jsp网络申报审批系统Myeclipse开发mysql数据库web结构java编程计算机网页项目

news2024/11/19 19:35:29

一、源码特点
  JSP 网络申报审批系统 是一套完善的web设计系统,对理解JSP java编程开发语言有帮助,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。开发环境为TOMCAT7.0,Myeclipse8.5开发,数据库为Mysql,使用java语言开发。

jsp网络申报审批系统Myeclipse开发mysql数据库


二、功能介绍
耗材购置与维修网络申报审批系统要满足以下几个方面的功能需求:
(1)用户管理:对用户信息进行添加、删除、修改和查看
(2)设备管理:对设备信息进行添加、删除、修改和查看
(3)购置申请管理:对购置申请信息进行添加、删除、修改和查看
(4)流程节点管理:对流程节点信息进行添加、删除、修改和查看
(5)审批管理:对审批信息进行添加、删除、修改和查看
(6)设备维护管理:对设备维护信息进行添加、删除、修改和查看
(7)报销确认管理:对报销确认信息进行添加、删除、修改和查看
(8)公告管理:对公告信息进行添加、删除、修改和查看  
三、注意事项
1、管理员账号:admin 密码:admin 数据库配置文件DBO.java ,权限包括管理员,用户
2、开发环境为TOMCAT7.0,Myeclipse8.5开发,数据库为Mysql,使用java语言开发。
3、数据库文件名是jspsbsp 系统名称sbsp

系统实现

 

 

 

 

源码获取 下方联系卡片↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/62672.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[矩阵论] Unit 1. 线性空间与线性变换 - 知识点整理

注: 以下内容均由个人整理, 不保证完全准确, 如有纰漏, 欢迎交流讨论参考: 杨明, 刘先忠. 矩阵论(第二版)[M]. 武汉: 华中科技大学出版社, 2005 1 线性空间与线性变换 1.1 线性空间 线性空间 Def 1.1: 设 VVV 是一个非空集合(V≠∅V\neq \varnothingV​∅),FF…

Unity与IOS⭐最基础的交互演示

文章目录 🟥 本章的交互效果🟧 创建IOS代码1️⃣ 创建代码文件2️⃣ 代码文件🚩 Interaction.h🚩 Interaction.m🟨 测试试试吧🟥 本章的交互效果 本章演示unity调用IOS代码,IOS并返回值。 🟧 创建IOS代码 我们的Unity代码一个脚本就好了,而IOS代码需要两个脚…

【AI】Python 实现 KNN 手写数字识别

KNN 算法 1. 题目介绍 K近邻(K-Nearest Neighbor, KNN)是一种最经典和最简单的有监督学习方法之一。K-近邻算法是最简单的分类器,没有显式的学习过程或训练过程,是懒惰学习(Lazy Learning)。当对数据的分…

如何搭建一个自己的音乐服务器 审核中

点赞再看,动力无限。 微信搜「 程序猿阿朗 」。 本文 Github.com/niumoo/JavaNotes 和 未读代码博客 已经收录,有很多知识点和系列文章。 最近发现,经常用的网易云音乐,有很多歌曲下架了,能听的越来越少了;…

设计模式之中介者模式(十五)

目录 1. 背景 1.1 智能家庭管理项目 1.2 中介者模式概述 2. 中介者模式 2.1 中介者模式解决上述问题 1. 背景 1.1 智能家庭管理项目 智能家庭项目: 智能家庭包括各种设备,闹钟、咖啡机、电视机、窗帘 等。主人要看电视时,各个设备可以协…

7 支持向量机

支持向量机 支持向量机(SVM)是在统计学习理论基础上发展起来的一种数据挖掘方法,1992 年由Boser, Guyon和Vapnik提出,在解决小样本、非线性、高维的回归和分类问题上, 有许多优势。 1 支持向量分类概述 支持向量分类以训练样本集为数据对象…

支持向量机核技巧:10个常用的核函数总结

支持向量机是一种监督学习技术,主要用于分类,也可用于回归。它的关键概念是算法搜索最佳的可用于基于标记数据(训练数据)对新数据点进行分类的超平面。 一般情况下算法试图学习一个类的最常见特征(区分一个类与另一个类的特征),分类是基于学…

[附源码]JAVA毕业设计律师事务所网站(系统+LW)

[附源码]JAVA毕业设计律师事务所网站(系统LW) 项目运行 环境项配置: Jdk1.8 Tomcat8.5 Mysql HBuilderX(Webstorm也行) Eclispe(IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持)。 项目技术&a…

ubuntu20.04安装anaconda3搭建python环境

1.清华源下载anaconda3 清华源anaconda软件镜像网站: Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror 下载完成在终端打开Downloads 运行 bash Anaconda3-5.3.1-Linux-x86_64.sh 进入到下载页面 紧接着你可以使用conda --…

HTTP抓包神器---Fiddler

今天我们介绍一个好用的抓包工具.是针对于HTTP协议的抓包工具. Fiddler 下载地址 下载工具当然是要去官网下载啦. 这里为了防止有些人在网上找不到下载路径.我们直接把下载路径放在下面. https://www.telerik.com/download/fiddler 下载 点击上述链接以后会直接跳转到下…

蓝海创意云·11月大事记 || 12月,暖心相伴

秋尽冬生,日短天寒 告别了立冬与小雪 时光不紧不慢开启了新一月的篇章 万物冬藏,沉淀酝酿 站在十二月的路口 蛰伏打磨,静待厚积而薄发 导 读 ● 客户端更新:新增PSD通道合成选项 ● 渲染案例:绝代双骄重启江湖…

K8S - Pod 的概念和简介

1. POD的基本概念 Pod 是K8s 系统中可以创建(部署)和管理的最小单元。 Pod 里面可以包含多个容器(多实例),是一组容器的集合。 也就是讲K8S 不会直接管理容器 1个POD中的容器共享网络命名空间(共享ip) P…

MongoDB_前期准备(一)

目录一、数据库(Database)数据库分类1、关系型数据库(RDBMS)2、非关系型数据库(No SQL)二、MongoDB简介1)MongoDB VS MySql2)MongoDB中的三个概念3) MongoDB安装一、数据…

Reading Note(10)——AutoBridge

这篇论文是FPGA 2021年的best paper award,主要解决的是在HLS编译过程中优化布局和布线,最终达到整个multi-die的FPGA板上的大规模HLS设计时钟频率尽可能提升的目的,这篇工作在当前chiplet工艺铺展开来的当下更加有现实意义,通过这…

代码随想录训练营第41天|LeetCode 343. 整数拆分、 96.不同的二叉搜索树

参考 代码随想录 题目一&#xff1a;LeetCode 343.整数拆分 确定dp数组及其下标的含义 dp[i]为整数i拆分后得到的最大化乘积。确定递推公式 dp[i]可以有两种方式得到&#xff1a; dp[i] j * (i-j)&#xff0c;即只拆分成两个数&#xff0c;其中1 < j < i/2&#xff…

Nginx的高可用集群

1、什么是 nginx高可用 只有一台nginx服务器时&#xff0c;如果nginx服务器宕机了&#xff0c;那么请求就无法访问。 要实现高可用&#xff0c;那就可以部署多台nginx服务器&#xff0c;下面以两台nginx服务器为例&#xff0c;示意图如下&#xff1a; 要配置nginx集群&#xf…

西部学刊杂志西部学刊杂志社西部学刊编辑部2022年第22期目录

百年党建与马克思主义中国化研究 党的纪律建设的实践、启示与创新——基于“三大纪律八项注意”的研究 武艳; 5-8 西部研究《西部学刊》投稿&#xff1a;cn7kantougao163.com 新疆红色资源运用现状调查研究——以南疆部分地区为例 王艺潼;努尔古扎丽阿不都克里木; 9-12…

BP神经网络对指纹识别的应用(Matlab代码实现)

目录 &#x1f4a5;1 概述 &#x1f4da;2 运行结果 &#x1f389;3 参考文献 &#x1f468;‍&#x1f4bb;4 Matlab代码 &#x1f4a5;1 概述 在现代计算机具有强大的计算和信息处理能力的今天,指纹识别作为个人身份鉴定等领域的热点问题一直被人们长期关注着,目前也得到…

版本控制 | 一文了解什么是组件化开发,以及如何从单体架构转向组件化开发

传统开发模式中&#xff0c;所有代码都写在APP模块中。随着项目的发展&#xff0c;代码量逐渐庞大&#xff0c;编译时间越来越长。为了方便后续项目的开发和测试、提高编译性能&#xff0c;您需要了解组件化开发&#xff0c;以及如何利用版本控制系统从单体架构转向组件化开发。…

【Python自然语言处理】使用SVM、随机森林法、梯度法等多种方法对病人罹患癌症预测实战(超详细 附源码)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~ 一、数据集背景 乳腺癌数据集是由加州大学欧文分校维护的 UCI 机器学习存储库。 数据集包含 569 个恶性和良性肿瘤细胞样本。 样本类别分布&#xff1a;良性357&#xff0c;恶性212 数据集中的前两列分别存储样本的唯一 …