彩票中奖率的真相:用 JavaScript 看透彩票背后的随机算法

news2025/1/9 14:30:33

原本这篇文章是打算叫「假如我是彩票系统开发者」,但细想一下,如果在文章中引用太多的 JavaScript 的话,反而不是那么纯粹,毕竟也只是我的一厢情愿,彩票开发也不全如本文所讲,有所误导的话便也是得不偿失了。

所以索性就叫「彩票中奖率的真相:用 JavaScript 看透彩票背后的随机算法」,也算明朗了一些,声明一下,真实的彩票系统不是这么开发出来的,也不具备明面上的规律,我们应该相信彩票的公正性,尽管其可能不是基于随机!

杂谈

最近大抵是迷上彩票了,幻想着自己若能暴富,也可以带着家庭"鸡犬升天"了,不过事与愿违,我并没有冲天的气运,踏踏实实工作才是出路?

买彩票的时候,我也考虑了很久,到底怎么样的号码可以在1700万注中脱颖而出,随机试过,精心挑选的也试过,找规律的模式也试过,甚至我还用到了爬虫去统计数据,啼笑人非!

我们默认彩票系统是基于统计学来实现一等奖的开奖,那么历史以来的一等奖理所当然应该是当期统计率最低的一注,所以,最开始的时候我是这么想的:

  1. 获取历史以来所有的中奖彩票号码

  2. 使用代码去统计出所有号码的中奖次数

  3. 按照出现几率最低的数字来排序

  4. 依次组成某几注新号码

天马行空,却也是自己发财欲望的一种发泄渠道罢了,称之为异想天开也不为过,扯了挺多,哈哈!

上面的思路我已经实践过了,用了差不多一年的时间,没有用!别用!当然你也可以试试,如果你中了,恭喜,你才是天选之人!

彩票的规则

我们这里的彩票规则统一使用「双色球」的规则来说明,其购买的规则如下:

  1. 红球为六位,选项从 1 - 33 中挑选,不可重复

  2. 蓝球为一位,选项从 1 - 16 中挑选

  3. 红蓝双色球一共七位组成一注

一等奖一般中全部购买的注里面挑选一注,这一注可能被多个人买,也有可能是一个人买了该注的倍数。

所以粗略统计,彩票的中奖几率计算公式如下所示:

使用组合数公式来计算,从n个元素中取k个元素的的组合数公式为:

C(kn)=n!k!(n−k)!C\binom{k}{n}=\frac{n!}{k!(n-k)!}C(nk)=k!(n−k)!n!

根据公式,我们可以很容易的写出来一个简单的算法:

function factorial(n) {
  if (n === 0 || n === 1) {
    return 1
  } else {
    return n * factorial(n - 1)
  }
}

function combination(n, k) {
  return factorial(n) / (factorial(k) * factorial(n - k))
}

console.log(combination(33, 6) * combination(16, 1)) // 17721088
复制代码

所以可以得出的结论是,双色球头奖的中奖几率为: 117721088\frac{1}{17721088}177210881

数据量

我们通过上面的算法得知了彩票的总注数为 17721088,那么这么多注数字组成的数据到底有多大呢?

简单计算下,一注彩票可以用14个数字来表示,如 01020304050607,那么在操作系统中,这串数字的大小为 14B,那么粗略可知的是,如果所有的彩票注数都在一个文件中,那么这个文件的大小为:

const totalSize = 17721088 * 14 / 1024 / 1024 // 236.60205078125MB
复制代码

很恐怖的数量,有没有可能更小?我们研究一下压缩算法!

01这个数字在内存中的占用是两个字节,也就是 2B,那如果我们把 01 用小写 a 代替,那么其容量就可以变成 1B,总体容量可减少一半左右!

这样子的话,我们上面的一注特别牛的号码 01020304050607 就可以表示为 abcdefg !

这就是压缩算法最最最基本的原理,压缩算法有很多种,大体分为有损压缩和无损压缩,对于我们数据类的内容来讲,我们一般都会选择无损压缩!

  • 有损压缩算法:这些算法能够在压缩数据时丢弃一些信息,但通常能在不影响实际使用的前提下实现更高的压缩比率,其中最常见的是图像、音频和视频压缩算法

  • 无损压缩算法:这些算法不会丢弃任何信息,它们通过查找输入数据中的重复模式,并使用更短的符号来表示它们来实现压缩。无损压缩算法常用于文本、代码、配置文件等类型的数据

首先,让我们先准备一些测试数据,我们使用下面这个简单的组合数生成算法来获取出1000个组合数:

function generateCombinations(arr, len, maxCount) {
  let result = []
  
  function generate(current, start) {
    // 如果已经生成的组合数量达到了最大数量,则停止生成
    if (result.length === maxCount) {
      return
    }

    // 如果当前已经生成的组合长度等于指定长度,则表示已经生成了一种组合
    if (current.length === len) {
      result.push(current)
      return
    }

    for (let i = start; i < arr.length; i++) {
      current.push(arr[i])
      generate([...current], i + 1)
      current.pop()
    }
  }

  generate([], 0)
  return result
}
复制代码

接下来,我们需要生成 1000 注双色球,红球是从 1 - 33 中取组合数,蓝球是从 1 - 16 中依次取数

function getDoubleColorBall(count) {
  // 红球数组:['01', '02' .... '33']
  const arrRed = Array.from({ length: 33 }, (_, index) => (index + 1).toString().padStart(2, '0'))
  const arrRedResult = generateCombinations(arrRed, 6, count)

  const result = []
  let blue = 1
  arrRedResult.forEach(line => {
    result.push(line.join('') + (blue++).toString().padStart(2, '0'))
    if (blue > 16) {
      blue = 1
    }
  })

  return result
}
复制代码

我们将获取的彩票内容放在文件中以便于下一步操作:

const firstPrize = getDoubleColorBall(1000).join('')
fs.writeFileSync('./hello.txt', firstPrize)
复制代码

这样子,我们就得到了第一版的文件,这是其文件大小:

试一下我们初步的压缩算法,我们将刚刚设定好的规则,也就是数字到字母的替换,用 JavaScript 实现出来,如下:

function compressHello() {
  const letters = 'abcdefghijklmnopqrstuvwxyzABCDEFG'
  const doubleColorBallStr = getDoubleColorBall(1000).join('')
  let resultStr = ''
  for (let i = 0; i < doubleColorBallStr.length; i+=2) {
    const number = doubleColorBallStr[i] + doubleColorBallStr[i+1]
    resultStr += letters[parseInt(number) - 1]
  }
  return resultStr
}

const firstPrize = compressHello()
fs.writeFileSync('./hello-1.txt', firstPrize)
复制代码

这样我们就得到了一个全新的 hello 文件,他的大小如下所示,正好印证了我们的想法!

如果按照这个算法的方法,我们能将之前的文件压缩至一半大小,也就是 118.301025390625MB但是这就是极限了吗?不,上面我们讲过,这只是最基本的压缩,接下来,让我们试试更精妙的方法!

更精妙的方法

这里我们不对压缩算法的原理做过多的解释,如果诸位感兴趣的话,可以自己寻找类似的文章阅读,鉴于网上的文章质量参差不齐,我就不做推荐了!

这里我们需要了解的是,我们正在研究的是一个彩票系统,所以他的数据压缩应该具备以下几个特征:

  • 具备数据不丢失的特性,也就是无损压缩

  • 压缩率尽可能小,因为传输的文件可能非常大,如我们上面举的例子

  • 便于信息的传输,也就是支持HTTP请求

常做前端的同学应该知道,我们在 HTTP 请求头里面常见的一个参数 content-encoding: gzip,在项目的优化方面,也会选择将资源文件转换为 gzip 来进行分发。在日常的使用中,我们也时常依赖 WebpackRollup 等库,或者通过网络服务器如 nginx 来完成资源压缩,gzip 不仅可以使得发送的内容大大减少,而且客户端可以无损解压访问源文件。

那么,我们能不能使用 gzip 来完成压缩呢?答案是可以,Node.js 为我们提供了 zlib 工具库,提供了相应的压缩函数:

const zlib = require('zlib')

const firstPrize = compressHello()
fs.writeFileSync('./hello-2.txt.gz', zlib.gzipSync(firstPrize))
复制代码

得到的结果是:

我们完成了 14KB -> 3KB 的压缩过程!是不是很有意思?不过还是那句话,有没有可能更小?当然可以!

content-encoding 响应头一般是服务器针对返回的资源响应编码格式的设置信息,常见的值有以下三种:

  • gzip 所有浏览器都支持的通用压缩格式

  • brotli 比 gzip 压缩性能更好,压缩率更小的一个新的压缩格式,老版本浏览器不支持

  • deflate 出于某些原因,使用不是很广泛,后有基于该算法的 zlib 压缩格式,不过也使用度不高

浏览器支持的压缩格式不只是这些,不过我们列举出的是较为常用的,我们尝试使用一下这三种压缩格式:

const firstPrize = compressHello()
fs.writeFileSync('./hello-2.txt.gz', zlib.gzipSync(firstPrize))
fs.writeFileSync('./hello-2.txt.def', zlib.deflateSync(firstPrize))
fs.writeFileSync('./hello-2.txt.br', zlib.brotliCompressSync(firstPrize))
复制代码

我们可以看到,deflate 和 gzip 的压缩率不相上下,令人惊喜的是,brotli的压缩竟然达到了惊人的 1KB ! 这不就是我们想要的吗?

还可能更小吗?哈哈哈哈,当然,如果不考虑HTTP支持,我们完全可以使用如 7-zip 等压缩率更低的压缩算法去完成压缩,然后使用客户端做手动解压。不过点到为止,更重要的工作我们还没有做!

在这之前,我们需要先了解一下解压过程,如果解压后反而数据丢失,那就得不偿失了!

// 执行解压操作
const brFile = fs.readFileSync('./hello-2.txt.br')
const gzipFile = fs.readFileSync('./hello-2.txt.gz')
const deflateFile = fs.readFileSync('./hello-2.txt.def')

const brFileStr = zlib.brotliDecompressSync(brFile).toString()
const gzipFileStr = zlib.gunzipSync(gzipFile).toString()
const deflateFileStr = zlib.inflateSync(deflateFile).toString()

console.log(brFileStr)
console.log(gzipFileStr)
console.log(deflateFileStr)

console.log(brFileStr === gzipFileStr, brFileStr === deflateFileStr) // true, true
复制代码

如上,我们知晓尽管压缩算法的效果很惊人,但是其解压后的数据依然是无损的!

完整的数据

让我们构建出完整的 17721088 注数据测试一下完整的压缩算法的能力如何?这里我们使用 brotli 和 gzip 算法分别进行压缩测试!

首先,应该修改我们生成数据的函数,如下:

function generateAll() {
  const arrRed = Array.from({ length: 33 }, (_, index) => (index + 1).toString().padStart(2, '0'))
  const arrRedResult = generateCombinations(arrRed, 6, Number.MAX_VALUE)

  const result = []
  arrRedResult.forEach(line => {
    for (let i = 1; i <= 16; i++) {
      result.push(line.join('') + i.toString().padStart(2, '0'))
    }
  })

  return result
}

console.log(generateAll().length) // 17721088
复制代码

接下来我们要经过初步压缩并将其写入文件中:

function compressAll() {
  const letters = 'abcdefghijklmnopqrstuvwxyzABCDEFG'
  const allStr = generateAll().join('')
  let resultStr = ''
  for (let i = 0; i < allStr.length; i += 2) {
    const number = allStr[i] + allStr[i+1]
    resultStr += letters[parseInt(number) - 1]
  }
  return resultStr
}

const firstPrize = compressAll()
fs.writeFileSync('./all-ball.txt', firstPrize)
复制代码

正如我们预料的,经过初步压缩之后,文件大小达到了大约 118MB,但是其实际占用 124MB,是属于计算机存储的范畴,我们现在不在本篇文章中讨论,感兴趣的同学可以自己查一查,根据字节数计算,其大小为:

const totalSize = 124047616 / 1024 / 1024 // 118.30102539 MB
复制代码

目前来看是符合预期的,我们来看看两个压缩算法的真本事!

const firstPrize = compressAll()
fs.writeFileSync('./all-ball.txt.gz', zlib.gzipSync(firstPrize))
fs.writeFileSync('./all-ball.txt.br', zlib.brotliCompressSync(firstPrize))
复制代码

其实是很震惊的一件事情,尽管我对 brotli 的期待足够高,也不会想到他能压缩到仅仅 4M 大小,不过对于我们来说,这是一件幸事,对于之后的分发操作有巨大的优势!

随机来两注

从彩票站购买彩票的时候,随机来两注的行为是非常常见的,但是当你尝试随机号码的时候,会发生什么呢?

我们先从彩票数据的分发讲起,首先彩票数据的分发安全性和稳定性的设计肯定是毋庸置疑的,但是这不是我们目前需要考虑的问题,目前我们应该解决的是,如果才能更低程度的控制成本!

假设设计这套系统的人是你,如果控制随机号码的中奖率?我的答案是,从已有的号码池里面进行选择!

如果让每个彩票站获取到其对应的号码池,答:数据分发!如果采用数据分发的模式的话,需要考虑的问题如下:

  • 什么时候进行分发

  • 数据回源如何做

  • 如何避免所有数据被劫持

  • 数据交给彩票站的策略

据2021年公开信息,彩票站的数量已经达到20万家(未查证,无参考价值),我们假设目前的彩票站数量为 30 万家!

什么时候进行分发

我们知道的是,彩票的购买截止时间是在晚上八点,开奖时间是在晚上的九点十五,在晚上八点之后,我们只能购买到下一期的彩票,那么这个节点应该从晚上的八点开始,计划是这样子的:

  1. 从目前已有的彩票库里面,按照号码出现几率从高到低排列

  2. 挑选出前50万注分发给 30 万彩票站,这个时间彩票站的数据都是统一的

  3. 每个小时同步一次数据,同步的是其他彩票站"特意挑选的数据"

50万注的数据量有多大?试试看:

function getFirstSend() {
  const letters = 'abcdefghijklmnopqrstuvwxyzABCDEFG'
  const doubleColorBallStr = getDoubleColorBall(500000).join('')
  let resultStr = ''
  for (let i = 0; i < doubleColorBallStr.length; i+=2) {
    const number = doubleColorBallStr[i] + doubleColorBallStr[i+1]
    resultStr += letters[parseInt(number) - 1]
  }
  return resultStr
}

const firstPrize = getFirstSend()
fs.writeFileSync('./first-send.txt.br', zlib.brotliCompressSync(firstPrize))
复制代码

仅一张图片的大小,获取这些数据解压同步到彩票机时间不足1s!

解压示例如下:

function decodeData(brFile) {
  const result = []
  const content = zlib.brotliDecompressSync(brFile)
  // 按照七位每注的结构拆分
  for (let i = 0; i < content.length; i += 7) {
    result.push(content.slice(i, i + 8))
  }
  return result
}

const firstSend = fs.readFileSync('./first-send.txt.br')
const firstDataList = decodeData(firstSend)
console.log(firstDataList.length) // 500000
复制代码

如何将获取到的字符形式的彩票转换为数字,如 abcdefga 转换为 ['01', '02', '03', '04', '05', '06, '01']

function letterToCode(letterStr) {
  const result = []
  const letters = 'abcdefghijklmnopqrstuvwxyzABCDEFG'
  for (let i = 0; i < letterStr.length; i++) {
    result.push((letters.indexOf(letterStr[i]) + 1).toString().padStart(2, '0'))
  }
  return result
}
复制代码

至于分发?我们可以参考一下市面上已有的一些概念做一下对比,下面是笼统的一个网络服务器的TPS预估值,也就是说彩票服务器在1秒内可以处理的最大请求数:

  • 低性能:TPS 在 50 以下,适用于低流量的应用场景,例如个人博客、小型企业网站等。

  • 中性能:TPS 在 50~500 之间,适用于一般的网站和应用场景,例如中小型电商网站、社交网络等。

  • 高性能:TPS 在 500~5000 之间,适用于高流量的网站和应用场景,例如大型电商网站、游戏网站等。

  • 超高性能:TPS 在 5000 以上,适用于超高流量的网站和应用场景,例如互联网巨头的网站、在线游戏等。

按照这种模式的话,50万彩票站的数据同步在100秒内就可以完成,当然,诸位,这里是单机模式,如果做一个彩票服务的话,单机肯定是不可能的,想要提高TPS,那就做服务器集群,如果有100台服务器集群的话,处理这些请求仅仅需要 1 秒!(任性吗?有钱当然可以任性!)(这些数据的得出都是基于理论,不提供参考价值)

数据回源如何做

非常简单!我们需要获取的数据是哪一些呢?没有经过随机算法,直接被购买的彩票数据!也就是我们经常听到的"守号"的那些老彩民!

同样,根据媒体查询得知(不做参考),彩票站的客流量是每小时1至10人,经营时间,早上九点至晚上九点,最大客流量预计为100人每天!

那么所有彩票站的总体客流量在 100 * 500000 = 50000000,大约为五千万人次,大约有50%是属于"守号"人,这里面可能还需要排除掉彩票站中已知的号码,不过在这里我们先不处理,先做全部的预估,那么

服务器需要承载的最大TPS为:

// 服务器集群数量
const machineCount = 100
// 总访问量,50%中的号码才会上报
const totalVisit = 50000000 * 0.5 // 25000000
// 总的时间,因为我们计算的是 10个小时的时间,所以应该计算的总秒数为 36000 秒!
const totalSeconds = 10 * 60 * 60

console.log(totalVisit / totalSeconds / machineCount) // 6.944444444444445
复制代码

TPS仅为7!!这还是没有排除掉已经知悉的号码的情况,具体的上报逻辑,参考下图:

数据交给彩票站的策略(避免数据被劫持)

所有的彩票数据当然不能全部都交给彩票站,我们需要对所有的数据做一个分层,其他彩票站"特意挑选的数据"就是我们要分层分发的数据!这样子也就能解决 "如何避免所有数据被劫持" 的问题!

那么我们如何对数据进行分层呢?

简而言之,就是我们将陕西西安彩票站的购票信息同步给山西太原,将上海市购票信息同步给江苏苏州!当然这里面需要考虑的点非常多,不仅仅是两地数据的交换,逻辑也比较复杂,通常需要考虑的点是:

  • 数据同步难度,跨地区同步对服务器压力巨大,如华南向华北同步

  • 数据相似程度,两地的数据如果历史以来相似度区别很大,反而不能达到覆盖的目的,因为我们最终是想要这注号码被购买更多次

  • 数据同步时差,如新疆等地,鉴于网络问题,比其他地要慢很多的情况,这样就会漏号,那么就应该把这些地方的数据同步到更繁华的区域,如上海市,但是这一点看似是和第一二点相悖的

就说这么多,说的多了其实我也不懂。或者说还没想出来,如果有这方面比较厉害的大佬,可以提供思路!我们先看看随机的号码结果如何:

我们来尝试随机获取你需要的两注:

function random(count) {
  let result = []
  for (let i = 0; i < count; i++) {
    const index = Math.floor(Math.random() * firstDataList.length)
    console.log(firstDataList[index])
    result.push(letterToCode(firstDataList[index]))
  }
  return result
}

console.log(random(2))
复制代码

OK,你觉得可以中奖吗?哈哈哈,还是有可能的,继续往下看吧!

特意挑的两注

我是一个典型的"守号"人,每天都拿着自己算出来的几注号码,去购买彩票,那么我可以中奖吗?(目前没中)

根据上面的描述,我们应该知道,"守号"人购买的号码需要判断系统是否存在数据,如果存在的话,就不会触发上报,如果数据不存在,则会上报系统,由系统将当前号码分发给相邻市或数据近似的城市,预期当前号码可以被更多的人所购买,一注号码如果被购买的越多,其中奖的概率也就越低!

不过特意挑选是要比随机挑选的中奖概率要大,但是也大不到哪里去。

我要一等奖

彩票的一等奖是基于统计的,即使彩票中心存在空号,也需要考虑空号所产生的二等奖至六等奖的数量,这是一个非常庞大的数据量,也是需要计算非常多的时间的,那么我们如何模拟呢?

我们取50万注彩票,模拟一下这些彩票被购买的情况,可能会产生空号,可能会重复购买,或者购买多注等,尝试一下计算出我们需要付出的总金额!

彩票中中奖规则是这样子的,浮动奖项我们暂时不考虑,给一等奖和二等奖都赋予固定的金额:

  1. 6 + 1 一等奖 奖金500万

  2. 6 + 0 二等奖 奖金30万

  3. 5 + 1 三等奖 奖金3000元

  4. 5 + 0 或 4 + 1 四等奖 奖金200元

  5. 4 + 0 或 3 + 1 五等奖 奖金10元

  6. 2 + 1 或 1 + 1 或 0 + 1 都是 六等奖 奖金 5 元

根据这个规则,我们可以先写出对奖的函数:

/**
 * @param {String[]} target ['01', '02', '03', '04', '05', '06', '07']
 * @param {String[]} origin ['01', '02', '03', '04', '05', '06', '07']
 * @returns {Number} 返回当前彩票的中奖金额
 */
function compareToMoney(target, origin) {
  let money = 0
  let rightMatched = target[6] === origin[6]
  // 求左边六位的交集数量
  let leftMatchCount = target.slice(0, 6).filter(
    c => origin.slice(0,6).includes(c)
  ).length

  if (leftMatchCount === 6 && rightMatched) {
    money += 5000000
  } else if (leftMatchCount === 6 && !rightMatched) {
    money += 300000
  } else if (leftMatchCount === 5 && rightMatched) {
    money += 3000
  } else if (leftMatchCount === 5 && !rightMatched) {
    money += 200
  } else if (leftMatchCount === 4 && rightMatched) {
    money += 200
  } else if (leftMatchCount === 4 && !rightMatched) {
    money += 10
  } else if (leftMatchCount === 3 && rightMatched) {
    money += 10
  } else if (leftMatchCount === 2 && rightMatched) {
    money += 5
  } else if (leftMatchCount === 1 && rightMatched) {
    money += 5
  } else if (rightMatched) {
    money += 5
  }
  return money
}
复制代码

那么,应该如何得到利益最大化,步骤应该是这样子:

  • 随机生成一组中奖号码

  • 对于每个购买的数字,检查是否与中奖号码匹配,并计算它的奖金金额

  • 对于所有购买的数字的奖金金额进行求和

  • 重复这个过程,直到找到最优的中奖号码

随机这个中奖号码非常重要,他决定着我们计算出整体数据的速度,所以我们按照下面的步骤进行获取:

  • 将所有的号码按照购买数量进行排序(其实这里真实的场景应该联合考虑中奖号码的分布趋势才更精确)

  • 从空号开始查询,依次进行计算

先模拟出我们的购买数据:

function getRandomCode(count = 500000) {
  const arrRed = Array.from({ length: 33 }, (_, index) => (index + 1).toString().padStart(2, '0'))
  // generateCombinations 是我们上面定义过的函数
  const arrRedResult = generateCombinations(arrRed, 6, count)

  const result = []
  let blue = 1
  arrRedResult.forEach(line => {
    result.push([...line, (blue++).toString().padStart(2, '0')])
    if (blue > 16) {
      blue = 1
    }
  })

  return result
}

function randomPurchase() {
  const codes = getRandomCode()
  const result = []
  for (let code of codes) {
    let count = Math.floor(Math.random() * 50)
    result.push({
      code,
      count,
    })
  }
  return result
}

console.log(randomPurchase())
复制代码

我们将得到类似于下面的数据结构,这对于统计来说较为方便:

[
  {
    code: [
      '01', '02',
      '03', '04',
      '05', '10',
      '05'
    ],
    count: 17
  },
  {
    code: [
      '01', '02',
      '03', '04',
      '05', '11',
      '06'
    ],
    count: 4
  }
]
复制代码

接下来,就是很简单的统计了,逻辑很简单,但对于数据量极为庞大的彩票来说,需要的时间!

// 空号在前,购买数量越多越靠后
const purchaseList = randomPurchase().sort((a, b) => a.count - b.count)
const bonusPool = []

for (let i = 0; i < purchaseList.length; i++) {
  // 假设这就是一等奖,那么就需要计算其价值
  const firstPrize = purchaseList[0]
  let totalMoney = 0

  for (let j = 0; j < purchaseList.length; j++) {
    // 与一等奖进行对比,对比规则是参照彩票中奖规则
    const money = compareToMoney(purchaseList[j].code, firstPrize.code) * purchaseList[j].count
    totalMoney += money
  }

  bonusPool.push({
    code: firstPrize.code,
    totalMoney,
  })
}

const result = bonusPool.sort((a, b) => a.totalMoney - b.totalMoney)
// 至于怎么挑,那就随心所欲了
console.log(result[0].code, result[0].totalMoney)
复制代码

至于最后的一等奖怎么挑,那就随心所欲了,不过上面的算法在我的 M1 芯片计算需要的时间也将近10分钟,如果有更强大的机器,更厉害的算法,这个时长同样可以缩短,不展开了,累了,就这样吧!

黄粱一梦

终归是黄粱一梦,最终还是要回归生活,好好工作!不过谁知道呢,等会再买一注如何?

彩票系统纯属臆测,不可能有雷同!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/613388.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

理解 Java 关键字 final

原文链接 理解 Java 关键字 final final可以用来干什么 final是Java中非常常见的一个关键字&#xff0c;可以说每天都在使用它&#xff0c;虽然常见&#xff0c;但却也不见得都那么显而易见&#xff0c;今天就来研究一下final&#xff0c;以加深对它的理解和更合理的运用。 修…

gitstack使用教程

一、下载及安装 下载地址&#xff1a;https://gitstack.com/download/?spma2c4e.10696291.0.0.6d4c19a40qOauc 支持操作系统列表 本文基于2.3.12版本 下载完成后安装&#xff0c;默认安装路径为&#xff1a;c:\GitStack&#xff0c;安装过程中&#xff0c;gitstack服务会启…

医学图像分割 nnUNetV2 分割自定义2d数据集

文章目录 1 环境安装(Pytorch)1.1 安装conda1.1 安装pytorch1.3 安装nnUNet1.4 安装隐藏层&#xff08;可选&#xff09; 2 配置自定义数据集2.1 数据集格式2.2 创建需要目录2.3 数据格式转换2.3.1 修改路径与数据集名称2.3.2 修改训练集与测试集2.3.3 修改掩码所在的文件夹&am…

python基础----05-----函数的多返回值、函数的多种参数使用形式、函数作为参数传递、lambda匿名函数

一 函数的多返回值 if __name__ __main__:# 演示使用多个变量&#xff0c;接收多个返回值def test_return ():return 1,hello,Truex,y,z test_return()print(x)print(y)print(z)1helloTrue二 函数的多种参数使用形式 分为以下四种。 2.1 位置参数 位置参数调用函数时根据…

卡尔曼滤波与组合导航原理(五)序贯Kalman滤波

量测维数很高&#xff0c;而且能写成很多分量&#xff0c;每一个分量可以看成一个小量测&#xff0c;可以序贯进行量测更新 优点是&#xff1a;计算快&#xff0c;数字稳定性更好&#xff0c;我们知道矩阵求逆是和维数的三次方成正比&#xff0c;分成小矩阵求逆快&#xff08;都…

自学大语言模型之Bert和GPT的区别

Bert和GPT的区别 起源 2018 年&#xff0c;Google 首次推出 BERT&#xff08;Bidirectional Encoder Representations from Transformers&#xff09;。该模型是在大量文本语料库上结合无监督和监督学习进行训练的。 BERT 的目标是创建一种语言模型&#xff0c;可以理解句子中…

(Day1)配置云开发提供的模板

创建云开发项目 打开微信开发者工具&#xff1b;点击“项目”->“新建项目”&#xff1b;输入项目名称和选择项目所要保存的目录&#xff1b;输入自己的AppID&#xff1b; AppID的获取&#xff0c;需要登陆微信公众平台&#xff0c;并点击“开发管理”->"开发设置…

凸优化系列——凸函数

1.凸函数的定义 凸函数直观上来说&#xff0c;就是两点之间的函数值小于两点连线的函数值 常见凸函数 线性函数既是凸函数&#xff0c;也是凹函数 对于二次函数&#xff0c;如果Q矩阵是半正定矩阵&#xff0c;那么它的二阶导为Q为半正定矩阵&#xff0c;根据凸性判定的二阶条…

SpringCloud微服务架构 --- 高级篇

一、初识Sentinel 1.1、雪崩问题及解决方案 1.1.1、雪崩问题 微服务调用链路中的某个服务故障&#xff0c;引起整个链路中的所有微服务都不可用&#xff0c;这就是雪崩。 1.1.2、解决雪崩问题的常见方式有四种 1.1.2.1、超时处理 设定超时时间&#xff0c;请求超过一定时间…

Swagger原理

最近在基于Swagger进行二次开发&#xff0c; 来对项目的接口进行管理&#xff0c;功能实现了&#xff0c;但是不清楚swagger的工作原理&#xff0c;为了后续能更好利用Swagger来管理接口&#xff0c;而且能借鉴Swagger的原理&#xff0c;将项目中其他信息可视化展示&#xff0c…

什么是测试驱动开发?测试驱动开发有什么优点?

目录 前言 什么是TDD或测试驱动开发&#xff1f; 什么是软件单元测试&#xff1f; 什么是TDD&#xff1f; 测试驱动开发的好处 最后的想法 前言 测试是任何软件开发项目中最重要的步骤之一。如果跳过此过程&#xff0c;则结果可能是灾难性的-对项目和公司而言。但是什么时…

K8s in Action 阅读笔记——【11】Understanding Kubernetes internals

K8s in Action 阅读笔记——【11】Understanding Kubernetes internals 11.1 Understanding the architecture Kubernetes集群分为两个部分&#xff1a; k8s控制平面工作节点 控制平面的组件 构成控制平面的组件有&#xff1a; etcd&#xff1a;etcd是一个分布式的持久化键…

javascrip基础二十八:说说函数节流和防抖?有什么区别?如何实现?

一、是什么 本质上是优化高频率执行代码的一种手段 如&#xff1a;浏览器的 resize、scroll、keypress、mousemove 等事件在触发时&#xff0c;会不断地调用绑定在事件上的回调函数&#xff0c;极大地浪费资源&#xff0c;降低前端性能 为了优化体验&#xff0c;需要对这类事…

类与对象知识总结+构造函数和析构函数 C++程序设计与算法笔记总结(二) 北京大学 郭炜

类和对象 结构化程序设计 C语言使用结构化程序设计&#xff1a; 程序 数据结构 算法 程序由全局变量以及众多相互调用的函数组成。 算法以函数的形式实现&#xff0c;用于对数据结构进行操作。 结构化程序设计的不足&#xff1a; 结构化程序设计中&#xff0c;函数和其所…

《嵌入式系统》知识总结11:STM32串口

串行通信vs并行通信 • 并行&#xff1a;使用8根数据线一次传送一个字节&#xff08;或使用16根数据线一次传送2个字节&#xff0c;...&#xff09; • 串行&#xff1a;使用少量数据信号线&#xff08;8根以下&#xff09;&#xff0c;将数据逐位分时传送 • 并行vs串行&…

路径规划算法:基于秃鹰优化的路径规划算法- 附代码

路径规划算法&#xff1a;基于秃鹰优化的路径规划算法- 附代码 文章目录 路径规划算法&#xff1a;基于秃鹰优化的路径规划算法- 附代码1.算法原理1.1 环境设定1.2 约束条件1.3 适应度函数 2.算法结果3.MATLAB代码4.参考文献 摘要&#xff1a;本文主要介绍利用智能优化算法秃鹰…

【三维编辑】Removing Objects From Neural Radiance Fields论文解读

题目&#xff1a;Removing Objects From NeRF 从神经辐射场中移除对象 论文&#xff1a;https://arxiv.org/abs/2212.11966 作者:Silvan Weder,Guillermo Niantic, ETH Zurich, University College London, nianticlabs.github.ionerf-object-removal 文章目录 摘要一、前言二、…

Batch Normalization原理

首先我们提出一个问题&#xff0c;为什么要有Batch Normalization这样神奇的操作&#xff1f;原有的深度神经网络是有什么问题吗&#xff1f; 还真有问题&#xff0c;那就要提到各位炼丹师们的困境&#xff0c;在深度学习中&#xff0c;模型的层数往往非常的巨大&#xff0c;尤…

SpringBootWeb AOP(下)

3. AOP进阶 AOP的基础知识学习完之后&#xff0c;下面我们对AOP当中的各个细节进行详细的学习。主要分为4个部分&#xff1a; 通知类型通知顺序切入点表达式连接点 我们先来学习第一部分通知类型。 3.1 通知类型 在入门程序当中&#xff0c;我们已经使用了一种功能最为强大…

磁盘配额与进阶文件系统管理(二)

逻辑卷管理(Logical Volume Manager) 简介&#xff1a;lvm可以弹性调节filesystem容量&#xff1b;lvm可以整合多个实体partion在一起&#xff0c;使得多个partion看起来像一个磁盘。 LVM基本概念 PV&#xff1a;物理卷 PE&#xff1a;实体范围区块 VG&#xff1a;卷组 …