息的发送和接受
kvmsg = kvmsg_new (1);
kvmsg_set_key (kvmsg, "key");
kvmsg_set_body (kvmsg, (byte *) "body", 4);
if (verbose)
kvmsg_dump (kvmsg);
kvmsg_send (kvmsg, output);
kvmsg_store (&kvmsg, kvmap);
kvmsg = kvmsg_recv (input);
if (verbose)
kvmsg_dump (kvmsg);
assert (streq (kvmsg_key (kvmsg), "key"));
kvmsg_store (&kvmsg, kvmap);
// 关闭并销毁所有对象
zhash_destroy (&kvmap);
zctx_destroy (&ctx);
printf ("OK\n");
return 0;
}
我们会在下文编写一个更为完整的kvmsg类,可以用到现实环境中。
客户端和服务端都会维护一个哈希表,但这个模型需要所有的客户端都比服务端启动得早,而且不能崩溃,这显然不能满足可靠性的要求。
创建快照
为了让后续连接的(或从故障中恢复的)客户端能够获取服务器上的状态信息,需要让它在连接时获取一份快照。正如我们将“消息”的概念简化为“已编号的键值对”,我们也可以将“状态”简化为“一个哈希表”。为获取服务端状态,客户端会打开一个REQ套接字进行请求:
我们需要考虑时间的问题,因为生成快照是需要一定时间的,我们需要知道应从哪个更新事件开始更新快照,服务端是不知道何时有更新事件的。一种方法是先开始订阅消息,收到第一个消息之后向服务端请求“将该条更新之前的所有内容发送给”。这样一来,服务器需要为每一次更新保存一份快照,这显然是不现实的。
所以,我们会在客户端用以下方式进行同步:
1、客户端开始订阅服务器的更新事件,然后请求一份快照。这样就能保证这份快照是在上一次更新事件之后产生的。
2、客户端开始等待服务器的快照,并将更新事件保存在队列中,做法很简单,不要从套接字中读取消息就可以了,ZMQ会自动将这些消息保存起来,这时不应设置阈值(HWM)。
3、当客户端获取到快照后,它将再次开始读取更新事件,但是需要丢弃那些早于快照生成时间的事件。如快照生成时包含了200次更新,那客户端会从第201次更新开始读取。
4、随后,客户端就会用更新事件去更新自身的状态了。
这是一个比较简单的模型,因为它用到了ZMQ消息队列的机制。服务端代码如下:
clonesrv2: Clone server, Model Two in C
//
// 克隆模式 - 服务端 - 模型2
//
// 让我们直接编译,不创建类库
#include "kvsimple.c"
static int s_send_single (char *key, void *data, void *args);
static void state_manager (void *args, zctx_t *ctx, void *pipe);
int main (void)
{
// 准备套接字和上下文
zctx_t *ctx = zctx_new ();
void *publisher = zsocket_new (ctx, ZMQ_PUB);
zsocket_bind (publisher, "tcp://*:5557");
int64_t sequence = 0;
srandom ((unsigned) time (NULL));
// 开启状态管理器,并等待同步信号
void *updates = zthread_fork (ctx, state_manager, NULL);
free (zstr_recv (updates));
while (!zctx_interrupted) {
// 分发键值消息
kvmsg_t *kvmsg = kvmsg_new (++sequence);
kvmsg_fmt_key (kvmsg, "%d", randof (10000));
kvmsg_fmt_body (kvmsg, "%d", randof (1000000));
kvmsg_send (kvmsg, publisher);
kvmsg_send (kvmsg, updates);
kvmsg_destroy (&kvmsg);
}
printf (" 已中断\n已发送 %d 条消息\n", (int) sequence);
zctx_destroy (&ctx);
return 0;
}
// 快照请求方信息
typedef struct {
void *socket; // 用于发送快照的ROUTER套接字
zframe_t *identity; // 请求方的标识
} kvroute_t;
// 发送快照中单个键值对
// 使用kvmsg对象作为载体
static int
s_send_single (char *key, void *data, void *args)
{
kvroute_t *kvroute = (kvroute_t *) args;
// 先发送接收方标识
zframe_send (&kvroute->identity,
kvroute->socket, ZFRAME_MORE + ZFRAME_REUSE);
kvmsg_t *kvmsg = (kvmsg_t *) data;
kvmsg_send (kvmsg, kvroute->socket);
return 0;
}
// 该线程维护服务端状态,并处理快照请求。
//
static void
state_manager (void *args, zctx_t *ctx, void *pipe)
{
zhash_t *kvmap = zhash_new ();
zstr_send (pipe, "READY");
void *snapshot = zsocket_new (ctx, ZMQ_ROUTER);
zsocket_bind (snapshot, "tcp://*:5556");
zmq_pollitem_t items [] = {
{ pipe, 0, ZMQ_POLLIN, 0 },
{ snapshot, 0, ZMQ_POLLIN, 0 }
};
int64_t sequence = 0; // 当前快照版本
while (!zctx_interrupted) {
int rc = zmq_poll (items, 2, -1);
if (rc == -1 && errno == ETERM)
break; // 上下文异常
// 等待主线程的更新事件
if (items [0].revents & ZMQ_POLLIN) {
kvmsg_t *kvmsg = kvmsg_recv (pipe);
if (!kvmsg)
break; // 中断
sequence = kvmsg_sequence (kvmsg);
kvmsg_store (&kvmsg, kvmap);
}
// 执行快照请求
if (items [1].revents & ZMQ_POLLIN) {
zframe_t *identity = zframe_recv (snapshot);
if (!identity)
break; // 中断
// 请求内容在第二帧中
char *request = zstr_recv (snapshot);
if (streq (request, "ICANHAZ?"))
free (request);
else {
printf ("E: 错误的请求,程序中止\n");
break;
}
// 发送快照给客户端
kvroute_t routing = { snapshot, identity };
// 逐项发送
zhash_foreach (kvmap, s_send_single, &routing);
// 发送结束标识,内含快照版本号
printf ("正在发送快照,版本号 %d\n", (int) sequence);
zframe_send (&identity, snapshot, ZFRAME_MORE);
kvmsg_t *kvmsg = kvmsg_new (sequence);
kvmsg_set_key (kvmsg, "KTHXBAI");
kvmsg_set_body (kvmsg, (byte *) "", 0);
kvmsg_send (kvmsg, snapshot);
kvmsg_destroy (&kvmsg);
}
}
zhash_destroy (&kvmap);
}
以下是客户端代码:
clonecli2: Clone client, Model Two in C
//
// 克隆模式 - 客户端 - 模型2
//
// 让我们直接编译,不生成类库
#include "kvsimple.c"
int main (void)
{
// 准备上下文和SUB套接字
zctx_t *ctx = zctx_new ();
void *snapshot = zsocket_new (ctx, ZMQ_DEALER);
zsocket_connect (snapshot, "tcp://localhost:5556");
void *subscriber = zsocket_new (ctx, ZMQ_SUB);
zsocket_connect (subscriber, "tcp://localhost:5557");
zhash_t *kvmap = zhash_new ();
// 获取快照
int64_t sequence = 0;
zstr_send (snapshot, "ICANHAZ?");
while (TRUE) {
kvmsg_t *kvmsg = kvmsg_recv (snapshot);
if (!kvmsg)
break; // 中断
if (streq (kvmsg_key (kvmsg), "KTHXBAI")) {
sequence = kvmsg_sequence (kvmsg);
printf ("已获取快照,版本号=%d\n", (int) sequence);
kvmsg_destroy (&kvmsg);
break; // 完成
}
kvmsg_store (&kvmsg, kvmap);
}
// 应用队列中的更新事件,丢弃过时事件
while (!zctx_interrupted) {
kvmsg_t *kvmsg = kvmsg_recv (subscriber);
if (!kvmsg)
break; // 中断
if (kvmsg_sequence (kvmsg) > sequence) {
sequence = kvmsg_sequence (kvmsg);
kvmsg_store (&kvmsg, kvmap);
}
else
kvmsg_destroy (&kvmsg);
}
zhash_destroy (&kvmap);
zctx_destroy (&ctx);
return 0;
}
几点说明:
1、客户端使用两个线程,一个用来生成随机的更新事件,另一个用来管理状态。两者之间使用PAIR套接字通信。可能你会考虑使用SUB套接字,但是“慢连接”的问题会影响到程序运行。PAIR套接字会让两个线程严格同步的。
2、我们在updates套接字上设置了阈值(HWM),避免更新服务内存溢出。在inproc协议的连接中,阈值是两端套接字阈值的加和,所以要分别设置。
3、客户端比较简单,用C语言编写,大约60行代码。大多数工作都在kvmsg类中完成了,不过总的来说,克隆模式实现起来还是比较简单的。
4、我们没有用特别的方式来序列化状态内容。键值对用kvmsg对象表示,保存在一个哈希表中。在不同的时间请求状态时会得到不同的快照。
5、我们假设客户端只和一个服务进行通信,而且服务必须是正常运行的。我们暂不考虑如何从服务崩溃的情形中恢复过来。
现在,这两段程序都还没有真正地工作起来,但已经能够正确地同步状态了。这是一个多种消息模式的混合体:进程内的PAIR、发布-订阅、ROUTER-DEALER等。
重发键值更新事件
第二个模型中,键值更新事件都来自于服务器,构成了一个中心化的模型。但是我们需要的是一个能够在客户端进行更新的缓存,并能同步到其他客户端中。这时,服务端只是一个无状态的中间件,带来的好处有:
1、我们不用太过关心服务端的可靠性,因为即使它崩溃了,我们仍能从客户端中获取完整的数据。
2、我们可以使用键值缓存在动态节点之间分享数据。
客户端的键值更新事件会通过PUSH-PULL套接字传达给服务端:
我们为什么不让客户端直接将更新信息发送给其他客户端呢?虽然这样做可以减少延迟,但是就无法为更新事件添加自增的唯一编号了。很多应用程序都需要更新事件以某种方式排序,只有将消息发给服务端,由服务端分发更新消息,才能保证更新事件的顺序。
有了唯一的编号后,客户端还能检测到更多的故障:网络堵塞或队列溢出。如果客户端发现消息输入流有一段空白,它能采取措施。可能你会觉得此时让客户端通知服务端,让它重新发送丢失的信息,可以解决问题。但事实上没有必要这么做。消息流的空挡表示网络状况不好,如果再进行这样的请求,只会让事情变得更糟。所以一般的做法是由客户端发出警告,并停止运行,等到有专人来维护后再继续工作。
我们开始创建在客户端进行状态更新的模型。以下是客户端代码:
clonesrv3: Clone server, Model Three in C
//
// 克隆模式 服务端 模型3
//
// 直接编译,不创建类库
#include "kvsimple.c"
static int s_send_single (char *key, void *data, void *args);
// 快照请求方信息
typedef struct {
void *socket; // ROUTER套接字
zframe_t *identity; // 请求方标识
} kvroute_t;
int main (void)
{
// 准备上下文和套接字
zctx_t *ctx = zctx_new ();
void *snapshot = zsocket_new (ctx, ZMQ_ROUTER);
zsocket_bind (snapshot, "tcp://*:5556");
void *publisher = zsocket_new (ctx, ZMQ_PUB);
zsocket_bind (publisher, "tcp://*:5557");
void *collector = zsocket_new (ctx, ZMQ_PULL);
zsocket_bind (collector, "tcp://*:5558");
int64_t sequence = 0;
zhash_t *kvmap = zhash_new ();
zmq_pollitem_t items [] = {
{ collector, 0, ZMQ_POLLIN, 0 },
{ snapshot, 0, ZMQ_POLLIN, 0 }
};
while (!zctx_interrupted) {
int rc = zmq_poll (items, 2, 1000 * ZMQ_POLL_MSEC);
// 执行来自客户端的更新事件
if (items [0].revents & ZMQ_POLLIN) {
kvmsg_t *kvmsg = kvmsg_recv (collector);
if (!kvmsg)
break; // 中断
kvmsg_set_sequence (kvmsg, ++sequence);
kvmsg_send (kvmsg, publisher);
kvmsg_store (&kvmsg, kvmap);
printf ("I: 发布更新事件 %5d\n", (int) sequence);
}
// 响应快照请求
if (items [1].revents & ZMQ_POLLIN) {
zframe_t *identity = zframe_recv (snapshot);
if (!identity)
break; // 中断
// 请求内容在消息的第二帧中
char *request = zstr_recv (snapshot);
if (streq (request, "ICANHAZ?"))
free (request);
else {
printf ("E: 错误的请求,程序中止\n");
break;
}
// 发送快照
kvroute_t routing = { snapshot, identity };
// 逐条发送
zhash_foreach (kvmap, s_send_single, &routing);
// 发送结束标识和编号
printf ("I: 正在发送快照,版本号:%d\n", (int) sequence);
zframe_send (&identity, snapshot, ZFRAME_MORE);
kvmsg_t *kvmsg = kvmsg_new (sequence);
kvmsg_set_key (kvmsg, "KTHXBAI");
kvmsg_set_body (kvmsg, (byte *) "", 0);
kvmsg_send (kvmsg, snapshot);
kvmsg_destroy (&kvmsg);
}
}
printf (" 已中断\n已处理 %d 条消息\n", (int) sequence);
zhash_destroy (&kvmap);
zctx_destroy (&ctx);
return 0;
}
// 发送一条键值对状态给套接字,使用kvmsg对象保存键值对
static int
s_send_single (char *key, void *data, void *args)
{
kvroute_t *kvroute = (kvroute_t *) args;
// Send identity of recipient first
zframe_send (&kvroute->identity,
kvroute->socket, ZFRAME_MORE + ZFRAME_REUSE);
kvmsg_t *kvmsg = (kvmsg_t *) data;
kvmsg_send (kvmsg, kvroute->socket);
return 0;
}
以下是客户端代码:
clonecli3: Clone client, Model Three in C
//
// 克隆模式 - 客户端 - 模型3
//
// 直接编译,不创建类库
#include "kvsimple.c"
int main (void)
{
// 准备上下文和SUB套接字
zctx_t *ctx = zctx_new ();
void *snapshot = zsocket_new (ctx, ZMQ_DEALER);
zsocket_connect (snapshot, "tcp://localhost:5556");
void *subscriber = zsocket_new (ctx, ZMQ_SUB);
zsocket_connect (subscriber, "tcp://localhost:5557");
void *publisher = zsocket_new (ctx, ZMQ_PUSH);
zsocket_connect (publisher, "tcp://localhost:5558");
zhash_t *kvmap = zhash_new ();
srandom ((unsigned) time (NULL));
// 获取状态快照
int64_t sequence = 0;
zstr_send (snapshot, "ICANHAZ?");
while (TRUE) {
kvmsg_t *kvmsg = kvmsg_recv (snapshot);
if (!kvmsg)
break; // 中断
if (streq (kvmsg_key (kvmsg), "KTHXBAI")) {
sequence = kvmsg_sequence (kvmsg);
printf ("I: 已收到快照,版本号:%d\n", (int) sequence);
kvmsg_destroy (&kvmsg);
break; // 完成
}
kvmsg_store (&kvmsg, kvmap);
}
int64_t alarm = zclock_time () + 1000;
while (!zctx_interrupted) {
zmq_pollitem_t items [] = { { subscriber, 0, ZMQ_POLLIN, 0 } };
int tickless = (int) ((alarm - zclock_time ()));
if (tickless < 0)
tickless = 0;
int rc = zmq_poll (items, 1, tickless * ZMQ_POLL_MSEC);
if (rc == -1)
break; // 上下文被关闭
if (items [0].revents & ZMQ_POLLIN) {
kvmsg_t *kvmsg = kvmsg_recv (subscriber);
if (!kvmsg)
break; // 中断
// 丢弃过时消息,包括心跳
if (kvmsg_sequence (kvmsg) > sequence) {
sequence = kvmsg_sequence (kvmsg);
kvmsg_store (&kvmsg, kvmap);
printf ("I: 收到更新事件:%d\n", (int) sequence);
}
else
kvmsg_destroy (&kvmsg);
}
// 创建一个随机的更新事件
if (zclock_time () >= alarm) {
kvmsg_t *kvmsg = kvmsg_new (0);
kvmsg_fmt_key (kvmsg, "%d", randof (10000));
kvmsg_fmt_body (kvmsg, "%d", randof (1000000));
kvmsg_send (kvmsg, publisher);
kvmsg_destroy (&kvmsg);
alarm = zclock_time () + 1000;
}
}
printf (" 已准备\n收到 %d 条消息\n", (int) sequence);
zhash_destroy (&kvmap);
zctx_destroy (&ctx);
return 0;
}
几点说明:
1、服务端整合为一个线程,负责收集来自客户端的更新事件并转发给其他客户端。它使用PULL套接字获取更新事件,ROUTER套接字处理快照请求,以及PUB套接字发布更新事件。
2、客户端会每隔1秒左右发送随机的更新事件给服务端,现实中这一动作由应用程序触发。
子树克隆
现实中的键值缓存会越变越多,而客户端可能只会需要部分缓存。我们可以使用子树的方式来实现:客户端在发送快照请求时告诉服务端它需要的子树,在订阅更新事件时也指明子树。
关于子树的语法有很多,一种是“分层路径”结构,另一种是“主题树”
1、分层路径:/some/list/of/paths。
2、主题树:some.list.of.topics
这里我们会使用分层路径结构,以此扩展服务端和客户端,进行子树操作。维护多个子树其实并不太困难,因此我们不在这里演示。
下面是服务端代码,由模型3衍化而来:
clonesrv4: Clone server, Model Four in C
//
// 克隆模式 服务端 模型4
//
// 直接编译,不创建类库
#include "kvsimple.c"
static int s_send_single (char *key, void *data, void *args);
// 快照请求方信息
typedef struct {
void *socket; // ROUTER套接字
zframe_t *identity; // 请求方标识
char *subtree; // 指定的子树
} kvroute_t;
int main (void)
{
// 准备上下文和套接字
zctx_t *ctx = zctx_new ();
void *snapshot = zsocket_new (ctx, ZMQ_ROUTER);
zsocket_bind (snapshot, "tcp://*:5556");
void *publisher = zsocket_new (ctx, ZMQ_PUB);
zsocket_bind (publisher, "tcp://*:5557");
void *collector = zsocket_new (ctx, ZMQ_PULL);
zsocket_bind (collector, "tcp://*:5558");
int64_t sequence = 0;
zhash_t *kvmap = zhash_new ();
zmq_pollitem_t items [] = {
{ collector, 0, ZMQ_POLLIN, 0 },
{ snapshot, 0, ZMQ_POLLIN, 0 }
};
while (!zctx_interrupted) {
int rc = zmq_poll (items, 2, 1000 * ZMQ_POLL_MSEC);
// 执行来自客户端的更新事件
if (items [0].revents & ZMQ_POLLIN) {
kvmsg_t *kvmsg = kvmsg_recv (collector);
if (!kvmsg)
break; // Interrupted
kvmsg_set_sequence (kvmsg, ++sequence);
kvmsg_send (kvmsg, publisher);
kvmsg_store (&kvmsg, kvmap);
printf ("I: 发布更新事件 %5d\n", (int) sequence);
}
// 响应快照请求
if (items [1].revents & ZMQ_POLLIN) {
zframe_t *identity = zframe_recv (snapshot);
if (!identity)
break; // Interrupted
// 请求内容在消息的第二帧中
char *request = zstr_recv (snapshot);
char *subtree = NULL;
if (streq (request, "ICANHAZ?")) {
free (request);
subtree = zstr_recv (snapshot);
}
else {
printf ("E: 错误的请求,程序中止\n");
break;
}
// 发送快照
kvroute_t routing = { snapshot, identity, subtree };
// 逐条发送
zhash_foreach (kvmap, s_send_single, &routing);
// 发送结束标识和编号
printf ("I: 正在发送快照,版本号:%d\n", (int) sequence);
zframe_send (&identity, snapshot, ZFRAME_MORE);
kvmsg_t *kvmsg = kvmsg_new (sequence);
kvmsg_set_key (kvmsg, "KTHXBAI");
kvmsg_set_body (kvmsg, (byte *) subtree, 0);
kvmsg_send (kvmsg, snapshot);
kvmsg_destroy (&kvmsg);
free (subtree);
}
}
printf (" 已中断\n已处理 %d 条消息\n", (int) sequence);
zhash_destroy (&kvmap);
zctx_destroy (&ctx);
return 0;
}
// 发送一条键值对状态给套接字,使用kvmsg对象保存键值对
static int
s_send_single (char *key, void *data, void *args)
{
kvroute_t *kvroute = (kvroute_t *) args;
kvmsg_t *kvmsg = (kvmsg_t *) data;
if (strlen (kvroute->subtree) <= strlen (kvmsg_key (kvmsg))
&& memcmp (kvroute->subtree,
kvmsg_key (kvmsg), strlen (kvroute->subtree)) == 0) {
// 先发送接收方的标识
zframe_send (&kvroute->identity,
kvroute->socket, ZFRAME_MORE + ZFRAME_REUSE);
kvmsg_send (kvmsg, kvroute->socket);
}
return 0;
}
下面是客户端代码:
clonecli4: Clone client, Model Four in C
//
// 克隆模式 - 客户端 - 模型4
//
// 直接编译,不创建类库
#include "kvsimple.c"
#define SUBTREE "/client/"
int main (void)
{
// 准备上下文和SUB套接字
zctx_t *ctx = zctx_new ();
void *snapshot = zsocket_new (ctx, ZMQ_DEALER);
zsocket_connect (snapshot, "tcp://localhost:5556");
void *subscriber = zsocket_new (ctx, ZMQ_SUB);
zsocket_connect (subscriber, "tcp://localhost:5557");
zsockopt_set_subscribe (subscriber, SUBTREE);
void *publisher = zsocket_new (ctx, ZMQ_PUSH);
zsocket_connect (publisher, "tcp://localhost:5558");
zhash_t *kvmap = zhash_new ();
srandom ((unsigned) time (NULL));
// 获取状态快照
int64_t sequence = 0;
zstr_sendm (snapshot, "ICANHAZ?");
zstr_send (snapshot, SUBTREE);
while (TRUE) {
kvmsg_t *kvmsg = kvmsg_recv (snapshot);
if (!kvmsg)
break; // Interrupted
if (streq (kvmsg_key (kvmsg), "KTHXBAI")) {
sequence = kvmsg_sequence (kvmsg);
printf ("I: 已收到快照,版本号:%d\n", (int) sequence);
kvmsg_destroy (&kvmsg);
break; // Done
}
kvmsg_store (&kvmsg, kvmap);
}
int64_t alarm = zclock_time () + 1000;
while (!zctx_interrupted) {
zmq_pollitem_t items [] = { { subscriber, 0, ZMQ_POLLIN, 0 } };
int tickless = (int) ((alarm - zclock_time ()));
if (tickless < 0)
tickless = 0;
int rc = zmq_poll (items, 1, tickless * ZMQ_POLL_MSEC);
if (rc == -1)
break; // 上下文被关闭
if (items [0].revents & ZMQ_POLLIN) {
kvmsg_t *kvmsg = kvmsg_recv (subscriber);
if (!kvmsg)
break; // 中断
// 丢弃过时消息,包括心跳
if (kvmsg_sequence (kvmsg) > sequence) {
sequence = kvmsg_sequence (kvmsg);
kvmsg_store (&kvmsg, kvmap);
printf ("I: 收到更新事件:%d\n", (int) sequence);
}
else
kvmsg_destroy (&kvmsg);
}
// 创建一个随机的更新事件
if (zclock_time () >= alarm) {
kvmsg_t *kvmsg = kvmsg_new (0);
kvmsg_fmt_key (kvmsg, "%s%d", SUBTREE, randof (10000));
kvmsg_fmt_body (kvmsg, "%d", randof (1000000));
kvmsg_send (kvmsg, publisher);
kvmsg_destroy (&kvmsg);
alarm = zclock_time () + 1000;
}
}
printf (" 已准备\n收到 %d 条消息\n", (int) sequence);
zhash_destroy (&kvmap);
zctx_destroy (&ctx);
return 0;
}
瞬间值
瞬间值指的是那些会立刻过期的值。如果你用克隆模式搭建一个类似DNS的服务时,就可以用瞬间值来模拟动态DNS解析了。当节点连接网络,对外发布它的地址,并不断地更新地址。如果节点断开连接,则它的地址也会失效。
瞬间值可以和会话(session)联系起来,当会话结束时,瞬间值也就失效了。克隆模式中,会话是由客户端定义的,并会在客户端断开连接时消亡。
更简单的方法是为每一个瞬间值设定一个过期时间,客户端会不断延长这个时间,当断开连接时这个时间将得不到更新,服务器就会自动将其删除。
我们会用这种简单的方法来实现瞬间值,因为太过复杂的方法可能不值当,它们的差别仅在性能上体现。如果客户端有很多瞬间值,那为每个值设定过期时间是恰当的;如果瞬间值到达一定的量,那最好还是将其和会话相关联,统一进行过期处理。
首先,我们需要设法在键值对消息中加入过期时间。我们可以增加一个消息帧,但这样一来每当我们需要增加消息内容时就需要修改kvmsg类库了,这并不合适。所以,我们一次性增加一个“属性”消息帧,用于添加不同的消息属性。
其次,我们需要设法删除这条数据。目前为止服务端和客户端会盲目地增改哈希表中的数据,我们可以这样定义:当消息的值是空的,则表示删除这个键的数据。
下面是一个更为完整的kvmsg类代码,它实现了“属性”帧,以及一个UUID帧,我们后面会用到。该类还会负责处理值为空的消息,达到删除的目的:
kvmsg: Key-value message class - full in C
/* =====================================================================
kvmsg - key-value message class for example applications
---------------------------------------------------------------------
Copyright (c) 1991-2011 iMatix Corporation <www.imatix.com>
Copyright other contributors as noted in the AUTHORS file.
This file is part of the ZeroMQ Guide: http://zguide.zeromq.org
This is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at
your option) any later version.
This software is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this program. If not, see
<http://www.gnu.org/licenses/>.
=====================================================================
*/
#include "kvmsg.h"
#include <uuid/uuid.h>
#include "zlist.h"
// 键是短字符串
#define KVMSG_KEY_MAX 255
// 消息包含五帧
// frame 0: 键(ZMQ字符串)
// frame 1: 编号(8个字节,按顺序排列)
// frame 2: UUID(二进制块,16个字节)
// frame 3: 属性(ZMQ字符串)
// frame 4: 值(二进制块)
#define FRAME_KEY 0
#define FRAME_SEQ 1
#define FRAME_UUID 2
#define FRAME_PROPS 3
#define FRAME_BODY 4
#define KVMSG_FRAMES 5
// 类结构
struct _kvmsg {
// 帧是否存在
int present [KVMSG_FRAMES];
// 对应消息帧
zmq_msg_t frame [KVMSG_FRAMES];
// 键,C语言字符串格式
char key [KVMSG_KEY_MAX + 1];
// 属性列表,key=value形式
zlist_t *props;
size_t props_size;
};
// 将属性列表序列化为字符串
static void
s_encode_props (kvmsg_t *self)
{
zmq_msg_t *msg = &self->frame [FRAME_PROPS];
if (self->present [FRAME_PROPS])
zmq_msg_close (msg);
zmq_msg_init_size (msg, self->props_size);
char *prop = zlist_first (self->props);
char *dest = (char *) zmq_msg_data (msg);
while (prop) {
strcpy (dest, prop);
dest += strlen (prop);
*dest++ = '\n';
prop = zlist_next (self->props);
}
self->present [FRAME_PROPS] = 1;
}
// 从字符串中解析属性列表
static void
s_decode_props (kvmsg_t *self)
{
zmq_msg_t *msg = &self->frame [FRAME_PROPS];
self->props_size = 0;
while (zlist_size (self->props))
free (zlist_pop (self->props));
size_t remainder = zmq_msg_size (msg);
char *prop = (char *) zmq_msg_data (msg);
char *eoln = memchr (prop, '\n', remainder);
while (eoln) {
*eoln = 0;
zlist_append (self->props, strdup (prop));
self->props_size += strlen (prop) + 1;
remainder -= strlen (prop) + 1;
prop = eoln + 1;
eoln = memchr (prop, '\n', remainder);
}
}
// ---------------------------------------------------------------------
// 构造函数,指定消息编号
kvmsg_t *
kvmsg_new (int64_t sequence)
{
kvmsg_t
*self;
self = (kvmsg_t *) zmalloc (sizeof (kvmsg_t));
self->props = zlist_new ();
kvmsg_set_sequence (self, sequence);
return self;
}
// ---------------------------------------------------------------------
// 析构函数
// 释放内存函数,供zhash_free_fn()调用
void
kvmsg_free (void *ptr)
{
if (ptr) {
kvmsg_t *self = (kvmsg_t *) ptr;
// 释放所有消息帧
int frame_nbr;
for (frame_nbr = 0; frame_nbr < KVMSG_FRAMES; frame_nbr++)
if (self->present [frame_nbr])
zmq_msg_close (&self->frame [frame_nbr]);
// 释放属性列表
while (zlist_size (self->props))
free (zlist_pop (self->props));
zlist_destroy (&self->props);
// 释放对象本身
free (self);
}
}
void
kvmsg_destroy (kvmsg_t **self_p)
{
assert (self_p);
if (*self_p) {
kvmsg_free (*self_p);
*self_p = NULL;
}
}
// ---------------------------------------------------------------------
// 复制kvmsg对象
kvmsg_t *
kvmsg_dup (kvmsg_t *self)
{
kvmsg_t *kvmsg = kvmsg_new (0);
int frame_nbr;
for (frame_nbr = 0; frame_nbr < KVMSG_FRAMES; frame_nbr++) {
if (self->present [frame_nbr]) {
zmq_msg_t *src = &self->frame [frame_nbr];
zmq_msg_t *dst = &kvmsg->frame [frame_nbr];
zmq_msg_init_size (dst, zmq_msg_size (src));
memcpy (zmq_msg_data (dst),
zmq_msg_data (src), zmq_msg_size (src));
kvmsg->present [frame_nbr] = 1;
}
}
kvmsg->props = zlist_copy (self->props);
return kvmsg;
}
// ---------------------------------------------------------------------
// 从套接字总读取键值对,返回kvmsg实例
kvmsg_t *
kvmsg_recv (void *socket)
{
assert (socket);
kvmsg_t *self = kvmsg_new (0);
// 读取所有帧,若有异常则直接返回空
int frame_nbr;
for (frame_nbr = 0; frame_nbr < KVMSG_FRAMES; frame_nbr++) {
if (self->present [frame_nbr])
zmq_msg_close (&self->frame [frame_nbr]);
zmq_msg_init (&self->frame [frame_nbr]);
self->present [frame_nbr] = 1;
if (zmq_recvmsg (socket, &self->frame [frame_nbr], 0) == -1) {
kvmsg_destroy (&self);
break;
}
// 验证多帧消息
int rcvmore = (frame_nbr < KVMSG_FRAMES - 1)? 1: 0;
if (zsockopt_rcvmore (socket) != rcvmore) {
kvmsg_destroy (&self);
break;
}
}
if (self)
s_decode_props (self);
return self;
}
// ---------------------------------------------------------------------
// 向套接字发送键值对消息,空消息也发送
void
kvmsg_send (kvmsg_t *self, void *socket)
{
assert (self);
assert (socket);
s_encode_props (self);
int frame_nbr;
for (frame_nbr = 0; frame_nbr < KVMSG_FRAMES; frame_nbr++) {
zmq_msg_t copy;
zmq_msg_init (©);
if (self->present [frame_nbr])
zmq_msg_copy (©, &self->frame [frame_nbr]);
zmq_sendmsg (socket, ©,
(frame_nbr < KVMSG_FRAMES - 1)? ZMQ_SNDMORE: 0);
zmq_msg_close (©);
}
}
// ---------------------------------------------------------------------
// 返回消息的键
char *
kvmsg_key (kvmsg_t *self)
{
assert (self);
if (self->present [FRAME_KEY]) {
if (!*self->key) {
size_t size = zmq_msg_size (&self->frame [FRAME_KEY]);
if (size > KVMSG_KEY_MAX)
size = KVMSG_KEY_MAX;
memcpy (self->key,
zmq_msg_data (&self->frame [FRAME_KEY]), size);
self->key [size] = 0;
}
return self->key;
}
else
return NULL;
}
// ---------------------------------------------------------------------
// 返回消息的编号
int64_t
kvmsg_sequence (kvmsg_t *self)
{
assert (self);
if (self->present [FRAME_SEQ]) {
assert (zmq_msg_size (&self->frame [FRAME_SEQ]) == 8);
byte *source = zmq_msg_data (&self->frame [FRAME_SEQ]);
int64_t sequence = ((int64_t) (source [0]) << 56)
+ ((int64_t) (source [1]) << 48)
+ ((int64_t) (source [2]) << 40)
+ ((int64_t) (source [3]) << 32)
+ ((int64_t) (source [4]) << 24)
+ ((int64_t) (source [5]) << 16)
+ ((int64_t) (source [6]) << 8)
+ (int64_t) (source [7]);
return sequence;
}
else
return 0;
}
// ---------------------------------------------------------------------
// 返回消息的UUID
byte *
kvmsg_uuid (kvmsg_t *self)
{
assert (self);
if (self->present [FRAME_UUID]
&& zmq_msg_size (&self->frame [FRAME_UUID]) == sizeof (uuid_t))
return (byte *) zmq_msg_data (&self->frame [FRAME_UUID]);
else
return NULL;
}
// ---------------------------------------------------------------------
// 返回消息的内容
byte *
kvmsg_body (kvmsg_t *self)
{
assert (self);
if (self->present [FRAME_BODY])
return (byte *) zmq_msg_data (&self->frame [FRAME_BODY]);
else
return NULL;
}
// ---------------------------------------------------------------------
// 返回消息内容的长度
size_t
kvmsg_size (kvmsg_t *self)
{
assert (self);
if (self->present [FRAME_BODY])
return zmq_msg_size (&self->frame [FRAME_BODY]);
else
return 0;
}
// ---------------------------------------------------------------------
// 设置消息的键
void
kvmsg_set_key (kvmsg_t *self, char *key)
{
assert (self);
zmq_msg_t *msg = &self->frame [FRAME_KEY];
if (self->present [FRAME_KEY])
zmq_msg_close (msg);
zmq_msg_init_size (msg, strlen (key));
memcpy (zmq_msg_data (msg), key, strlen (key));
self->present [FRAME_KEY] = 1;
}
// ---------------------------------------------------------------------
// 设置消息的编号
void
kvmsg_set_sequence (kvmsg_t *self, int64_t sequence)
{
assert (self);
zmq_msg_t *msg = &self->frame [FRAME_SEQ];
if (self->present [FRAME_SEQ])
zmq_msg_close (msg);
zmq_msg_init_size (msg, 8);
byte *source = zmq_msg_data (msg);
source [0] = (byte) ((sequence >> 56) & 255);
source [1] = (byte) ((sequence >> 48) & 255);
source [2] = (byte) ((sequence >> 40) & 255);
source [3] = (byte) ((sequence >> 32) & 255);
source [4] = (byte) ((sequence >> 24) & 255);
source [5] = (byte) ((sequence >> 16) & 255);
source [6] = (byte) ((sequence >> 8) & 255);
source [7] = (byte) ((sequence) & 255);
self->present [FRAME_SEQ] = 1;
}
// ---------------------------------------------------------------------
// 生成并设置消息的UUID
void
kvmsg_set_uuid (kvmsg_t *self)
{
assert (self);
zmq_msg_t *msg = &self->frame [FRAME_UUID];
uuid_t uuid;
uuid_generate (uuid);
if (self->present [FRAME_UUID])
zmq_msg_close (msg);
zmq_msg_init_size (msg, sizeof (uuid));
memcpy (zmq_msg_data (msg), uuid, sizeof (uuid));
self->present [FRAME_UUID] = 1;
}
// ---------------------------------------------------------------------
// 设置消息的内容
void
kvmsg_set_body (kvmsg_t *self, byte *body, size_t size)
{
assert (self);
zmq_msg_t *msg = &self->frame [FRAME_BODY];
if (self->present [FRAME_BODY])
zmq_msg_close (msg);
self->present [FRAME_BODY] = 1;
zmq_msg_init_size (msg, size);
memcpy (zmq_msg_data (msg), body, size);
}
// ---------------------------------------------------------------------
// 使用printf()格式设置消息的键
void
kvmsg_fmt_key (kvmsg_t *self, char *format, ...)
{
char value [KVMSG_KEY_MAX + 1];
va_list args;
assert (self);
va_start (args, format);
vsnprintf (value, KVMSG_KEY_MAX, format, args);
va_end (args);
kvmsg_set_key (self, value);
}
// ---------------------------------------------------------------------
// 使用printf()格式设置消息内容
void
kvmsg_fmt_body (kvmsg_t *self, char *format, ...)
{
char value [255 + 1];
va_list args;
assert (self);
va_start (args, format);
vsnprintf (value, 255, format, args);
va_end (args);
kvmsg_set_body (self, (byte *) value, strlen (value));
}
// ---------------------------------------------------------------------
// 获取消息属性,无则返回空字符串
char *
kvmsg_get_prop (kvmsg_t *self, char *name)
{
assert (strchr (name, '=') == NULL);
char *prop = zlist_first (self->props);
size_t namelen = strlen (name);
while (prop) {
if (strlen (prop) > namelen
&& memcmp (prop, name, namelen) == 0
&& prop [namelen] == '=')
return prop + namelen + 1;
prop = zlist_next (self->props);
}
return "";
}
// ---------------------------------------------------------------------
// 设置消息属性
// 属性名称不能包含=号,值的最大长度是255
void
kvmsg_set_prop (kvmsg_t *self, char *name, char *format, ...)
{
assert (strchr (name, '=') == NULL);
char value [255 + 1];
va_list args;
assert (self);
va_start (args, format);
vsnprintf (value, 255, format, args);
va_end (args);
// 分配空间
char *prop = malloc (strlen (name) + strlen (value) + 2);
// 删除已存在的属性
sprintf (prop, "%s=", name);
char *existing = zlist_first (self->props);
while (existing) {
if (memcmp (prop, existing, strlen (prop)) == 0) {
self->props_size -= strlen (existing) + 1;
zlist_remove (self->props, existing);
free (existing);
break;
}
existing = zlist_next (self->props);
}
// 添加新属性
strcat (prop, value);
zlist_append (self->props, prop);
self->props_size += strlen (prop) + 1;
}
// ---------------------------------------------------------------------
// 在哈希表中保存kvmsg对象
// 当kvmsg对象不再被使用时进行释放操作;
// 若传入的值为空,则删除该对象。
void
kvmsg_store (kvmsg_t **self_p, zhash_t *hash)
{
assert (self_p);
if (*self_p) {
kvmsg_t *self = *self_p;
assert (self);
if (kvmsg_size (self)) {
if (self->present [FRAME_KEY]
&& self->present [FRAME_BODY]) {
zhash_update (hash, kvmsg_key (self), self);
zhash_freefn (hash, kvmsg_key (self), kvmsg_free);
}
}
else
zhash_delete (hash, kvmsg_key (self));
*self_p = NULL;
}
}
// ---------------------------------------------------------------------
// 将消息内容输出到标准错误输出
void
kvmsg_dump (kvmsg_t *self)
{
if (self) {
if (!self) {
fprintf (stderr, "NULL");
return;
}
size_t size = kvmsg_size (self);
byte *body = kvmsg_body (self);
fprintf (stderr, "[seq:%" PRId64 "]", kvmsg_sequence (self));
fprintf (stderr, "[key:%s]", kvmsg_key (self));
fprintf (stderr, "[size:%zd] ", size);
if (zlist_size (self->props)) {
fprintf (stderr, "[");
char *prop = zlist_first (self->props);
while (prop) {
fprintf (stderr, "%s;", prop);
prop = zlist_next (self->props);
}
fprintf (stderr, "]");
}
int char_nbr;
for (char_nbr = 0; char_nbr < size; char_nbr++)
fprintf (stderr, "%02X", body [char_nbr]);
fprintf (stderr, "\n");
}
else
fprintf (stderr, "NULL message\n");
}
// ---------------------------------------------------------------------
// 测试用例
int
kvmsg_test (int verbose)
{
kvmsg_t
*kvmsg;
printf (" * kvmsg: ");
// 准备上下文和套接字
zctx_t *ctx = zctx_new ();
void *output = zsocket_new (ctx, ZMQ_DEALER);
int rc = zmq_bind (output, "ipc://kvmsg_selftest.ipc");
assert (rc == 0);
void *input = zsocket_new (ctx, ZMQ_DEALER);
rc = zmq_connect (input, "ipc://kvmsg_selftest.ipc");
assert (rc == 0);
zhash_t *kvmap = zhash_new ();
// 测试简单消息的收发
kvmsg = kvmsg_new (1);
kvmsg_set_key (kvmsg, "key");
kvmsg_set_uuid (kvmsg);
kvmsg_set_body (kvmsg, (byte *) "body", 4);
if (verbose)
kvmsg_dump (kvmsg);
kvmsg_send (kvmsg, output);
kvmsg_store (&kvmsg, kvmap);
kvmsg = kvmsg_recv (input);
if (verbose)
kvmsg_dump (kvmsg);
assert (streq (kvmsg_key (kvmsg), "key"));
kvmsg_store (&kvmsg, kvmap);
// 测试带有属性的消息的收发
kvmsg = kvmsg_new (2);
kvmsg_set_prop (kvmsg, "prop1", "value1");
kvmsg_set_prop (kvmsg, "prop2", "value1");
kvmsg_set_prop (kvmsg, "prop2", "value2");
kvmsg_set_key (kvmsg, "key");
kvmsg_set_uuid (kvmsg);
kvmsg_set_body (kvmsg, (byte *) "body", 4);
assert (streq (kvmsg_get_prop (kvmsg, "prop2"), "value2"));
if (verbose)
kvmsg_dump (kvmsg);
kvmsg_send (kvmsg, output);
kvmsg_destroy (&kvmsg);
kvmsg = kvmsg_recv (input);
if (verbose)
kvmsg_dump (kvmsg);
assert (streq (kvmsg_key (kvmsg), "key"));
assert (streq (kvmsg_get_prop (kvmsg, "prop2"), "value2"));
kvmsg_destroy (&kvmsg);
// 关闭并销毁所有对象
zhash_destroy (&kvmap);
zctx_destroy (&ctx);
printf ("OK\n");
return 0;
}
客户端模型5和模型4没有太大区别,只是kvmsg类库变了。在更新消息的时候还需要添加一个过期时间的属性:
kvmsg_set_prop (kvmsg, "ttl", "%d", randof (30));
服务端模型5有较大的变化,我们会用反应堆来代替轮询,这样就能混合处理定时事件和套接字事件了,只是在C语言中是比较麻烦的。下面是代码:
clonesrv5: Clone server, Model Five in C
//
// 克隆模式 - 服务端 - 模型5
//
// 直接编译,不建类库
#include "kvmsg.c"
// 反应堆处理器
static int s_snapshots (zloop_t *loop, void *socket, void *args);
static int s_collector (zloop_t *loop, void *socket, void *args);
static int s_flush_ttl (zloop_t *loop, void *socket, void *args);
// 服务器属性
typedef struct {
zctx_t *ctx; // 上下文
zhash_t *kvmap; // 键值对存储
zloop_t *loop; // zloop反应堆
int port; // 主端口
int64_t sequence; // 更新事件编号
void *snapshot; // 处理快照请求
void *publisher; // 发布更新事件
void *collector; // 从客户端收集接收更新事件
} clonesrv_t;
int main (void)
{
clonesrv_t *self = (clonesrv_t *) zmalloc (sizeof (clonesrv_t));
self->port = 5556;
self->ctx = zctx_new ();
self->kvmap = zhash_new ();
self->loop = zloop_new ();
zloop_set_verbose (self->loop, FALSE);
// 打开克隆模式服务端套接字
self->snapshot = zsocket_new (self->ctx, ZMQ_ROUTER);
self->publisher = zsocket_new (self->ctx, ZMQ_PUB);
self->collector = zsocket_new (self->ctx, ZMQ_PULL);
zsocket_bind (self->snapshot, "tcp://*:%d", self->port);
zsocket_bind (self->publisher, "tcp://*:%d", self->port + 1);
zsocket_bind (self->collector, "tcp://*:%d", self->port + 2);
// 注册反应堆处理程序
zloop_reader (self->loop, self->snapshot, s_snapshots, self);
zloop_reader (self->loop, self->collector, s_collector, self);
zloop_timer (self->loop, 1000, 0, s_flush_ttl, self);
// 运行反应堆,直至中断
zloop_start (self->loop);
zloop_destroy (&self->loop);
zhash_destroy (&self->kvmap);
zctx_destroy (&self->ctx);
free (self);
return 0;
}
// ---------------------------------------------------------------------
// 发送快照内容
static int s_send_single (char *key, void *data, void *args);
// 请求方信息
typedef struct {
void *socket; // ROUTER套接字
zframe_t *identity; // 请求方标识
char *subtree; // 子树信息
} kvroute_t;
static int
s_snapshots (zloop_t *loop, void *snapshot, void *args)
{
clonesrv_t *self = (clonesrv_t *) args;
zframe_t *identity = zframe_recv (snapshot);
if (identity) {
// 请求位于消息第二帧
char *request = zstr_recv (snapshot);
char *subtree = NULL;
if (streq (request, "ICANHAZ?")) {
free (request);
subtree = zstr_recv (snapshot);
}
else
printf ("E: 错误的请求,程序中止\n");
if (subtree) {
// 发送状态快照
kvroute_t routing = { snapshot, identity, subtree };
zhash_foreach (self->kvmap, s_send_single, &routing);
// 发送结束符和版本号
zclock_log ("I: 正在发送快照,版本号:%d", (int) self->sequence);
zframe_send (&identity, snapshot, ZFRAME_MORE);
kvmsg_t *kvmsg = kvmsg_new (self->sequence);
kvmsg_set_key (kvmsg, "KTHXBAI");
kvmsg_set_body (kvmsg, (byte *) subtree, 0);
kvmsg_send (kvmsg, snapshot);
kvmsg_destroy (&kvmsg);
free (subtree);
}
}
return 0;
}
// 每次发送一个快照键值对
static int
s_send_single (char *key, void *data, void *args)
{
kvroute_t *kvroute = (kvroute_t *) args;
kvmsg_t *kvmsg = (kvmsg_t *) data;
if (strlen (kvroute->subtree) <= strlen (kvmsg_key (kvmsg))
&& memcmp (kvroute->subtree,
kvmsg_key (kvmsg), strlen (kvroute->subtree)) == 0) {
// 先发送接收方标识
zframe_send (&kvroute->identity,
kvroute->socket, ZFRAME_MORE + ZFRAME_REUSE);
kvmsg_send (kvmsg, kvroute->socket);
}
return 0;
}
// ---------------------------------------------------------------------
// 收集更新事件
static int
s_collector (zloop_t *loop, void *collector, void *args)
{
clonesrv_t *self = (clonesrv_t *) args;
kvmsg_t *kvmsg = kvmsg_recv (collector);
if (kvmsg) {
kvmsg_set_sequence (kvmsg, ++self->sequence);
kvmsg_send (kvmsg, self->publisher);
int ttl = atoi (kvmsg_get_prop (kvmsg, "ttl"));
if (ttl)
kvmsg_set_prop (kvmsg, "ttl",
"%" PRId64, zclock_time () + ttl * 1000);
kvmsg_store (&kvmsg, self->kvmap);
zclock_log ("I: 正在发布更新事件 %d", (int) self->sequence);
}
return 0;
}
// ---------------------------------------------------------------------
// 删除过期的瞬间值
static int s_flush_single (char *key, void *data, void *args);
static int
s_flush_ttl (zloop_t *loop, void *unused, void *args)
{
clonesrv_t *self = (clonesrv_t *) args;
zhash_foreach (self->kvmap, s_flush_single, args);
return 0;
}
// 删除过期的键值对,并广播该事件
static int
s_flush_single (char *key, void *data, void *args)
{
clonesrv_t *self = (clonesrv_t *) args;
kvmsg_t *kvmsg = (kvmsg_t *) data;
int64_t ttl;
sscanf (kvmsg_get_prop (kvmsg, "ttl"), "%" PRId64, &ttl);
if (ttl && zclock_time () >= ttl) {
kvmsg_set_sequence (kvmsg, ++self->sequence);
kvmsg_set_body (kvmsg, (byte *) "", 0);
kvmsg_send (kvmsg, self->publisher);
kvmsg_store (&kvmsg, self->kvmap);
zclock_log ("I: 发布删除事件 %d", (int) self->sequence);
}
return 0;
}