基于深度学习的高精度海洋生物检测识别系统(PyTorch+Pyside6+YOLOv5模型)

news2024/12/25 13:54:11

摘要:基于深度学习的高精度海洋生物检测识别系统可用于日常生活中检测与定位海洋生物目标(海胆:echinus,海参:holothurian,扇贝:scallop,海星:starfish),利用深度学习算法可实现图片、视频、摄像头等方式的海洋生物目标检测识别,另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标检测模型训练数据集,使用Pysdie6库来搭建页面展示系统,同时支持ONNX、PT等模型作为权重模型的输出。本系统支持的功能包括海洋生物训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;摄像头的上传、检测、可视化结果展示与结束检测;已检测目标列表、位置信息;前向推理用时。另外本海洋生物检测识别系统同时支持原始图像与检测结果图像的同时展示,原始视频与检测结果视频的同时展示。本博文提供了完整的Python代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接。

基本介绍

近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv5是单阶段目标检测算法YOLO的第五代,根据实验得出结论,其在速度与准确性能方面都有了明显提升,开源的代码可见https://github.com/ultralytics/yolov5。因此本博文利用YOLOv5检测算法实现一种高精度海洋生物识别检测模型,再搭配上Pyside6库写出界面系统,完成目标检测识别页面的开发。注意到YOLO系列算法的最新进展已有YOLOv6、YOLOv7、YOLOv8等算法,将本系统中检测算法替换为最新算法的代码也将在后面发布,欢迎关注收藏。

环境搭建

(1)下载YOLOv5源码库,放到自己电脑的目录,之后打开cmd进入到YOLOv5目录里面,本文演示的目录是:D:\vscode_workspace\yolov5
(2)利用Conda创建环境(Anacodna),conda create -n yolo5 python=3.8 然后安装torch和torchvision(pip install torch1.10.0+cu113 torchvision0.11.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple)其中-i https://pypi.tuna.tsinghua.edu.cn/simple代表使用清华源,这行命令要求nvidia-smi显示的CUDA版本>=11.3,最后安装剩余依赖包使用:pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述
在这里插入图片描述

(3)安装Pyside6库 pip install pyside6==6.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(4)对于windows系统下的pycocotools库的安装:pip install pycocotools-windows -i https://pypi.tuna.tsinghua.edu.cn/simple

界面及功能展示

下面给出本博文设计的软件界面,整体界面简洁大方,大体功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。希望大家可以喜欢,初始界面如下图:
在这里插入图片描述

模型选择与初始化

用户可以点击模型权重选择按钮上传训练好的模型权重,训练权重格式可为.pt、.onnx以及。engine等,之后再点击模型权重初始化按钮可实现已选择模型初始化信息的设置。
在这里插入图片描述
在这里插入图片描述

置信分与IOU的改变

在Confidence或IOU下方的输入框中改变值即可同步改变滑动条的进度,同时改变滑动条的进度值也可同步改变输入框的值;Confidence或IOU值的改变将同步到模型里的配置,将改变检测置信度阈值与IOU阈值。

图像选择、检测与导出

用户可以点击选择图像按钮上传单张图片进行检测与识别。
在这里插入图片描述

再点击图像检测按钮可完成输入图像的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

再点击检测结果展示按钮可在系统左下方显示输入图像检测的结果,系统将显示识别出图片中的目标的类别、位置和置信度信息。
在这里插入图片描述

点击图像检测结果导出按钮即可导出检测后的图像,在保存栏里输入保存的图片名称及后缀即可实现检测结果图像的保存。
在这里插入图片描述

点击结束图像检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。

视频选择、检测与导出

用户可以点击选择视频按钮上传视频进行检测与识别,之后系统会将视频的第一帧输入到系统界面的左上方显示。
在这里插入图片描述

再点击视频检测按钮可完成输入视频的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击暂停视频检测按钮即可实现输入视频的暂停,此时按钮变为继续视频检测,输入视频帧与帧检测结果会保留在系统界面,可点击下拉目标框选择已检测目标的坐标位置信息,再点击继续视频检测按钮即可实现输入视频的检测。
点击视频检测结果导出按钮即可导出检测后的视频,在保存栏里输入保存的图片名称及后缀即可实现检测结果视频的保存。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。

摄像头打开、检测与结束

用户可以点击打开摄像头按钮来打开摄像头设备进行检测与识别,之后系统会将摄像头图像输入到系统界面的左上方显示。
在这里插入图片描述

再点击摄像头检测按钮可完成输入摄像头的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频或打开摄像按钮来上传图像、视频或打开摄像头。

算法原理介绍

本系统采用了基于深度学习的单阶段目标检测算法YOLOv5,相比于YOLOv3和YOLOv4,YOLOv5在检测精度和速度上都有很大的提升。YOLOv5算法的核心思想是将目标检测问题转化为一个回归问题,通过直接预测物体中心点的坐标来代替Anchor框。此外,YOLOv5使用SPP(Spatial Pyramid Pooling)的特征提取方法,这种方法可以在不增加计算量的情况下,有效地提取多尺度特征,提高检测性能。YOLOv5s模型的整体结构如下图所示。

在这里插入图片描述

YOLOv5网络结构是由Input、Backbone、Neck、Prediction组成。YOLOv5的Input部分是网络的输入端,采用Mosaic数据增强方式,对输入数据随机裁剪,然后进行拼接。Backbone是YOLOv5提取特征的网络部分,特征提取能力直接影响整个网络性能。在特征提取阶段,YOLOv5使用CSPNet(Cross Stage Partial Network)结构,它将输入特征图分为两部分,一部分通过一系列卷积层进行处理,另一部分直接进行下采样,最后将这两部分特征图进行融合。这种设计使得网络具有更强的非线性表达能力,可以更好地处理目标检测任务中的复杂背景和多样化物体。在Neck阶段使用连续的卷积核C3结构块融合特征图。在Prediction阶段,模型使用结果特征图预测目标的中心坐标与尺寸信息。博主觉得YOLOv5不失为一种目标检测的高性能解决方案,能够以较高的准确率对目标进行分类与定位。当然现在YOLOv6、YOLOv7、YOLOv8等算法也在不断提出和改进,后续博主也会将这些算法融入到本系统中,敬请期待。

数据集介绍

本系统使用的海洋生物数据集手动标注了海胆、海参、扇贝和海星这四个类别(海胆:echinus,海参:holothurian,扇贝:scallop,海星:starfish),数据集总计5543张图片。该数据集中类别都有大量的旋转和不同的光照条件,有助于训练出更加鲁棒的检测模型。本文实验的海洋生物检测识别数据集包含训练集4446张图片,验证集1097张图片,选取部分数据部分样本数据集如下图所示。由于YOLOv5算法对输入图片大小有限制,需要将所有图片调整为相同的大小。为了在不影响检测精度的情况下尽可能减小图片的失真,我们将所有图片调整为640x640的大小,并保持原有的宽高比例。此外,为了增强模型的泛化能力和鲁棒性,我们还使用了数据增强技术,包括随机旋转、缩放、裁剪和颜色变换等,以扩充数据集并减少过拟合风险。

关键代码解析

本系统的深度学习模型使用PyTorch实现,基于YOLOv5算法进行目标检测。在训练阶段,我们使用了预训练模型作为初始模型进行训练,然后通过多次迭代优化网络参数,以达到更好的检测性能。在训练过程中,我们采用了学习率衰减和数据增强等技术,以增强模型的泛化能力和鲁棒性。
在测试阶段,我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值,将置信度低于阈值的检测框过滤掉,最终得到检测结果。同时,我们还可以将检测结果保存为图片或视频格式,以便进行后续分析和应用。本系统基于YOLOv5算法,使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、PyQt等。
在这里插入图片描述

Pyside6界面设计

Pyside6是Python语言的GUI编程解决方案之一,可以快速地为Python程序创建GUI应用。在本博文中,我们使用Pyside6库创建一个图形化界面,为用户提供简单易用的交互界面,实现用户选择图片、视频进行目标检测。
我们使用Qt Designer设计图形界面,然后使用Pyside6将设计好的UI文件转换为Python代码。图形界面中包含多个UI控件,例如:标签、按钮、文本框、多选框等。通过Pyside6中的信号槽机制,可以使得UI控件与程序逻辑代码相互连接。

实验结果与分析

在实验结果与分析部分,我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练过程。在训练阶段,我们使用了前面介绍的海洋生物数据集进行训练,使用了YOLOv5算法对数据集训练,总计训练了300个epochs。在训练过程中,我们使用tensorboard记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征。在训练结束后,我们使用模型在数据集的验证集上进行了评估,得到了以下结果。
在这里插入图片描述

下图展示了我们训练的YOLOv5模型在验证集上的PR曲线,从图中可以看出,模型取得了较高的召回率和精确率,整体表现良好。
在这里插入图片描述

下图展示了本博文在使用YOLOv5模型对海洋生物数据集进行训练时候的Mosaic数据增强图像。
在这里插入图片描述
在这里插入图片描述

综上,本博文训练得到的YOLOv5模型在数据集上表现良好,具有较高的检测精度和鲁棒性,可以在实际场景中应用。另外本博主对整个系统进行了详细测试,最终开发出一版流畅的高精度目标检测系统界面,就是本博文演示部分的展示,完整的UI界面、测试图片视频、代码文件等均已打包上传,感兴趣的朋友可以关注我私信获取。其他基于深度学习的目标检测系统如西红柿、猫狗、山羊、野生目标、烟头、二维码、头盔、交警、苹果检测系统等有需要的朋友关注我,从博主其他博客中获取下载链接。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/609322.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MySQL数据库 番外.聚合函数

前言: 聚合函数是分组查询中一个重要的组成部分,想要利用分组查询,就要对聚合函数有不错的掌握,因此我们在这里开一篇番外,讲解SQL语法中的聚合函数 聚合函数: 聚合函数是SQL中一种特殊的函数,…

Oracle中的数据导出(4)

目录 法一:使用SQL plus命令脚本 法二:使用PLSQL Developer工具 前几篇文章描述了如何将Oracle中的数据导出到库外,但是导出的数据结果都是文本文档,这样页面查看不和谐,编辑又略显麻烦。因此这篇文章将描述如何将Or…

60题学会动态规划系列:动态规划算法第二讲

都是路径问题~ 文章目录 1.不同路径2.不同路径II3.礼物的最大价值4.下降路径最小和5.最小路径和 1.不同路径 力扣链接:力扣 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。 机器人每次只能向下或者向右移动一…

异常检测学习笔记 一、异常检测及基本统计

一、什么是异常? 1、异常的定义 异常是指与其他数据有很大不同的数据。异常现象是“一种与其他观测结果大相径庭的观测结果,以至于人们怀疑它是由不同的机制产生的。”,也被称为“异常”或“离经叛道”。 所有观测值 = 正常数据 + 异常值 异常值 = 噪声 + 异常 噪声 = 人们…

scratch接水果 少儿编程 电子学会图形化编程scratch编程等级考试二级真题和答案解析2023年5月

目录 scratch接水果 一、题目要求 1、准备工作 2、功能实现 二、案例分析

操作系统复习2.3.5-管程

引入管程 PV操作困难,容易书写出错,引入管程,作为一种高级同步机制 组成 局限于管程的共享数据结构说明对该数据结构进行操作的一组过程对局部于管程的共享数据结构设置初始值的语句管程有一个名字 基本特征 局限于管程的数据只能被局限…

括号匹配(使用链栈实现)

目录 0. 前言1. 括号匹配——题目描述2. 解题思路3. 括号匹配意义 0. 前言 数据结构——括号匹配(使用链栈实现) 操作系统:Windows10 家庭版 开发环境:Dev-Cpp 1. 括号匹配——题目描述 给定一个只包含括号的字符串s,判断这个字符串中的…

【图】单源最短路径

最短路径 图上的最短路径:两顶点之间经过的边数最少的路径; 网上的最短路径:两顶点之间经过的边上权值之和最少的路径(源点->终点)。 a星算法、迪杰斯特拉算法、佛洛依德算法。 迪杰斯特拉算法 单源最短路径按…

SpringBoot项目登录并接入MFA二次认证

MFA多因素认证(Multi-Factor Authentication ): 一些需要身份认证的服务(如网站),为了提升安全性,通常会在账号密码登录成功后,要求用户进行第二种身份认证,以确保是正确用户登录,避…

【C语言】C预处理器(宏、文件包含、条件编译...)

一、C语言编译的预处理阶段1.1 C语言的编译过程1.2 C语言编译的预处理 二、C语言 宏2.1替换常量2.2函数宏2.3 字符串化和连接:#和##2.4 变参宏 三、文件包含:#include3.1 写法3.2 头文件的作用——声明3.3 头文件和extern 、static 四、 其他指令4.1 #un…

Ansible基础4——变量、机密、事实

文章目录 一、变量二、机密2.1 创建加密文件2.2 查看加密文件2.3 编辑加密文件内容2.4 加密现有文件2.5 解密文件2.6 更改加密密码 三、事实3.1 收集展示事实3.2 展示某个结果3.3 新旧事实命令3.4 关闭事实3.5 魔法变量 一、变量 常设置的变量: 要创建的用户要安装的…

【C++ 基础篇:19】:类的构造函数与初始化列表:用法说明及构造函数的细节内容补充!

本系列 C 相关文章 仅为笔者学习笔记记录,用自己的理解记录学习!C 学习系列将分为三个阶段:基础篇、STL 篇、高阶数据结构与算法篇,相关重点内容如下: 基础篇:类与对象(涉及C的三大特性等&#…

Kubernetes_容器网络_循序渐进地学习kubernetes网络

文章目录 前言一、Linux网络命名空间1.1 linux网络命名空间1.2 不同网络命名空间的通信两个网络命名空间通信多个网络命名空间通信 二、K8S Pod网络通信2.1 Pod内部容器的网络通信2.2 相同node: 不同pod间的网络通信2.3 不同node: 不同pod间的网络通信2.4 容器网络插件: Flanne…

C++STL库之map

文章目录 关于仿函数stackdeque(双端对列)queuepriority_queuemap(重点)set(去重) 关于仿函数 //C不能重载的运算符sizeof、 ::、 ? :、 .、 *、 class Add { public:int operator()(int a, int b)const{return a b;} }; //函数对象,仿函数…

EDA数字钟(三)

文章目录 前言一、设计内容二、模块结构三、代码编写1、顶层模块Digclk2、状态控制模块Ctrl3、按键消抖模块Filter4、计时模块Time5、闹钟模块Alarm6、显示模块Display7、数码管驱动模块Smg 四、测试文件五、波形仿真总结 前言 再次编写数字钟Verilog程序,使其符合…

数据迁移工具,用这8种就够了

前言 最近由于工作需要需要进行数据迁移,那么ETL数据迁移工具该用哪些呢? ETL(是Extract-Transform-Load的缩写,即数据抽取、转换、装载的过程),对于企业应用来说,我们经常会遇到各种数据的处理、转换、迁移的场景。…

50 Projects 50 Days - Split Landing Page 学习记录

项目地址 Split Landing Page 展示效果 Split Landing Page 实现思路 当鼠标移动到左右两块区域时,分别给容器添加不同的class实现样式的变换。 有两种思路可以实现,一种是hover时改变宽度,一种是hover时改变flex拉伸比例,两…

从零手写操作系统之RVOS外设中断实现-04

从零手写操作系统之RVOS外设中断实现-04 RISC-V 中断(Interrupt)的分类RISC-V Trap (中断)处理中涉及的寄存器寄存器 mie、mip中断处理流程PLIC 介绍外部中断(external interrupt )PLICPLIC Interrupt Sour…

精调万分(Fine tune SAM)-万分预测器的解读和精调之一

缘起 分割万物(segment-anything model, SAM, 万分), 是图像分割领域的革命, 图像分割从此进入大模型时代. 如何自定义这个大模型以为己用? 或者说, 通过精调取长补短用于自己的项目?这是一个值得研究的问题, 在这里我试着探索一下, 万分在医学影像学里面的脊柱分割的应用. …

【sentinel】滑动时间窗口算法在Sentinel中的应用

固定窗口算法(计数器法) 算法介绍 计数器法是限流算法里最简单也是最容易实现的一种算法。比如我们规定,对于A接口来说,我们1秒的访问次数不能超过10次。那么我们可以这么做:在一开始的时候,我们可以设置…