路径规划算法:基于秃鹰优化的路径规划算法- 附代码

news2025/1/9 15:24:47

路径规划算法:基于秃鹰优化的路径规划算法- 附代码

文章目录

  • 路径规划算法:基于秃鹰优化的路径规划算法- 附代码
    • 1.算法原理
      • 1.1 环境设定
      • 1.2 约束条件
      • 1.3 适应度函数
    • 2.算法结果
    • 3.MATLAB代码
    • 4.参考文献

摘要:本文主要介绍利用智能优化算法秃鹰算法来进行路径规划。

1.算法原理

秃鹰算法原理请参考:https://blog.csdn.net/u011835903/article/details/113775430

1.1 环境设定

在移动机器人的路径优化中,每个优化算法的解代表机器人的一条运动路径。优化算法会通过优化计算在众多路径中找出一条最优路径。
优化算法的设定必须和机器人运动环境模型相对应。不失一般性,假设在用栅格法对机器人运动环境建模后得出的结果是 m×n 的矩形区域,坐标值从 1 开始,如图1 。其中坐标原点栅格代表机器人的初始位置,坐标 (m,n)对应的栅格代表机器人的移动目标位置。优化算法设定的一个重要内容是确定优化算法的数学表达形式,在这里这个问题转化为用一个向量表示机器人的移动路径。经过分析发现,尽管栅格法建立的模型对空间进行了离散化,但本质上机器人的移动路径依然是连续的。

在这里插入图片描述

图1.栅格地图

1.2 约束条件

对于机器人的路径优化来说,其运动路径必须局限在栅格空间内,即搜索不能越过栅格的矩形边界。此外,还应受障碍物的限制,即机器人的运动轨迹不能穿过存在障碍物的栅格区域。

1.3 适应度函数

在本文的建模方法中,本文路径规划目标是路径长度最短。路径的长度可以表示为:

L ( P a t h ) = ∑ i = 0 n − 1 ( x l i + 1 − x l i ) 2 + ( y l i + 1 − y l i ) 2 (1) L(Path) = \sum_{i=0}^{n-1}\sqrt{(xl_{i+1} - xl_i)^2 + (yl_{i+1} - yl_{i})^2}\tag{1} L(Path)=i=0n1(xli+1xli)2+(yli+1yli)2 (1)
其中(x,y)是路径中间点的坐标

利用秃鹰算法对上式进行寻优,找到最短路径。秃鹰算法参数设定如下:

%% 秃鹰算法参数设置
dim=length(noLM);%维度,即为非障碍物个数。
numLM0=round((EndPoint(1)-StartPoint(1))/4);%每次迭代选取的的中间路径点个数,可调
lb=0;%下边界
ub=1;%上边界
Max_iteration = 100;%最大迭代次数
SearchAgents_no = 30;%种群数量
fobj = @(x)fun(x,noS,noE,numLM0,net);%适应度函数

2.算法结果

在这里插入图片描述

3.MATLAB代码

本程序中,支持1.地图任意创建保存。2.其实点任意更改。

4.参考文献

[1]罗阳阳,彭晓燕.基于改进PSO的四轮移动机器人全局路径规划[J].计算机仿真,2020,37(07):373-379.

[2]鲁丹. 粒子群算法在移动机器人路径规划中的应用研究[D].武汉科技大学,2009.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/613344.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【三维编辑】Removing Objects From Neural Radiance Fields论文解读

题目:Removing Objects From NeRF 从神经辐射场中移除对象 论文:https://arxiv.org/abs/2212.11966 作者:Silvan Weder,Guillermo Niantic, ETH Zurich, University College London, nianticlabs.github.ionerf-object-removal 文章目录 摘要一、前言二、…

Batch Normalization原理

首先我们提出一个问题,为什么要有Batch Normalization这样神奇的操作?原有的深度神经网络是有什么问题吗? 还真有问题,那就要提到各位炼丹师们的困境,在深度学习中,模型的层数往往非常的巨大,尤…

SpringBootWeb AOP(下)

3. AOP进阶 AOP的基础知识学习完之后,下面我们对AOP当中的各个细节进行详细的学习。主要分为4个部分: 通知类型通知顺序切入点表达式连接点 我们先来学习第一部分通知类型。 3.1 通知类型 在入门程序当中,我们已经使用了一种功能最为强大…

磁盘配额与进阶文件系统管理(二)

逻辑卷管理(Logical Volume Manager) 简介:lvm可以弹性调节filesystem容量;lvm可以整合多个实体partion在一起,使得多个partion看起来像一个磁盘。 LVM基本概念 PV:物理卷 PE:实体范围区块 VG:卷组 …

前端食堂技术周刊第 85 期:5 月浏览器更新、TypeScript 5.1、Rspack 0.2.0、Parcel v2.9.0、Next.js 企业级模板

美味值:🌟🌟🌟🌟🌟 口味:龙井酥 食堂技术周刊仓库地址:https://github.com/Geekhyt/weekly 本期摘要 5 月登陆浏览器的新功能TypeScript 5.1Rspack 0.2.0Parcel v2.9.0Next.js 企…

DINO代码学习笔记(四)

DINO代码学习笔记(一)中已经将输入transformer之前的参数处理给捋了一遍 DINO代码学习笔记(二)中将encoder部分给捋了一遍 DINO代码学习笔记(三)中将decoder部分给捋了一遍,以上将DINO的主体部…

聊一聊Spring Security的那些事

一.什么是Spring Security S[ing Security是一个基于Java EE框架Spring的安全性框架,它提供了身份认证和授权功能,用于保护应用程序中的资源。同时,它也支持许多常见的身份验证机制,并提供了预防常见攻击,如跨站请求伪…

[230603]托福听力精听|TPO66C2|Financial Advice

tuition bill 学费 add up 加总 allowance 补贴 budget 预算 document 文件 expense 费用;开销 semester 学期 dorm 宿舍 own 拥有;自己的 bulletin board…

SpringCloud微服务架构 --- 基础篇

一、认识微服务 1.1、服务架构演变 1.1.1、单体架构 单体架构:将业务的所有功能集中在一个项目中开发,打成一个包部署。 单体架构的优缺点如下: 优点: 架构简单部署成本低 缺点: 耦合度高(维护困难、…

基于Xilinx K7-410T的高速DAC之AD9129开发笔记(一)

引言:从本文开始,我们介绍下项目中设计的并行LVDS高速DAC接口设计,包括DAC与FPGA硬件接口设计、软件设计等。项目设计高速DAC采用了ADI公司的AD9129,该芯片最大更新速率5.7Gsps,该芯片在宽带通信应用、LTE、雷达信号产…

wpf中使用svg图片

在wpf中,svg图片不能直接使用,但是我们知道,svg图片比png,jpg等图片都好点,原因就是它是矢量图片,不会变形。 一共4种方式: 第一种: 简单的svg,我们可以使用path来装载…

算法与数据结构(三)

一、堆 1,堆结构就是用数组实现的完全二叉树结构 根节点的左孩子的下标为:2i1,右孩子为2i2。两个孩子的父节点为(i-1)/2向下取整 2,完全二叉树中如果每棵子树的最大值都在顶部就是大根堆 从下往上将孩子与父节点进行比较,如果子叶…

【Docker】什么是Docker,它用来干什么

作者简介: 辭七七,目前大一,正在学习C/C,Java,Python等 作者主页: 七七的个人主页 文章收录专栏: 七七的闲谈 欢迎大家点赞 👍 收藏 ⭐ 加关注哦!💖&#x1f…

使用Leangoo轻量敏捷看板工具实现多泳道任务管理

在敏捷开发的实践当中,通过可视化的敏捷任务看板来实现团队协同和透明化管理是必不可少的一个实践。 通过可视化的敏捷任务看板我们可以达到如下几个目的: 1. 可视化管理团队的目标; 2. 明确目标的优先级; 3. 明确目标分解后的任务项; 4. 可视化管理任…

【算法题解】34. 二叉树的最小深度

这是一道 简单 题 https://leetcode.cn/problems/minimum-depth-of-binary-tree/ 文章目录 题目简单递归解法Java 代码实现Go 代码实现复杂度分析 DFSJava 代码实现Go 代码实现复杂度分析 BFSJava 代码实现Go 代码实现复杂度分析 总结 题目 给定一个二叉树,找出其最…

第十一届蓝桥杯国赛JavaB组题解

A. 美丽的2 思路: 枚举 1 到 2020 的每个数,依次判断即可。 代码: public class Main {public static boolean check(int x) {while (x ! 0) {if (x % 10 2) return true;x / 10;}return false;}public static void main(String[] args) …

CPU和微程序

目录 一、CPU功能和结构 (一)CPU的功能 1. 指令控制 2. 操作控制 3. 时间控制 4. 数据加工 5. 中断处理 (二)CU和ALU的功能 1. CU(控制器)的功能 2. ALU(运算器)的功能 …

Greenplum高并发数据库概览

一、前言 GreenPlum DB(GPDB)是一个开源的高并发(MPP:massively parallel processing ) 数据处理平台,可用于海量数据分析,机器学习,AI场景,专为下一代数据仓库和大规模分析处理设计。 参考&am…

008-从零搭建微服务-系统服务(一)

写在最前 如果这个项目让你有所收获,记得 Star 关注哦,这对我是非常不错的鼓励与支持。 源码地址(后端):https://gitee.com/csps/mingyue 源码地址(前端):https://gitee.com/csps…

【ArcGIS Pro二次开发】(33):合并文件夹下的所有shp文件

在工作中,即使很不喜欢用shp文件,但还是经常会收到shp格式的文件。关于shp文件的吐糟就不多说了,除了文件小、字段名长度限制,不能储存弧线段等问题,还有一种处理方式也让人很是难受。 如上图,有些shp文件是…