INT301 Bio Computation 题型整理

news2025/1/9 15:03:05

perceptron 设计和计算

1.

XOR: 当两个输入值中只有一个为真时,输出为真

2. 

 

3. 

5.

6.

7.

2^3

2^n

9.

a) 直接test

b) 把v≥2 改成 v≥1

10.

no, because it can't be separate through only one decision boundary,it's not linearlly separable. 

Backpropagation

1.

2. 

3.

4.

这个是tutorial里面的,考试估计不会考这个复杂

5.

6.

Hopfield Network

Hopfield 网络的目标是存储一组模式,并且在给定部分模式或损坏模式的情况下,通过网络的动态演化过程恢复出原始模式。

step

1) calculate the weight matrix

总之就是pattern乘以自己的转置,累加,最后减去pattern个数的单位矩阵

2)calculate input

将特定node的权重乘乘以输入,但是顺序不同可能导致结果不同,更新X哪一个index就乘以对应的weight index

3)update weight

得到的结果计算一下

1.

 

这里用第二行的weight

2.

3.

随便找两个pattern 然后 测试就行

5.

这题我怀疑老师写的有点问题先搁一下

 

至于为什么例题中只选了node2和4,我猜是因为node1,3 和node2一样所以就只说2了

6.

 

7.

8.

9.

10.

The neural network model used is an auto-encoder, which is trained to compress and reconstruct data. It learns to identify the key features of the input data (e.g., vehicles) by encoding them into a lower-dimensional representation and then decoding them back.

Explanation:

  1. Model Description:

    • The encoder compresses the vehicle images into a smaller set of features.
    • The decoder reconstructs the images from these features.
    • The visualized weights show the important patterns (e.g., shapes of vehicles) learned by the encoder.
  2. Possible Uses:

    • Feature Extraction: These learned features can help identify vehicle types or shapes.
    • Data Compression: The model reduces the data size for storage or processing.
    • Anomaly Detection: By comparing reconstructed images to the original, unusual vehicles can be detected.
    • Surveillance: It helps in organizing and understanding vehicle data efficiently.

Application

1.

I'll use a self-organizing map for clusting since the number of topics are not known. In the preprocessing step I may use 

  • Preprocess the Text: Clean and tokenize the documents. You may also lemmatize words and remove stopwords.

  • Feature Representation: Convert the documents into numerical vectors. You can use:

    • TF-IDF for a sparse representation based on word frequency.
    • Embeddings (e.g., BERT, Word2Vec) for a dense, semantic representation.
  • Apply Clustering:

    • Use K-means if you have a rough idea of the number of topics.(事实上好像确实可以自己定)
    • som(GPT不推荐)
  • Evaluate Clusters: Use metrics like Silhouette Score to assess how well documents are grouped.

  • Interpret the Results: Examine the top terms or document samples in each cluster to understand the topics.

2.supervised/unsuervised 挑选以及实现

 

CNN

  • Best for: Spatial feature extraction from EEG signals, useful when analyzing data from multiple channels.
  • Advantage: CNNs can automatically capture important spatial patterns in EEG signals, making them effective for tasks like epilepsy detection or sleep stage classification.

I'll think of clustering method such as kmeans would be helpful

3.supervised/unsuervised 挑选以及实现

Since the task is non-linear, Radial-Basis Function Network, 

Self-Organizing Map

4.

 

5. 

self-organizing map Network

1.

 

2.

A Self-Organizing Map (SOM) is particularly well-suited for tasks where the goal is to perform unsupervised clustering or data visualization in a lower-dimensional space, while preserving the topological relationships of the input data.

Gaussian RBF network

1.

 

 

Matlab code

view(net) --  Visualize the architecture of the trained neural network

1. self-organizing map

2. 

 

3.

conception 

1.fully-connected neural network vs convolutional neural network

  • Inefficient Parameter Use: FCNs have a large number of parameters, which can lead to overfitting, higher memory usage, and slower training.
  • Loss of Spatial Structure: FCNs do not preserve spatial hierarchies in data like images, making them less suited for image-related tasks.
  • Scaling Issues with Large Inputs: FCNs struggle with large input sizes (e.g., high-resolution images) because they require flattening, which destroys spatial information.
  • Computationally Expensive: FCNs become computationally expensive with large datasets and deep architectures.
  • No Translation Invariance: FCNs do not inherently recognize translation invariance in data, making them less effective for tasks like image recognition.

2. rectified linear units vs sigmoid activation function

The benefits of faster convergence, avoiding the vanishing gradient problem, and computational efficiency make ReLU a more effective and scalable choice for modern deep learning models.

3. transfer function in mlp?

Omitting activation functions reduces the MLP to a simple linear model, which lacks the ability to handle nonlinear problems. Although it simplifies computation, it’s rarely used because it greatly limits the network's performance.

 c overfitting 解释

Overfitting happens when a model fits too closely to the training data, losing the ability to generalize. It is most likely to occur with small datasets, complex models, and noisy data. To mitigate overfitting, use regularization, increase data, or employ simpler models. Monitoring validation performance is key to identifying it.

d backpropagation 解释

  • Poor weight initialization.
  • Vanishing or exploding gradients.
  • Improper learning rate.
  • Insufficient training time.

e Oja rule in Hebb rule

 c. 解释 RBF-Units

RBF networks adjust centroids, widths, and output weights during learning. Their localized response, faster training, and better handling of non-linearities make them advantageous over sigmoidal units for tasks like function approximation, classification.

d. 解释 Elman Network 

The Elman Network is a recurrent neural network with an additional context layer that stores the previous hidden state, enabling it to capture temporal dependencies. It processes sequential data through its input, hidden, and output layers, with training performed via Backpropagation Through Time (BPTT).

In time-series prediction, the network uses past observations to predict future values by learning patterns over time. Once trained, it predicts iteratively by feeding its output back as input, making it effective for tasks like forecasting or trend analysis.

 a. SOM, 高维网络降维(?)

CNN

1. 

2.

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2273854.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

009:传统计算机视觉之边缘检测

本文为合集收录,欢迎查看合集/专栏链接进行全部合集的系统学习。 合集完整版请参考这里。 本节来看一个利用传统计算机视觉方法来实现图片边缘检测的方法。 什么是边缘检测? 边缘检测是通过一些算法来识别图像中物体之间或者物体与背景之间的边界&…

ffmpeg-avio实战:打开本地文件或者网络直播流dome

使用ffmpeg打开打开本地文件或者网络直播流的一个小dome。流程产靠ffmpeg4.x系列的解码流程-CSDN博客 #include <libavcodec/avcodec.h> #include <libavformat/avformat.h> #include <libavformat/avio.h> #include <libavutil/file.h> #include &l…

Unity Burst详解

【简介】 Burst是Unity的编译优化技术&#xff0c;优化了从C#代码编译成Native代码的过程&#xff0c;经过编译优化后代码有更高的运行效率。 在Unity中使用Burst很简单&#xff0c;在方法或类前加上[BurstCompile]特性即可。在构建时编译代码的步骤&#xff0c;Burst编译器会…

el-table 合并单元格

参考文章&#xff1a;vue3.0 el-table 动态合并单元格 - flyComeOn - 博客园 <el-table :data"tableData" border empty-text"暂无数据" :header-cell-style"{ background: #f5f7fa }" class"parent-table" :span-method"obj…

WebRTC 在视频联网平台中的应用:开启实时通信新篇章

在当今这个以数字化为显著特征的时代浪潮之下&#xff0c;实时通信已然稳稳扎根于人们生活与工作的方方面面&#xff0c;成为了其中不可或缺的关键一环。回首日常生活&#xff0c;远程办公场景中的视频会议让分散各地的团队成员能够跨越地理距离的鸿沟&#xff0c;齐聚一堂共商…

OpenAI CEO 奥特曼发长文《反思》

OpenAI CEO 奥特曼发长文《反思》 --- 引言&#xff1a;从 ChatGPT 到 AGI 的探索 ChatGPT 诞生仅一个多月&#xff0c;如今我们已经过渡到可以进行复杂推理的下一代模型。新年让人们陷入反思&#xff0c;我想分享一些个人想法&#xff0c;谈谈它迄今为止的发展&#xff0c;…

网络空间安全导论期末考试复习题

题型&#xff1a;10个选择题10个大题 1、选择题 简单&#xff0c;记忆书本里的小标题 2、大题&#xff08;较难&#xff09; 网络安全体系的五个层次的内容画公钥密码结合报文鉴别的示意图解释误用入侵检测并画示意图解释隧道技术并画示意图防火墙的作用&#xff0c;防火墙和…

接口测试-postman(使用postman测试接口笔记)

一、设置全局变量 1. 点击右上角设置按钮-》打开管理环境窗口-》选择”全局“-》设置变量名称&#xff0c;初始值和当前值设置一样的&#xff0c;放host放拼接的url&#xff0c;key放鉴权那一串字符&#xff0c;然后保存-》去使用全局变量&#xff0c;用{{变量名称}}形式 二、…

每日一题-两个链表的第一个公共结点

文章目录 两个链表的第一个公共结点问题描述示例说明示例 1示例 2 方法及实现方法描述代码实现 复杂度分析示例运行过程示例 1示例 2 总结备注 两个链表的第一个公共结点 问题描述 给定两个无环的单向链表&#xff0c;找到它们的第一个公共节点。如果没有公共节点&#xff0c…

API架构风格的深度解析与选择策略:SOAP、REST、GraphQL与RPC

❃博主首页 &#xff1a; 「码到三十五」 &#xff0c;同名公众号 :「码到三十五」&#xff0c;wx号 : 「liwu0213」 ☠博主专栏 &#xff1a; <mysql高手> <elasticsearch高手> <源码解读> <java核心> <面试攻关> ♝博主的话 &#xff1a…

【搜索】【推荐】大 PK

引言 在当今信息爆炸的时代&#xff0c;如何从海量数据中精准地为用户推荐最相关的内容成为了科技领域的关键挑战。搜推技术作为推荐系统的核心组件&#xff0c;扮演着至关重要的角色。本文将深入探讨这两种技术背后的方法论&#xff0c;剖析它们各自面临的难点&#xff0c;并…

[uniapp] 实现扫码功能,含APP、h5、小程序

&#x1f680; 个人简介&#xff1a;某大型国企资深软件开发工程师&#xff0c;信息系统项目管理师、CSDN优质创作者、阿里云专家博主&#xff0c;华为云云享专家&#xff0c;分享前端后端相关技术与工作常见问题~ &#x1f49f; 作 者&#xff1a;码喽的自我修养&#x1f9…

mysql、postgresql、druid链接池踩坑记录

The last packet successfully received from the server wIs 10,010 milliseconds ago. The last packet sent successfully to the server was 10,010 milliseconds ago.### The error may exist in URL mysql 链接字符串没有 &connectTimeout600000&socketTimeout6…

STM32+WIFI获取网络时间+8位数码管显示+0.96OLED显

资料下载地址&#xff1a;STM32WIFI获取网络时间8位数码管显示0.96OLED 1、项目介绍 主控芯片STM32C8T6 接线&#xff1a;串口1&#xff1a;PA9 PA10 OELD &#xff1a;PB6 PB7 数码管使用&#xff1a;MAX7219 8位数码管 Max7219_pinCLK PAout(5) Max7219_pinC…

FPGA车牌识别

基于FPGA的车牌识别主要包含以下几个步骤&#xff1a;图像采集、颜色空间转换、边缘检测、形态学处理&#xff08;腐蚀和膨胀&#xff09;、特征值提取、模板匹配、结果显示。先用matlab对原理进行仿真&#xff0c;后用vivado和modelsim进行设计和仿真。 一、1.图像采集采用ov…

一文流:Mysql进阶(多图提醒⚠️)

一文流系列是作者苦于技术知识学了-忘了&#xff0c;背了-忘了的苦恼&#xff0c;决心把技术知识的要点一笔笔✍️出来&#xff0c;一图图画出来&#xff0c;一句句讲出来&#xff0c;以求刻在&#x1f9e0;里。 该系列文章会把核心要点提炼出来&#xff0c;以求掌握精髓&#…

深度学习从入门到实战——卷积神经网络原理解析及其应用

卷积神经网络CNN 卷积神经网络前言卷积神经网络卷积的填充方式卷积原理展示卷积计算量公式卷积核输出的大小计算感受野池化自适应均值化空洞卷积经典卷积神经网络参考 卷积神经网络 前言 为什么要使用卷积神经网络呢&#xff1f; 首先传统的MLP的有什么问题呢&#xff1f; - …

自动化脚本本地可执行但是Jenkins上各种报错怎么解决

作者碎碎念&#xff1a; 测试环境 Jenkinsdockerpythonunittest&#xff0c; 测试问题&#xff1a;本人在写关于SAP4Me网站的自动化脚本时遇到一个问题 本地怎么都跑的通 但是一上Jenkins会出现各种各样的问题 因为在Jenkins里面脚本是放在docker环境里面跑的 所以环境的差异…

【xLua】xLua-master签名、加密Lua文件

GitHub - Tencent/xLua: xLua is a lua programming solution for C# ( Unity, .Net, Mono) , it supports android, ios, windows, linux, osx, etc. 如果你想在项目工程上操作&#xff0c;又发现项目工程并没导入Tools&#xff0c;可以从xLua-master工程拷贝到项目工程Assets…

Linux(上):基本知识篇

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、Linux初识1 Linux简介2 Linux学习环境配置(1)安装Linux(2)FinalShell远程连接Linux服务器二、Linux基础命令1 Linux目录结构,根目录 /2 Linux命令基础(1)什么是命令、命令行?(2)…