PyTorch 深度学习 || 专题一:神经网络基础

news2025/1/9 10:22:42

神经网络基础

神经网络是一门重要的机器学习技术。它是目前最为火热的研究方向–深度学习的基础。学习神经网络不仅可以让你掌握一门强大的机器学习方法,同时也可以更好地帮助你理解深度学习技术。

神经网络是一种模拟人脑的神经网络以期能够实现类人工智能的机器学习技术。人脑中的神经网络是一个非常复杂的组织。成人的大脑中估计有1000亿个神经元之多。

在这里插入图片描述
图:人脑神经网络

那么机器学习中的神经网络是如何实现这种模拟的,并且达到一个惊人的良好效果的?通过本文,你可以了解到这些问题的答案,同时还能知道神经网络的历史,以及如何较好地学习它。

1. 神经网络的提出

对于神经元的研究由来已久,1904年生物学家就已经知晓了神经元的组成结构。

一个神经元通常具有多个树突,主要用来接受传入信息;而轴突只有一条,轴突尾端有许多轴突末梢可以给其他多个神经元传递信息。轴突末梢跟其他神经元的树突产生连接,从而传递信号。这个连接的位置在生物学上叫做“突触”。

人脑中的神经元形状可以用下图做简单的说明

在这里插入图片描述
图:神经元

1943年,心理学家McCulloch和数学家Pitts参考了生物神经元的结构,发表了抽象的神经元模型MP。

在这里插入图片描述
图:Warren McCulloch(左)和 Walter Pitts(右)

神经元模型是一个包含输入,输出与计算功能的模型。输入可以类比为神经元的树突,而输出可以类比为神经元的轴突,计算则可以类比为细胞核。

下图是一个典型的神经元模型:包含有3个输入,1个输出,以及2个计算功能。注意中间的箭头线。这些线称为“连接”。每个上有一个“权值”。

在这里插入图片描述
图:神经元模型

在这里插入图片描述
图: 神经元扩展

可见z是在输入和权值的线性加权和叠加了一个函数g的值。在MP模型里,函数g是sgn函数,也就是取符号函数。这个函数当输入大于0时,输出1,否则输出0。

下面对神经元模型的图进行一些扩展。首先将sum函数与sgn函数合并到一个圆圈里,代表神经元的内部计算。其次,把输入a与输出z写到连接线的左上方,便于后面画复杂的网络。最后说明,一个神经元可以引出多个代表输出的有向箭头,但值都是一样的。

神经元可以看作一个计算与存储单元。计算是神经元对其的输入进行计算功能。存储是神经元会暂存计算结果,并传递到下一层。

1943年发布的MP模型,虽然简单,但已经建立了神经网络大厦的地基。但是,MP模型中,权重的值都是预先设置的,因此不能学习。

1949年心理学家Hebb提出了Hebb学习率,认为人脑神经细胞的突触(也就是连接)上的强度上可以变化的。于是计算科学家们开始考虑用调整权值的方法来让机器学习。这为后面的学习算法奠定了基础。

在这里插入图片描述
图: Donald Olding Hebb

尽管神经元模型与Hebb学习律都已诞生,但限于当时的计算机能力,直到接近10年后,第一个真正意义的神经网络才诞生。

2. 单层神经网络(感知器)

1958年,计算科学家Rosenblatt提出了由两层神经元组成的神经网络。他给它起了一个名字–“感知器”(Perceptron)(有的文献翻译成“感知机”,下文统一用“感知器”来指代)。

感知器是当时首个可以学习的人工神经网络。Rosenblatt现场演示了其学习识别简单图像的过程,在当时的社会引起了轰动。

人们认为已经发现了智能的奥秘,许多学者和科研机构纷纷投入到神经网络的研究中。美国军方大力资助了神经网络的研究,并认为神经网络比“原子弹工程”更重要。这段时间直到1969年才结束,这个时期可以看作神经网络的第一次高潮。

在这里插入图片描述

图: Rosenblat与感知器

在这里插入图片描述

图: 单层神经网络(扩展)

在这里插入图片描述

图 单层神经网络(决策分界)

感知器只能做简单的线性分类任务。但是当时的人们热情太过于高涨,并没有人清醒的认识到这点。于是,当人工智能领域的巨擘Minsky指出这点时,事态就发生了变化。

Minsky在1969年出版了一本叫《Perceptron》的书,里面用详细的数学证明了感知器的弱点,尤其是感知器对XOR(异或)这样的简单分类任务都无法解决。

Minsky认为,如果将计算层增加到两层,计算量则过大,而且没有有效的学习算法。所以,他认为研究更深层的网络是没有价值的。(本文成文后一个月,即2016年1月,Minsky在美国去世。谨在本文中纪念这位著名的计算机研究专家与大拿。)

在这里插入图片描述

图18 Marvin Minsky

由于Minsky的巨大影响力以及书中呈现的悲观态度,让很多学者和实验室纷纷放弃了神经网络的研究。神经网络的研究陷入了冰河期。这个时期又被称为“AI winter”。

接近10年以后,对于两层神经网络的研究才带来神经网络的复苏。

3. 两层神经网络(多层感知器)

两层神经网络是本文的重点,因为正是在这时候,神经网络开始了大范围的推广与使用。

Minsky说过单层神经网络无法解决异或问题。但是当增加一个计算层以后,两层神经网络不仅可以解决异或问题,而且具有非常好的非线性分类效果。不过两层神经网络的计算是一个问题,没有一个较好的解法。

1986年,Rumelhar和Hinton等人提出了反向传播(Backpropagation,BP)算法,解决了两层神经网络所需要的复杂计算量问题,从而带动了业界使用两层神经网络研究的热潮。目前,大量的教授神经网络的教材,都是重点介绍两层(带一个隐藏层)神经网络的内容。

这时候的Hinton还很年轻,30年以后,正是他重新定义了神经网络,带来了神经网络复苏的又一春。

在这里插入图片描述

图19 David Rumelhart(左)以及 Geoffery Hinton(右)

在这里插入图片描述

图 两层神经网络(向量形式)

需要说明的是,在两层神经网络中,我们不再使用sgn函数作为函数g,而是使用平滑函数sigmoid作为函数g。我们把函数g也称作激活函数(active function)。

事实上,神经网络的本质就是通过参数与激活函数来拟合特征与目标之间的真实函数关系。初学者可能认为画神经网络的结构图是为了在程序中实现这些圆圈与线,但在一个神经网络的程序中,既没有“线”这个对象,也没有“单元”这个对象。实现一个神经网络最需要的是线性代数库。

与单层神经网络不同。理论证明,两层神经网络可以无限逼近任意连续函数。

这是什么意思呢?也就是说,面对复杂的非线性分类任务,两层(带一个隐藏层)神经网络可以分类的很好。

下面就是一个例子(此两图来自colah的博客),红色的线与蓝色的线代表数据。而红色区域和蓝色区域代表由神经网络划开的区域,两者的分界线就是决策分界。

在这里插入图片描述
图: 两层神经网络(决策分界)

了解了两层神经网络的结构以后,我们就可以看懂其它类似的结构图。例如EasyPR字符识别网络架构(下图)。

在这里插入图片描述
图: EasyPR字符识别网络

EasyPR使用了字符的图像去进行字符文字的识别。输入是120维的向量。输出是要预测的文字类别,共有65类。根据实验,我们测试了一些隐藏层数目,发现当值为40时,整个网络在测试集上的效果较好,因此选择网络的最终结构就是120,40,65。

在Rosenblat提出的感知器模型中,模型中的参数可以被训练,但是使用的方法较为简单,并没有使用目前机器学习中通用的方法,这导致其扩展性与适用性非常有限。从两层神经网络开始,神经网络的研究人员开始使用机器学习相关的技术进行神经网络的训练。例如用大量的数据(1000-10000左右),使用算法进行优化等等,从而使得模型训练可以获得性能与数据利用上的双重优势。

机器学习模型训练的目的,就是使得参数尽可能的与真实的模型逼近。具体做法是这样的。首先给所有参数赋上随机值。我们使用这些随机生成的参数值,来预测训练数据中的样本。样本的预测目标为yp,真实目标为y。那么,定义一个值loss,计算公式如下。

loss = (yp - y)2

这个值称之为损失(loss),我们的目标就是使对所有训练数据的损失和尽可能的小。

如果将先前的神经网络预测的矩阵公式带入到yp中(因为有z=yp),那么我们可以把损失写为关于参数(parameter)的函数,这个函数称之为损失函数(loss function)。下面的问题就是求:如何优化参数,能够让损失函数的值最小。

此时这个问题就被转化为一个优化问题。一个常用方法就是高等数学中的求导,但是这里的问题由于参数不止一个,求导后计算导数等于0的运算量很大,所以一般来说解决这个优化问题使用的是梯度下降算法。梯度下降算法每次计算参数在当前的梯度,然后让参数向着梯度的反方向前进一段距离,不断重复,直到梯度接近零时截止。一般这个时候,所有的参数恰好达到使损失函数达到一个最低值的状态。

在神经网络模型中,由于结构复杂,每次计算梯度的代价很大。因此还需要使用反向传播算法。反向传播算法是利用了神经网络的结构进行的计算。不一次计算所有参数的梯度,而是从后往前。首先计算输出层的梯度,然后是第二个参数矩阵的梯度,接着是中间层的梯度,再然后是第一个参数矩阵的梯度,最后是输入层的梯度。计算结束以后,所要的两个参数矩阵的梯度就都有了。

反向传播算法可以直观的理解为下图。梯度的计算从后往前,一层层反向传播。前缀E代表着相对导数的意思。

在这里插入图片描述

图 反向传播算法

反向传播算法的启示是数学中的链式法则。在此需要说明的是,尽管早期神经网络的研究人员努力从生物学中得到启发,但从BP算法开始,研究者们更多地从数学上寻求问题的最优解。不再盲目模拟人脑网络是神经网络研究走向成熟的标志。正如科学家们可以从鸟类的飞行中得到启发,但没有必要一定要完全模拟鸟类的飞行方式,也能制造可以飞天的飞机。

优化问题只是训练中的一个部分。机器学习问题之所以称为学习问题,而不是优化问题,就是因为它不仅要求数据在训练集上求得一个较小的误差,在测试集上也要表现好。因为模型最终是要部署到没有见过训练数据的真实场景。提升模型在测试集上的预测效果的主题叫做泛化(generalization),相关方法被称作正则化(regularization)。神经网络中常用的泛化技术有权重衰减等。

但是神经网络仍然存在若干的问题:尽管使用了BP算法,一次神经网络的训练仍然耗时太久,而且困扰训练优化的一个问题就是局部最优解问题,这使得神经网络的优化较为困难。同时,隐藏层的节点数需要调参,这使得使用不太方便,工程和研究人员对此多有抱怨。

90年代中期,由Vapnik等人发明的SVM(Support Vector Machines,支持向量机)算法诞生,很快就在若干个方面体现出了对比神经网络的优势:无需调参;高效;全局最优解。基于以上种种理由,SVM迅速打败了神经网络算法成为主流。

在这里插入图片描述
图: Vladimir Vapnik

神经网络的研究再次陷入了冰河期。当时,只要你的论文中包含神经网络相关的字眼,非常容易被会议和期刊拒收,研究界那时对神经网络的不待见可想而知。

4. 多层神经网络(深度学习)

在被人摒弃的10年中,有几个学者仍然在坚持研究。这其中的棋手就是加拿大多伦多大学的Geoffery Hinton教授。

2006年,Hinton在《Science》和相关期刊上发表了论文,首次提出了“深度信念网络”的概念。与传统的训练方式不同,“深度信念网络”有一个“预训练”(pre-training)的过程,这可以方便的让神经网络中的权值找到一个接近最优解的值,之后再使用“微调”(fine-tuning)技术来对整个网络进行优化训练。这两个技术的运用大幅度减少了训练多层神经网络的时间。他给多层神经网络相关的学习方法赋予了一个新名词–“深度学习”。

很快,深度学习在语音识别领域暂露头角。接着,2012年,深度学习技术又在图像识别领域大展拳脚。Hinton与他的学生在ImageNet竞赛中,用多层的卷积神经网络成功地对包含一千类别的一百万张图片进行了训练,取得了分类错误率15%的好成绩,这个成绩比第二名高了近11个百分点,充分证明了多层神经网络识别效果的优越性。

在这之后,关于深度神经网络的研究与应用不断涌现。

在这里插入图片描述
图: Geoffery Hinton

我们延续两层神经网络的方式来设计一个多层神经网络。

在两层神经网络的输出层后面,继续添加层次。原来的输出层变成中间层,新加的层次成为新的输出层。所以可以得到下图。

在这里插入图片描述
图: 多层神经网络

在这里插入图片描述

图: 多层神经网络(更深的层次)

在单层神经网络时,我们使用的激活函数是sgn函数。到了两层神经网络时,我们使用的最多的是sigmoid函数。而到了多层神经网络时,通过一系列的研究发现,ReLU函数在训练多层神经网络时,更容易收敛,并且预测性能更好。因此,目前在深度学习中,最流行的非线性函数是ReLU函数。ReLU函数不是传统的非线性函数,而是分段线性函数。其表达式非常简单,就是y=max(x,0)。简而言之,在x大于0,输出就是输入,而在x小于0时,输出就保持为0。这种函数的设计启发来自于生物神经元对于激励的线性响应,以及当低于某个阈值后就不再响应的模拟。

在多层神经网络中,训练的主题仍然是优化和泛化。当使用足够强的计算芯片(例如GPU图形加速卡)时,梯度下降算法以及反向传播算法在多层神经网络中的训练中仍然工作的很好。目前学术界主要的研究既在于开发新的算法,也在于对这两个算法进行不断的优化,例如,增加了一种带动量因子(momentum)的梯度下降算法。

在深度学习中,泛化技术变的比以往更加的重要。这主要是因为神经网络的层数增加了,参数也增加了,表示能力大幅度增强,很容易出现过拟合现象。因此正则化技术就显得十分重要。目前,Dropout技术,以及数据扩容(Data-Augmentation)技术是目前使用的最多的正则化技术。

目前,深度神经网络在人工智能界占据统治地位。但凡有关人工智能的产业报道,必然离不开深度学习。神经网络界当下的四位引领者除了前文所说的Ng,Hinton以外,还有CNN的发明人Yann Lecun,以及《Deep Learning》的作者Bengio。

前段时间一直对人工智能持谨慎态度的马斯克,搞了一个OpenAI项目,邀请Bengio作为高级顾问。马斯克认为,人工智能技术不应该掌握在大公司如Google,Facebook的手里,更应该作为一种开放技术,让所有人都可以参与研究。马斯克的这种精神值得让人敬佩。

在这里插入图片描述
图35 Yann LeCun(左)和 Yoshua Bengio(右)

多层神经网络的研究仍在进行中。现在最为火热的研究技术包括RNN,LSTM等,研究方向则是图像理解方面。图像理解技术是给计算机一幅图片,让它用语言来表达这幅图片的意思。ImageNet竞赛也在不断召开,有更多的方法涌现出来,刷新以往的正确率。

5. 回顾

我们回顾一下神经网络发展的历程。神经网络的发展历史曲折荡漾,既有被人捧上天的时刻,也有摔落在街头无人问津的时段,中间经历了数次大起大落。

从单层神经网络(感知器)开始,到包含一个隐藏层的两层神经网络,再到多层的深度神经网络,一共有三次兴起过程。详见下图。

在这里插入图片描述
图: 三起三落的神经网络

上图中的顶点与谷底可以看作神经网络发展的高峰与低谷。图中的横轴是时间,以年为单位。纵轴是一个神经网络影响力的示意表示。如果把1949年Hebb模型提出到1958年的感知机诞生这个10年视为落下(没有兴起)的话,那么神经网络算是经历了“三起三落”这样一个过程,跟“小平”同志类似。俗话说,天将降大任于斯人也,必先苦其心志,劳其筋骨。经历过如此多波折的神经网络能够在现阶段取得成功也可以被看做是磨砺的积累吧。

历史最大的好处是可以给现在做参考。科学的研究呈现螺旋形上升的过程,不可能一帆风顺。同时,这也给现在过分热衷深度学习与人工智能的人敲响警钟,因为这不是第一次人们因为神经网络而疯狂了。1958年到1969年,以及1985年到1995,这两个十年间人们对于神经网络以及人工智能的期待并不现在低,可结果如何大家也能看的很清楚。

因此,冷静才是对待目前深度学习热潮的最好办法。如果因为深度学习火热,或者可以有“钱景”就一窝蜂的涌入,那么最终的受害人只能是自己。神经网络界已经两次有被人们捧上天了的境况,相信也对于捧得越高,摔得越惨这句话深有体会。因此,神经网络界的学者也必须给这股热潮浇上一盆水,不要让媒体以及投资家们过分的高看这门技术。很有可能,三十年河东,三十年河西,在几年后,神经网络就再次陷入谷底。根据上图的历史曲线图,这是很有可能的。

下面说一下神经网络为什么能这么火热?简而言之,就是其学习效果的强大。随着神经网络的发展,其表示性能越来越强。

从单层神经网络,到两层神经网络,再到多层神经网络,下图说明了,随着网络层数的增加,以及激活函数的调整,神经网络所能拟合的决策分界平面的能力。

在这里插入图片描述
图: 表示能力不断增强

可以看出,随着层数增加,其非线性分界拟合能力不断增强。图中的分界线并不代表真实训练出的效果,更多的是示意效果。

神经网络的研究与应用之所以能够不断地火热发展下去,与其强大的函数拟合能力是分不开关系的。

6. 人工智能的展望

最后,简单地谈谈对目前人工智能的看法。虽然现在人工智能非常火热,但是距离真正的人工智能还有很大的距离。就拿计算机视觉方向来说,面对稍微复杂一些的场景,以及易于混淆的图像,计算机就可能难以识别。因此,这个方向还有很多的工作要做。

就普通人看来,这么辛苦的做各种实验,以及投入大量的人力就是为了实现一些不及孩童能力的视觉能力,未免有些不值。但是这只是第一步。虽然计算机需要很大的运算量才能完成一个普通人简单能完成的识图工作,但计算机最大的优势在于并行化与批量推广能力。使用计算机以后,我们可以很轻易地将以前需要人眼去判断的工作交给计算机做,而且几乎没有任何的推广成本。这就具有很大的价值。正如火车刚诞生的时候,有人嘲笑它又笨又重,速度还没有马快。但是很快规模化推广的火车就替代了马车的使用。人工智能也是如此。这也是为什么目前世界上各著名公司以及政府都对此热衷的原因。

目前看来,神经网络要想实现人工智能还有很多的路要走,但方向至少是正确的,下面就要看后来者的不断努力了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/608833.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【JAVA】双向链表详解

【JAVA】双向链表详解 双向链表的定义双向链表的初步实现(准备)双向链表的操作一. 打印链表二. 得到链表长度三. 插入操作3.1 头插法3.2 尾插法3.3 任意位置插入 四. 删除操作4.1 删除第一次出现为key的节点(3种情况)4.2 删除所以…

Vue--》Vue3打造可扩展的项目管理系统后台的完整指南(四)

今天开始使用 vue3 ts 搭建一个项目管理的后台,因为文章会将项目的每一个地方代码的书写都会讲解到,所以本项目会分成好几篇文章进行讲解,我会在最后一篇文章中会将项目代码开源到我的GithHub上,大家可以自行去进行下载运行&…

保姆级别ps bate版本下载

前言:最近的ps bete版本在抖音也是上了热搜,时不时就能刷到一个,相信大家也知道ai带来的魅力,真的很强,那我们就开始安装教程吧。 ​过程: 先打开链接:Adobe Creative Cloud | Details and pr…

使用外部工具横向移动

Smbexe、Psexec Psexec PsExec是一种轻巧的telnet代替品,可让您在其他系统上执行进程,并为控制台应用提供完整的交互性,无需手动安装客户端软件。 原理: 1、ipc$连接,释放Psexesvc.exe 2、OpenSCManager打开受害者…

如何使用ChatGPT自带插件

OpenAI的插件将ChatGPT连接到第三方应用程序。这些插件使ChatGPT能够与开发者定义的API进行交互,增强ChatGPT的能力,并使其能够执行广泛的操作。插件使ChatGPT能够做如下事情: 获取实时信息;例如,体育比分&#xff0c…

采样率(压缩比)对OMP算法的影响

前面详细分析了OMP重构算法原理以及实现,本篇主要分析采样率对OMP算法的影响。 OMP重构算法的流程为 以下分析采样率对OMP算法的影响。 先对一维信号重构进行分析,表1是OMP算法中采样率对重构的MSE和时间的对应表格: 表1:MP算法采…

04-Springbooot与Spring Cloud Alibaba搭建后端架构

1、创建Springbooot父工程 1.1、使用快速创建Springbooot工程的方式: 1.2、项目使用Maven进行管理 settings.xml,配好了阿里镜像 02-maven的安装配置_NikoWord的博客-CSDN博客 2、项目初始化配置 01-IDEA使用技巧_NikoWord的博客-CSDN博客 04-设置…

VS2010 C语言DLL项目hello world程序以及win32控制台程序调用dll示例

一、使用Visual Studio 2010编写C语言 DLL项目hello world程序 1.点击桌面 VS2010 图标,运行程序。(或者通过菜单栏打开程序) 2.点击【文件】 -> 【新建】 -> 【项目】 3.点击【VisualC】和【win32控制台应用程序】,设置好名称和存储位置&#xf…

白盒测试方法

为什么要进行白盒测试? 如果所有软件错误的根源都可以追溯到某个唯一原因,那么问题就简单了。然而,事实上一个bug 常常是由多个因素共同导致的,如下图所示。 黑盒查不到的问题 假设此时开发工作已结束,程序送交到测试…

飞腾FT2000实战开发-GPIO的配置

目录 环境: 飞腾GPIO介绍: 临时配置: 永久配置: 环境: CPU:FT2000(64位,四核) 操作系统:linux-4.4.131-20200710 内核:kylin4.0.2 飞腾GPIO介绍&#x…

JavaScript创建二维数组踩坑记录

需求:创建一个m*n且元素值为0的二维数组 碎碎念 1、 今天刷Leetcode时,遇见一个这样的需求,机智如我,定然不会通过双重for循环来创建,于是,我写了这样一行代码 const dimensionalArray new Array(m).fi…

Spring Boot 加载自定义配置文件

文章目录 一、为什么需要加载自定义配置文件二、使用PropertySource加载自定义配置文件(一)创建Spring Boot项目(二)创建自定义配置文件(三)创建自定义配置类(四)编写测试方法&#…

硅谷甄选 Blog_01-搭建后台管理系统模板

搭建后台管理系统模板分为两大步骤: 项目初始化项目配置 项目初始化 环境准备 node:v16.16.0pnpm:v7.22.0 初始化项目 全局安装pnpm指令: npm i -g pnpm项目初始化指令: pnpm create vite如下图所示进行项目的…

嵌入式BSP工程师基本任务分析

到底什么是BSP工程师呢?来看这篇文章吧 一、嵌入式系统 要明白什么是嵌入式软件工程师,我们先从嵌入式系统(嵌入式设备)说起。维基百科上对嵌入式系统的定义如下: 嵌入式系统(Embedded System&#xff0…

5 个强大的 HTML5 API

HTML5提供了一些非常强大的JavaScript和HTML API,来帮助开发者构建精彩的桌面和移动应用程序。本文将介绍5个新型的API,希望对你的开发工作有所帮助。 1. 全屏API(Fullscreen API) 该API允许开发者以编程方式将Web应用程序全屏运…

1_标准IO

目录 标准I/O一、概念二、特点⭐⭐⭐三、缓冲区⭐⭐⭐3.1 全缓冲3.1 行缓冲3.3 不缓冲 四、函数接口⭐⭐⭐⭐4.1 打开4.1.1 fopen4.1.2 freopen4.1.2 容错机制perror 4.2 关闭4.2.1 fclose4.3 读写操作4.3.1 字符I/O4.3.2 行I/O4.3.3 块I/O 4.4 定位操作4.5 文件结束和错误 标准…

多维时序 | MATLAB实现NARX非线性自回归外生模型多变量多步时间序列预测(电池预测模型)

多维时序 | MATLAB实现NARX非线性自回归外生模型多变量多步时间序列预测(电池预测模型) 目录 多维时序 | MATLAB实现NARX非线性自回归外生模型多变量多步时间序列预测(电池预测模型)效果一览基本介绍模型描述程序设计参考资料效果一览 基本介绍 多维时序 | MATLAB实现NARX非…

CSDN 周赛 56 期

CSDN 周赛 56 期 1、题目名称:因数-数字游戏骗分抛出异常考试时代码 2、题目名称:津津的储蓄计划3、题目名称:一维数组的最大子数组和4、题目名称:莫名其妙的键盘小结 1、题目名称:因数-数字游戏 小Q的柠檬汁做完了。 …

为视图增加权重以调整基本线性布局

乍看上去线性布局LinearLayout很基础,不太灵活,毕竟其只是按照某种顺序摆放视图。但是还可以使用另外一些属性调整布局的外观。 编写一个不太一样的布局。这个布局让按钮显示在布局的右下角,其余全部空间由一个可编辑文本域占据。 一个基本线…

算法套路十九——树形DP

算法套路十九——树形DP 树形 DP,即在树上进行的 DP。由于树固有的递归性质,这里的DP是指是一种通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法,故虽然带有DP,但一般都是通过递归来进行。 算法示例一:…