i.MX 6ULL 驱动开发 二十八:网络设备

news2024/11/17 22:20:40

一、网络设备的系统框图

在这里插入图片描述
MAC:工作在网络模型的数据链路层,通过 RGMIIRMII 接口连接 PHYMAC 控制器中的 MDIO 控制器提供 MDIO 接口,用于访问 PHY 寄存器

PHY:工作在网络模型的物理层,是 IEEE802.3 规定的一个标准模块。IEEE802.3 规定了 地址 0~1516 个通用寄存器,只要配置好这些通用寄存器就能保证 PHY 芯片正常工作。16~31 地址的寄存器有厂家自行定义

二、以太网MII接口

扫盲-以太网MII接口类型大全-MII、RMII、SMII、GMII、RGMII、SGMII、XGMII、XAUI、RXAUI_heat.huang的博客-CSDN博客_rmii接口中的参考时钟频率

三、RJ45 接口

网络RJ45接口详解_迎客松88的博客-CSDN博客_rj45接口定义

四、PHY 芯片

1、PHY 基础知识

PHYIEEE 802.3 规定的一个标准模块。SOC 可以对 PHY 进行配置或者读取 PHY 相关状态,这个就需要 PHY 内部寄存器去实现了。 PHY 芯片寄存器地址空间为 5 位,地址 0~3132 个寄存器, IEEE 定义了 0~1516 个寄存器的功能, 16~3116 个寄存器由厂商自行实现。 也就是说不管你用的哪个厂家的 PHY 芯片,其中 0~1516 个寄存器是一模一样的。仅靠这 16 个寄存器是完全可以驱动起 PHY 芯片的,至少能保证基本的网络数据通信,因此 Linux 内核有通用 PHY 驱动,按道理来讲,不管你使用的哪个厂家的 PHY 芯片,都可以使用 Linux 的这个通用 PHY 驱动来验证网络工作是否正常。

事实上在实际开发中可能会遇到一些其他的问题导致 Linux 内核的通用 PHY 驱动工作不正常,这个时候就需要驱动开发人员去调
试了。

2、PHY 芯片寄存器相关说明

phy基础知识总结 common register总结_hello-Will的博客-CSDN博客

五、LAN8720A

详细信息参考 LAN8720A 官方手册。

六、Linux 网络驱动框架

1、网络设备

/**
 *	struct net_device - The DEVICE structure.
 *		Actually, this whole structure is a big mistake.  It mixes I/O
 *		data with strictly "high-level" data, and it has to know about
 *		almost every data structure used in the INET module.
 *
 *	@name:	This is the first field of the "visible" part of this structure
 *		(i.e. as seen by users in the "Space.c" file).  It is the name
 *	 	of the interface.
 *
 *	@name_hlist: 	Device name hash chain, please keep it close to name[]
 *	@ifalias:	SNMP alias
 *	@mem_end:	Shared memory end
 *	@mem_start:	Shared memory start
 *	@base_addr:	Device I/O address
 *	@irq:		Device IRQ number
 *
 *	@carrier_changes:	Stats to monitor carrier on<->off transitions
 *
 *	@state:		Generic network queuing layer state, see netdev_state_t
 *	@dev_list:	The global list of network devices
 *	@napi_list:	List entry, that is used for polling napi devices
 *	@unreg_list:	List entry, that is used, when we are unregistering the
 *			device, see the function unregister_netdev
 *	@close_list:	List entry, that is used, when we are closing the device
 *
 *	@adj_list:	Directly linked devices, like slaves for bonding
 *	@all_adj_list:	All linked devices, *including* neighbours
 *	@features:	Currently active device features
 *	@hw_features:	User-changeable features
 *
 *	@wanted_features:	User-requested features
 *	@vlan_features:		Mask of features inheritable by VLAN devices
 *
 *	@hw_enc_features:	Mask of features inherited by encapsulating devices
 *				This field indicates what encapsulation
 *				offloads the hardware is capable of doing,
 *				and drivers will need to set them appropriately.
 *
 *	@mpls_features:	Mask of features inheritable by MPLS
 *
 *	@ifindex:	interface index
 *	@group:		The group, that the device belongs to
 *
 *	@stats:		Statistics struct, which was left as a legacy, use
 *			rtnl_link_stats64 instead
 *
 *	@rx_dropped:	Dropped packets by core network,
 *			do not use this in drivers
 *	@tx_dropped:	Dropped packets by core network,
 *			do not use this in drivers
 *
 *	@wireless_handlers:	List of functions to handle Wireless Extensions,
 *				instead of ioctl,
 *				see <net/iw_handler.h> for details.
 *	@wireless_data:	Instance data managed by the core of wireless extensions
 *
 *	@netdev_ops:	Includes several pointers to callbacks,
 *			if one wants to override the ndo_*() functions
 *	@ethtool_ops:	Management operations
 *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
 *			of Layer 2 headers.
 *
 *	@flags:		Interface flags (a la BSD)
 *	@priv_flags:	Like 'flags' but invisible to userspace,
 *			see if.h for the definitions
 *	@gflags:	Global flags ( kept as legacy )
 *	@padded:	How much padding added by alloc_netdev()
 *	@operstate:	RFC2863 operstate
 *	@link_mode:	Mapping policy to operstate
 *	@if_port:	Selectable AUI, TP, ...
 *	@dma:		DMA channel
 *	@mtu:		Interface MTU value
 *	@type:		Interface hardware type
 *	@hard_header_len: Hardware header length
 *
 *	@needed_headroom: Extra headroom the hardware may need, but not in all
 *			  cases can this be guaranteed
 *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
 *			  cases can this be guaranteed. Some cases also use
 *			  LL_MAX_HEADER instead to allocate the skb
 *
 *	interface address info:
 *
 * 	@perm_addr:		Permanent hw address
 * 	@addr_assign_type:	Hw address assignment type
 * 	@addr_len:		Hardware address length
 * 	@neigh_priv_len;	Used in neigh_alloc(),
 * 				initialized only in atm/clip.c
 * 	@dev_id:		Used to differentiate devices that share
 * 				the same link layer address
 * 	@dev_port:		Used to differentiate devices that share
 * 				the same function
 *	@addr_list_lock:	XXX: need comments on this one
 *	@uc_promisc:		Counter, that indicates, that promiscuous mode
 *				has been enabled due to the need to listen to
 *				additional unicast addresses in a device that
 *				does not implement ndo_set_rx_mode()
 *	@uc:			unicast mac addresses
 *	@mc:			multicast mac addresses
 *	@dev_addrs:		list of device hw addresses
 *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
 *	@promiscuity:		Number of times, the NIC is told to work in
 *				Promiscuous mode, if it becomes 0 the NIC will
 *				exit from working in Promiscuous mode
 *	@allmulti:		Counter, enables or disables allmulticast mode
 *
 *	@vlan_info:	VLAN info
 *	@dsa_ptr:	dsa specific data
 *	@tipc_ptr:	TIPC specific data
 *	@atalk_ptr:	AppleTalk link
 *	@ip_ptr:	IPv4 specific data
 *	@dn_ptr:	DECnet specific data
 *	@ip6_ptr:	IPv6 specific data
 *	@ax25_ptr:	AX.25 specific data
 *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
 *
 *	@last_rx:	Time of last Rx
 *	@dev_addr:	Hw address (before bcast,
 *			because most packets are unicast)
 *
 *	@_rx:			Array of RX queues
 *	@num_rx_queues:		Number of RX queues
 *				allocated at register_netdev() time
 *	@real_num_rx_queues: 	Number of RX queues currently active in device
 *
 *	@rx_handler:		handler for received packets
 *	@rx_handler_data: 	XXX: need comments on this one
 *	@ingress_queue:		XXX: need comments on this one
 *	@broadcast:		hw bcast address
 *
 *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
 *			indexed by RX queue number. Assigned by driver.
 *			This must only be set if the ndo_rx_flow_steer
 *			operation is defined
 *	@index_hlist:		Device index hash chain
 *
 *	@_tx:			Array of TX queues
 *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
 *	@real_num_tx_queues: 	Number of TX queues currently active in device
 *	@qdisc:			Root qdisc from userspace point of view
 *	@tx_queue_len:		Max frames per queue allowed
 *	@tx_global_lock: 	XXX: need comments on this one
 *
 *	@xps_maps:	XXX: need comments on this one
 *
 *	@trans_start:		Time (in jiffies) of last Tx
 *	@watchdog_timeo:	Represents the timeout that is used by
 *				the watchdog ( see dev_watchdog() )
 *	@watchdog_timer:	List of timers
 *
 *	@pcpu_refcnt:		Number of references to this device
 *	@todo_list:		Delayed register/unregister
 *	@link_watch_list:	XXX: need comments on this one
 *
 *	@reg_state:		Register/unregister state machine
 *	@dismantle:		Device is going to be freed
 *	@rtnl_link_state:	This enum represents the phases of creating
 *				a new link
 *
 *	@destructor:		Called from unregister,
 *				can be used to call free_netdev
 *	@npinfo:		XXX: need comments on this one
 * 	@nd_net:		Network namespace this network device is inside
 *
 * 	@ml_priv:	Mid-layer private
 * 	@lstats:	Loopback statistics
 * 	@tstats:	Tunnel statistics
 * 	@dstats:	Dummy statistics
 * 	@vstats:	Virtual ethernet statistics
 *
 *	@garp_port:	GARP
 *	@mrp_port:	MRP
 *
 *	@dev:		Class/net/name entry
 *	@sysfs_groups:	Space for optional device, statistics and wireless
 *			sysfs groups
 *
 *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
 *	@rtnl_link_ops:	Rtnl_link_ops
 *
 *	@gso_max_size:	Maximum size of generic segmentation offload
 *	@gso_max_segs:	Maximum number of segments that can be passed to the
 *			NIC for GSO
 *	@gso_min_segs:	Minimum number of segments that can be passed to the
 *			NIC for GSO
 *
 *	@dcbnl_ops:	Data Center Bridging netlink ops
 *	@num_tc:	Number of traffic classes in the net device
 *	@tc_to_txq:	XXX: need comments on this one
 *	@prio_tc_map	XXX: need comments on this one
 *
 *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
 *
 *	@priomap:	XXX: need comments on this one
 *	@phydev:	Physical device may attach itself
 *			for hardware timestamping
 *
 *	@qdisc_tx_busylock:	XXX: need comments on this one
 *
 *	FIXME: cleanup struct net_device such that network protocol info
 *	moves out.
 */

struct net_device {
	char			name[IFNAMSIZ];
	struct hlist_node	name_hlist;
	char 			*ifalias;
	/*
	 *	I/O specific fields
	 *	FIXME: Merge these and struct ifmap into one
	 */
	unsigned long		mem_end;
	unsigned long		mem_start;
	unsigned long		base_addr;
	int			irq;

	atomic_t		carrier_changes;

	/*
	 *	Some hardware also needs these fields (state,dev_list,
	 *	napi_list,unreg_list,close_list) but they are not
	 *	part of the usual set specified in Space.c.
	 */

	unsigned long		state;

	struct list_head	dev_list;
	struct list_head	napi_list;
	struct list_head	unreg_list;
	struct list_head	close_list;
	struct list_head	ptype_all;
	struct list_head	ptype_specific;

	struct {
		struct list_head upper;
		struct list_head lower;
	} adj_list;

	struct {
		struct list_head upper;
		struct list_head lower;
	} all_adj_list;

	netdev_features_t	features;
	netdev_features_t	hw_features;
	netdev_features_t	wanted_features;
	netdev_features_t	vlan_features;
	netdev_features_t	hw_enc_features;
	netdev_features_t	mpls_features;

	int			ifindex;
	int			group;

	struct net_device_stats	stats;

	atomic_long_t		rx_dropped;
	atomic_long_t		tx_dropped;

#ifdef CONFIG_WIRELESS_EXT
	const struct iw_handler_def *	wireless_handlers;
	struct iw_public_data *	wireless_data;
#endif
	const struct net_device_ops *netdev_ops;
	const struct ethtool_ops *ethtool_ops;
#ifdef CONFIG_NET_SWITCHDEV
	const struct swdev_ops *swdev_ops;
#endif

	const struct header_ops *header_ops;

	unsigned int		flags;
	unsigned int		priv_flags;

	unsigned short		gflags;
	unsigned short		padded;

	unsigned char		operstate;
	unsigned char		link_mode;

	unsigned char		if_port;
	unsigned char		dma;

	unsigned int		mtu;
	unsigned short		type;
	unsigned short		hard_header_len;

	unsigned short		needed_headroom;
	unsigned short		needed_tailroom;

	/* Interface address info. */
	unsigned char		perm_addr[MAX_ADDR_LEN];
	unsigned char		addr_assign_type;
	unsigned char		addr_len;
	unsigned short		neigh_priv_len;
	unsigned short          dev_id;
	unsigned short          dev_port;
	spinlock_t		addr_list_lock;
	unsigned char		name_assign_type;
	bool			uc_promisc;
	struct netdev_hw_addr_list	uc;
	struct netdev_hw_addr_list	mc;
	struct netdev_hw_addr_list	dev_addrs;

#ifdef CONFIG_SYSFS
	struct kset		*queues_kset;
#endif
	unsigned int		promiscuity;
	unsigned int		allmulti;


	/* Protocol specific pointers */

#if IS_ENABLED(CONFIG_VLAN_8021Q)
	struct vlan_info __rcu	*vlan_info;
#endif
#if IS_ENABLED(CONFIG_NET_DSA)
	struct dsa_switch_tree	*dsa_ptr;
#endif
#if IS_ENABLED(CONFIG_TIPC)
	struct tipc_bearer __rcu *tipc_ptr;
#endif
	void 			*atalk_ptr;
	struct in_device __rcu	*ip_ptr;
	struct dn_dev __rcu     *dn_ptr;
	struct inet6_dev __rcu	*ip6_ptr;
	void			*ax25_ptr;
	struct wireless_dev	*ieee80211_ptr;
	struct wpan_dev		*ieee802154_ptr;
#if IS_ENABLED(CONFIG_MPLS_ROUTING)
	struct mpls_dev __rcu	*mpls_ptr;
#endif

/*
 * Cache lines mostly used on receive path (including eth_type_trans())
 */
	unsigned long		last_rx;

	/* Interface address info used in eth_type_trans() */
	unsigned char		*dev_addr;


#ifdef CONFIG_SYSFS
	struct netdev_rx_queue	*_rx;

	unsigned int		num_rx_queues;
	unsigned int		real_num_rx_queues;

#endif

	unsigned long		gro_flush_timeout;
	rx_handler_func_t __rcu	*rx_handler;
	void __rcu		*rx_handler_data;

	struct netdev_queue __rcu *ingress_queue;
	unsigned char		broadcast[MAX_ADDR_LEN];
#ifdef CONFIG_RFS_ACCEL
	struct cpu_rmap		*rx_cpu_rmap;
#endif
	struct hlist_node	index_hlist;

/*
 * Cache lines mostly used on transmit path
 */
	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
	unsigned int		num_tx_queues;
	unsigned int		real_num_tx_queues;
	struct Qdisc		*qdisc;
	unsigned long		tx_queue_len;
	spinlock_t		tx_global_lock;
	int			watchdog_timeo;

#ifdef CONFIG_XPS
	struct xps_dev_maps __rcu *xps_maps;
#endif

	/* These may be needed for future network-power-down code. */

	/*
	 * trans_start here is expensive for high speed devices on SMP,
	 * please use netdev_queue->trans_start instead.
	 */
	unsigned long		trans_start;

	struct timer_list	watchdog_timer;

	int __percpu		*pcpu_refcnt;
	struct list_head	todo_list;

	struct list_head	link_watch_list;

	enum { NETREG_UNINITIALIZED=0,
	       NETREG_REGISTERED,	/* completed register_netdevice */
	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
	       NETREG_UNREGISTERED,	/* completed unregister todo */
	       NETREG_RELEASED,		/* called free_netdev */
	       NETREG_DUMMY,		/* dummy device for NAPI poll */
	} reg_state:8;

	bool dismantle;

	enum {
		RTNL_LINK_INITIALIZED,
		RTNL_LINK_INITIALIZING,
	} rtnl_link_state:16;

	void (*destructor)(struct net_device *dev);

#ifdef CONFIG_NETPOLL
	struct netpoll_info __rcu	*npinfo;
#endif

	possible_net_t			nd_net;

	/* mid-layer private */
	union {
		void					*ml_priv;
		struct pcpu_lstats __percpu		*lstats;
		struct pcpu_sw_netstats __percpu	*tstats;
		struct pcpu_dstats __percpu		*dstats;
		struct pcpu_vstats __percpu		*vstats;
	};

	struct garp_port __rcu	*garp_port;
	struct mrp_port __rcu	*mrp_port;

	struct device	dev;
	const struct attribute_group *sysfs_groups[4];
	const struct attribute_group *sysfs_rx_queue_group;

	const struct rtnl_link_ops *rtnl_link_ops;

	/* for setting kernel sock attribute on TCP connection setup */
#define GSO_MAX_SIZE		65536
	unsigned int		gso_max_size;
#define GSO_MAX_SEGS		65535
	u16			gso_max_segs;
	u16			gso_min_segs;
#ifdef CONFIG_DCB
	const struct dcbnl_rtnl_ops *dcbnl_ops;
#endif
	u8 num_tc;
	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
	u8 prio_tc_map[TC_BITMASK + 1];

#if IS_ENABLED(CONFIG_FCOE)
	unsigned int		fcoe_ddp_xid;
#endif
#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
	struct netprio_map __rcu *priomap;
#endif
	struct phy_device *phydev;
	struct lock_class_key *qdisc_tx_busylock;
};

2、网络操作集

/*
 * This structure defines the management hooks for network devices.
 * The following hooks can be defined; unless noted otherwise, they are
 * optional and can be filled with a null pointer.
 *
 * int (*ndo_init)(struct net_device *dev);
 *     This function is called once when network device is registered.
 *     The network device can use this to any late stage initializaton
 *     or semantic validattion. It can fail with an error code which will
 *     be propogated back to register_netdev
 *
 * void (*ndo_uninit)(struct net_device *dev);
 *     This function is called when device is unregistered or when registration
 *     fails. It is not called if init fails.
 *
 * int (*ndo_open)(struct net_device *dev);
 *     This function is called when network device transistions to the up
 *     state.
 *
 * int (*ndo_stop)(struct net_device *dev);
 *     This function is called when network device transistions to the down
 *     state.
 *
 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
 *                               struct net_device *dev);
 *	Called when a packet needs to be transmitted.
 *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
 *	the queue before that can happen; it's for obsolete devices and weird
 *	corner cases, but the stack really does a non-trivial amount
 *	of useless work if you return NETDEV_TX_BUSY.
 *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
 *	Required can not be NULL.
 *
 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
 *                         void *accel_priv, select_queue_fallback_t fallback);
 *	Called to decide which queue to when device supports multiple
 *	transmit queues.
 *
 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
 *	This function is called to allow device receiver to make
 *	changes to configuration when multicast or promiscious is enabled.
 *
 * void (*ndo_set_rx_mode)(struct net_device *dev);
 *	This function is called device changes address list filtering.
 *	If driver handles unicast address filtering, it should set
 *	IFF_UNICAST_FLT to its priv_flags.
 *
 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
 *	This function  is called when the Media Access Control address
 *	needs to be changed. If this interface is not defined, the
 *	mac address can not be changed.
 *
 * int (*ndo_validate_addr)(struct net_device *dev);
 *	Test if Media Access Control address is valid for the device.
 *
 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
 *	Called when a user request an ioctl which can't be handled by
 *	the generic interface code. If not defined ioctl's return
 *	not supported error code.
 *
 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
 *	Used to set network devices bus interface parameters. This interface
 *	is retained for legacy reason, new devices should use the bus
 *	interface (PCI) for low level management.
 *
 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
 *	Called when a user wants to change the Maximum Transfer Unit
 *	of a device. If not defined, any request to change MTU will
 *	will return an error.
 *
 * void (*ndo_tx_timeout)(struct net_device *dev);
 *	Callback uses when the transmitter has not made any progress
 *	for dev->watchdog ticks.
 *
 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
 *                      struct rtnl_link_stats64 *storage);
 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
 *	Called when a user wants to get the network device usage
 *	statistics. Drivers must do one of the following:
 *	1. Define @ndo_get_stats64 to fill in a zero-initialised
 *	   rtnl_link_stats64 structure passed by the caller.
 *	2. Define @ndo_get_stats to update a net_device_stats structure
 *	   (which should normally be dev->stats) and return a pointer to
 *	   it. The structure may be changed asynchronously only if each
 *	   field is written atomically.
 *	3. Update dev->stats asynchronously and atomically, and define
 *	   neither operation.
 *
 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
 *	If device support VLAN filtering this function is called when a
 *	VLAN id is registered.
 *
 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
 *	If device support VLAN filtering this function is called when a
 *	VLAN id is unregistered.
 *
 * void (*ndo_poll_controller)(struct net_device *dev);
 *
 *	SR-IOV management functions.
 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
 *			  int max_tx_rate);
 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
 * int (*ndo_get_vf_config)(struct net_device *dev,
 *			    int vf, struct ifla_vf_info *ivf);
 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
 *			  struct nlattr *port[]);
 *
 *      Enable or disable the VF ability to query its RSS Redirection Table and
 *      Hash Key. This is needed since on some devices VF share this information
 *      with PF and querying it may adduce a theoretical security risk.
 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
 * 	Called to setup 'tc' number of traffic classes in the net device. This
 * 	is always called from the stack with the rtnl lock held and netif tx
 * 	queues stopped. This allows the netdevice to perform queue management
 * 	safely.
 *
 *	Fiber Channel over Ethernet (FCoE) offload functions.
 * int (*ndo_fcoe_enable)(struct net_device *dev);
 *	Called when the FCoE protocol stack wants to start using LLD for FCoE
 *	so the underlying device can perform whatever needed configuration or
 *	initialization to support acceleration of FCoE traffic.
 *
 * int (*ndo_fcoe_disable)(struct net_device *dev);
 *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
 *	so the underlying device can perform whatever needed clean-ups to
 *	stop supporting acceleration of FCoE traffic.
 *
 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
 *			     struct scatterlist *sgl, unsigned int sgc);
 *	Called when the FCoE Initiator wants to initialize an I/O that
 *	is a possible candidate for Direct Data Placement (DDP). The LLD can
 *	perform necessary setup and returns 1 to indicate the device is set up
 *	successfully to perform DDP on this I/O, otherwise this returns 0.
 *
 * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
 *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
 *	indicated by the FC exchange id 'xid', so the underlying device can
 *	clean up and reuse resources for later DDP requests.
 *
 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
 *			      struct scatterlist *sgl, unsigned int sgc);
 *	Called when the FCoE Target wants to initialize an I/O that
 *	is a possible candidate for Direct Data Placement (DDP). The LLD can
 *	perform necessary setup and returns 1 to indicate the device is set up
 *	successfully to perform DDP on this I/O, otherwise this returns 0.
 *
 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
 *			       struct netdev_fcoe_hbainfo *hbainfo);
 *	Called when the FCoE Protocol stack wants information on the underlying
 *	device. This information is utilized by the FCoE protocol stack to
 *	register attributes with Fiber Channel management service as per the
 *	FC-GS Fabric Device Management Information(FDMI) specification.
 *
 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
 *	Called when the underlying device wants to override default World Wide
 *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
 *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
 *	protocol stack to use.
 *
 *	RFS acceleration.
 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
 *			    u16 rxq_index, u32 flow_id);
 *	Set hardware filter for RFS.  rxq_index is the target queue index;
 *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
 *	Return the filter ID on success, or a negative error code.
 *
 *	Slave management functions (for bridge, bonding, etc).
 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
 *	Called to make another netdev an underling.
 *
 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
 *	Called to release previously enslaved netdev.
 *
 *      Feature/offload setting functions.
 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
 *		netdev_features_t features);
 *	Adjusts the requested feature flags according to device-specific
 *	constraints, and returns the resulting flags. Must not modify
 *	the device state.
 *
 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
 *	Called to update device configuration to new features. Passed
 *	feature set might be less than what was returned by ndo_fix_features()).
 *	Must return >0 or -errno if it changed dev->features itself.
 *
 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
 *		      struct net_device *dev,
 *		      const unsigned char *addr, u16 vid, u16 flags)
 *	Adds an FDB entry to dev for addr.
 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
 *		      struct net_device *dev,
 *		      const unsigned char *addr, u16 vid)
 *	Deletes the FDB entry from dev coresponding to addr.
 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
 *		       struct net_device *dev, struct net_device *filter_dev,
 *		       int idx)
 *	Used to add FDB entries to dump requests. Implementers should add
 *	entries to skb and update idx with the number of entries.
 *
 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
 *			     u16 flags)
 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
 *			     struct net_device *dev, u32 filter_mask,
 *			     int nlflags)
 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
 *			     u16 flags);
 *
 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
 *	Called to change device carrier. Soft-devices (like dummy, team, etc)
 *	which do not represent real hardware may define this to allow their
 *	userspace components to manage their virtual carrier state. Devices
 *	that determine carrier state from physical hardware properties (eg
 *	network cables) or protocol-dependent mechanisms (eg
 *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
 *
 * int (*ndo_get_phys_port_id)(struct net_device *dev,
 *			       struct netdev_phys_item_id *ppid);
 *	Called to get ID of physical port of this device. If driver does
 *	not implement this, it is assumed that the hw is not able to have
 *	multiple net devices on single physical port.
 *
 * void (*ndo_add_vxlan_port)(struct  net_device *dev,
 *			      sa_family_t sa_family, __be16 port);
 *	Called by vxlan to notiy a driver about the UDP port and socket
 *	address family that vxlan is listnening to. It is called only when
 *	a new port starts listening. The operation is protected by the
 *	vxlan_net->sock_lock.
 *
 * void (*ndo_del_vxlan_port)(struct  net_device *dev,
 *			      sa_family_t sa_family, __be16 port);
 *	Called by vxlan to notify the driver about a UDP port and socket
 *	address family that vxlan is not listening to anymore. The operation
 *	is protected by the vxlan_net->sock_lock.
 *
 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
 *				 struct net_device *dev)
 *	Called by upper layer devices to accelerate switching or other
 *	station functionality into hardware. 'pdev is the lowerdev
 *	to use for the offload and 'dev' is the net device that will
 *	back the offload. Returns a pointer to the private structure
 *	the upper layer will maintain.
 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
 *	Called by upper layer device to delete the station created
 *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
 *	the station and priv is the structure returned by the add
 *	operation.
 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
 *				      struct net_device *dev,
 *				      void *priv);
 *	Callback to use for xmit over the accelerated station. This
 *	is used in place of ndo_start_xmit on accelerated net
 *	devices.
 * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
 *					    struct net_device *dev
 *					    netdev_features_t features);
 *	Called by core transmit path to determine if device is capable of
 *	performing offload operations on a given packet. This is to give
 *	the device an opportunity to implement any restrictions that cannot
 *	be otherwise expressed by feature flags. The check is called with
 *	the set of features that the stack has calculated and it returns
 *	those the driver believes to be appropriate.
 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
 *			     int queue_index, u32 maxrate);
 *	Called when a user wants to set a max-rate limitation of specific
 *	TX queue.
 * int (*ndo_get_iflink)(const struct net_device *dev);
 *	Called to get the iflink value of this device.
 */
struct net_device_ops {
	int			(*ndo_init)(struct net_device *dev);
	void			(*ndo_uninit)(struct net_device *dev);
	int			(*ndo_open)(struct net_device *dev);
	int			(*ndo_stop)(struct net_device *dev);
	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
						   struct net_device *dev);
	u16			(*ndo_select_queue)(struct net_device *dev,
						    struct sk_buff *skb,
						    void *accel_priv,
						    select_queue_fallback_t fallback);
	void			(*ndo_change_rx_flags)(struct net_device *dev,
						       int flags);
	void			(*ndo_set_rx_mode)(struct net_device *dev);
	int			(*ndo_set_mac_address)(struct net_device *dev,
						       void *addr);
	int			(*ndo_validate_addr)(struct net_device *dev);
	int			(*ndo_do_ioctl)(struct net_device *dev,
					        struct ifreq *ifr, int cmd);
	int			(*ndo_set_config)(struct net_device *dev,
					          struct ifmap *map);
	int			(*ndo_change_mtu)(struct net_device *dev,
						  int new_mtu);
	int			(*ndo_neigh_setup)(struct net_device *dev,
						   struct neigh_parms *);
	void			(*ndo_tx_timeout) (struct net_device *dev);

	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
						     struct rtnl_link_stats64 *storage);
	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);

	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
						       __be16 proto, u16 vid);
	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
						        __be16 proto, u16 vid);
#ifdef CONFIG_NET_POLL_CONTROLLER
	void                    (*ndo_poll_controller)(struct net_device *dev);
	int			(*ndo_netpoll_setup)(struct net_device *dev,
						     struct netpoll_info *info);
	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
#endif
#ifdef CONFIG_NET_RX_BUSY_POLL
	int			(*ndo_busy_poll)(struct napi_struct *dev);
#endif
	int			(*ndo_set_vf_mac)(struct net_device *dev,
						  int queue, u8 *mac);
	int			(*ndo_set_vf_vlan)(struct net_device *dev,
						   int queue, u16 vlan, u8 qos);
	int			(*ndo_set_vf_rate)(struct net_device *dev,
						   int vf, int min_tx_rate,
						   int max_tx_rate);
	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
						       int vf, bool setting);
	int			(*ndo_get_vf_config)(struct net_device *dev,
						     int vf,
						     struct ifla_vf_info *ivf);
	int			(*ndo_set_vf_link_state)(struct net_device *dev,
							 int vf, int link_state);
	int			(*ndo_set_vf_port)(struct net_device *dev,
						   int vf,
						   struct nlattr *port[]);
	int			(*ndo_get_vf_port)(struct net_device *dev,
						   int vf, struct sk_buff *skb);
	int			(*ndo_set_vf_rss_query_en)(
						   struct net_device *dev,
						   int vf, bool setting);
	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
#if IS_ENABLED(CONFIG_FCOE)
	int			(*ndo_fcoe_enable)(struct net_device *dev);
	int			(*ndo_fcoe_disable)(struct net_device *dev);
	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
						      u16 xid,
						      struct scatterlist *sgl,
						      unsigned int sgc);
	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
						     u16 xid);
	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
						       u16 xid,
						       struct scatterlist *sgl,
						       unsigned int sgc);
	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
							struct netdev_fcoe_hbainfo *hbainfo);
#endif

#if IS_ENABLED(CONFIG_LIBFCOE)
#define NETDEV_FCOE_WWNN 0
#define NETDEV_FCOE_WWPN 1
	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
						    u64 *wwn, int type);
#endif

#ifdef CONFIG_RFS_ACCEL
	int			(*ndo_rx_flow_steer)(struct net_device *dev,
						     const struct sk_buff *skb,
						     u16 rxq_index,
						     u32 flow_id);
#endif
	int			(*ndo_add_slave)(struct net_device *dev,
						 struct net_device *slave_dev);
	int			(*ndo_del_slave)(struct net_device *dev,
						 struct net_device *slave_dev);
	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
						    netdev_features_t features);
	int			(*ndo_set_features)(struct net_device *dev,
						    netdev_features_t features);
	int			(*ndo_neigh_construct)(struct neighbour *n);
	void			(*ndo_neigh_destroy)(struct neighbour *n);

	int			(*ndo_fdb_add)(struct ndmsg *ndm,
					       struct nlattr *tb[],
					       struct net_device *dev,
					       const unsigned char *addr,
					       u16 vid,
					       u16 flags);
	int			(*ndo_fdb_del)(struct ndmsg *ndm,
					       struct nlattr *tb[],
					       struct net_device *dev,
					       const unsigned char *addr,
					       u16 vid);
	int			(*ndo_fdb_dump)(struct sk_buff *skb,
						struct netlink_callback *cb,
						struct net_device *dev,
						struct net_device *filter_dev,
						int idx);

	int			(*ndo_bridge_setlink)(struct net_device *dev,
						      struct nlmsghdr *nlh,
						      u16 flags);
	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
						      u32 pid, u32 seq,
						      struct net_device *dev,
						      u32 filter_mask,
						      int nlflags);
	int			(*ndo_bridge_dellink)(struct net_device *dev,
						      struct nlmsghdr *nlh,
						      u16 flags);
	int			(*ndo_change_carrier)(struct net_device *dev,
						      bool new_carrier);
	int			(*ndo_get_phys_port_id)(struct net_device *dev,
							struct netdev_phys_item_id *ppid);
	int			(*ndo_get_phys_port_name)(struct net_device *dev,
							  char *name, size_t len);
	void			(*ndo_add_vxlan_port)(struct  net_device *dev,
						      sa_family_t sa_family,
						      __be16 port);
	void			(*ndo_del_vxlan_port)(struct  net_device *dev,
						      sa_family_t sa_family,
						      __be16 port);

	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
							struct net_device *dev);
	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
							void *priv);

	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
							struct net_device *dev,
							void *priv);
	int			(*ndo_get_lock_subclass)(struct net_device *dev);
	netdev_features_t	(*ndo_features_check) (struct sk_buff *skb,
						       struct net_device *dev,
						       netdev_features_t features);
	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
						      int queue_index,
						      u32 maxrate);
	int			(*ndo_get_iflink)(const struct net_device *dev);
};

3、信息的载体

/** 
 *	struct sk_buff - socket buffer
 *	@next: Next buffer in list
 *	@prev: Previous buffer in list
 *	@tstamp: Time we arrived/left
 *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
 *	@sk: Socket we are owned by
 *	@dev: Device we arrived on/are leaving by
 *	@cb: Control buffer. Free for use by every layer. Put private vars here
 *	@_skb_refdst: destination entry (with norefcount bit)
 *	@sp: the security path, used for xfrm
 *	@len: Length of actual data
 *	@data_len: Data length
 *	@mac_len: Length of link layer header
 *	@hdr_len: writable header length of cloned skb
 *	@csum: Checksum (must include start/offset pair)
 *	@csum_start: Offset from skb->head where checksumming should start
 *	@csum_offset: Offset from csum_start where checksum should be stored
 *	@priority: Packet queueing priority
 *	@ignore_df: allow local fragmentation
 *	@cloned: Head may be cloned (check refcnt to be sure)
 *	@ip_summed: Driver fed us an IP checksum
 *	@nohdr: Payload reference only, must not modify header
 *	@nfctinfo: Relationship of this skb to the connection
 *	@pkt_type: Packet class
 *	@fclone: skbuff clone status
 *	@ipvs_property: skbuff is owned by ipvs
 *	@peeked: this packet has been seen already, so stats have been
 *		done for it, don't do them again
 *	@nf_trace: netfilter packet trace flag
 *	@protocol: Packet protocol from driver
 *	@destructor: Destruct function
 *	@nfct: Associated connection, if any
 *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
 *	@skb_iif: ifindex of device we arrived on
 *	@tc_index: Traffic control index
 *	@tc_verd: traffic control verdict
 *	@hash: the packet hash
 *	@queue_mapping: Queue mapping for multiqueue devices
 *	@xmit_more: More SKBs are pending for this queue
 *	@ndisc_nodetype: router type (from link layer)
 *	@ooo_okay: allow the mapping of a socket to a queue to be changed
 *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
 *		ports.
 *	@sw_hash: indicates hash was computed in software stack
 *	@wifi_acked_valid: wifi_acked was set
 *	@wifi_acked: whether frame was acked on wifi or not
 *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
  *	@napi_id: id of the NAPI struct this skb came from
 *	@secmark: security marking
 *	@mark: Generic packet mark
 *	@vlan_proto: vlan encapsulation protocol
 *	@vlan_tci: vlan tag control information
 *	@inner_protocol: Protocol (encapsulation)
 *	@inner_transport_header: Inner transport layer header (encapsulation)
 *	@inner_network_header: Network layer header (encapsulation)
 *	@inner_mac_header: Link layer header (encapsulation)
 *	@transport_header: Transport layer header
 *	@network_header: Network layer header
 *	@mac_header: Link layer header
 *	@tail: Tail pointer
 *	@end: End pointer
 *	@head: Head of buffer
 *	@data: Data head pointer
 *	@truesize: Buffer size
 *	@users: User count - see {datagram,tcp}.c
 */

struct sk_buff {
	union {
		struct {
			/* These two members must be first. */
			struct sk_buff		*next;
			struct sk_buff		*prev;

			union {
				ktime_t		tstamp;
				struct skb_mstamp skb_mstamp;
			};
		};
		struct rb_node	rbnode; /* used in netem & tcp stack */
	};
	struct sock		*sk;
	struct net_device	*dev;

	/*
	 * This is the control buffer. It is free to use for every
	 * layer. Please put your private variables there. If you
	 * want to keep them across layers you have to do a skb_clone()
	 * first. This is owned by whoever has the skb queued ATM.
	 */
	char			cb[48] __aligned(8);

	unsigned long		_skb_refdst;
	void			(*destructor)(struct sk_buff *skb);
#ifdef CONFIG_XFRM
	struct	sec_path	*sp;
#endif
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
	struct nf_conntrack	*nfct;
#endif
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
	struct nf_bridge_info	*nf_bridge;
#endif
	unsigned int		len,
				data_len;
	__u16			mac_len,
				hdr_len;

	/* Following fields are _not_ copied in __copy_skb_header()
	 * Note that queue_mapping is here mostly to fill a hole.
	 */
	kmemcheck_bitfield_begin(flags1);
	__u16			queue_mapping;
	__u8			cloned:1,
				nohdr:1,
				fclone:2,
				peeked:1,
				head_frag:1,
				xmit_more:1;
	/* one bit hole */
	kmemcheck_bitfield_end(flags1);

	/* fields enclosed in headers_start/headers_end are copied
	 * using a single memcpy() in __copy_skb_header()
	 */
	/* private: */
	__u32			headers_start[0];
	/* public: */

/* if you move pkt_type around you also must adapt those constants */
#ifdef __BIG_ENDIAN_BITFIELD
#define PKT_TYPE_MAX	(7 << 5)
#else
#define PKT_TYPE_MAX	7
#endif
#define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)

	__u8			__pkt_type_offset[0];
	__u8			pkt_type:3;
	__u8			pfmemalloc:1;
	__u8			ignore_df:1;
	__u8			nfctinfo:3;

	__u8			nf_trace:1;
	__u8			ip_summed:2;
	__u8			ooo_okay:1;
	__u8			l4_hash:1;
	__u8			sw_hash:1;
	__u8			wifi_acked_valid:1;
	__u8			wifi_acked:1;

	__u8			no_fcs:1;
	/* Indicates the inner headers are valid in the skbuff. */
	__u8			encapsulation:1;
	__u8			encap_hdr_csum:1;
	__u8			csum_valid:1;
	__u8			csum_complete_sw:1;
	__u8			csum_level:2;
	__u8			csum_bad:1;

#ifdef CONFIG_IPV6_NDISC_NODETYPE
	__u8			ndisc_nodetype:2;
#endif
	__u8			ipvs_property:1;
	__u8			inner_protocol_type:1;
	__u8			remcsum_offload:1;
	/* 3 or 5 bit hole */

#ifdef CONFIG_NET_SCHED
	__u16			tc_index;	/* traffic control index */
#ifdef CONFIG_NET_CLS_ACT
	__u16			tc_verd;	/* traffic control verdict */
#endif
#endif

	union {
		__wsum		csum;
		struct {
			__u16	csum_start;
			__u16	csum_offset;
		};
	};
	__u32			priority;
	int			skb_iif;
	__u32			hash;
	__be16			vlan_proto;
	__u16			vlan_tci;
#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
	union {
		unsigned int	napi_id;
		unsigned int	sender_cpu;
	};
#endif
#ifdef CONFIG_NETWORK_SECMARK
	__u32			secmark;
#endif
	union {
		__u32		mark;
		__u32		reserved_tailroom;
	};

	union {
		__be16		inner_protocol;
		__u8		inner_ipproto;
	};

	__u16			inner_transport_header;
	__u16			inner_network_header;
	__u16			inner_mac_header;

	__be16			protocol;
	__u16			transport_header;
	__u16			network_header;
	__u16			mac_header;

	/* private: */
	__u32			headers_end[0];
	/* public: */

	/* These elements must be at the end, see alloc_skb() for details.  */
	sk_buff_data_t		tail;
	sk_buff_data_t		end;
	unsigned char		*head,
				*data;
	unsigned int		truesize;
	atomic_t		users;
};

七、NAPI 处理机制

Linux网络协议栈:NAPI机制与处理流程分析(图解)_rtoax的博客-CSDN博客_netif_napi_add

八、imx6ull 网络设备树说明

参考:Documentation/devicetree/bindings/net/fsl-fec.txt

九、imx6ull 网络驱动

源码见:drivers\net\ethernet\freescale\fec_main.c

十、通用 PHY 驱动

源码见:drivers\net\phy\phy_device.c

十一、LAN8720A 驱动

源码见:drivers\net\phy\smsc.c

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/60694.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SVN项目,提交Git保留之前提交记录

&#x1f4c3;目录跳转简介&#xff1a;1.创建文件2.命令下载:3.上传到远程git3.1 创建远程git工程3.2 添加一个新的远程 Git 仓库3.3 拉取远程master的数据合并3.3 推送远程git分支简介&#xff1a; 由于之前直接搞的项目是部署在自己搭建的SVN服务器上&#xff0c;平时创建的…

5. JVM调优工具详解及调优实战(这里有我的实战案例预制构件生产管理平台)

1. Jmap&#xff0c;Jstack&#xff0c;Jinfo命令详解 1.1 Jmap 此命令可以用来查看内存信息&#xff0c;实例个数以及占用内存大小 jps 先查看有哪些java程序 jmap -histo 16492 > ./log.txt jmap -heap 16492 查看堆的信息 查看堆年轻代老年代的使用情况 堆内存dum…

Matlab:tftb-0.2时频工具箱安装小记

Matlab&#xff1a;tftb-0.2时频工具箱安装小记一、安装过程记录1、解压缩&#xff1a;2、将解压缩后的文件夹复制到自己的Matlab安装目录工具箱下&#xff1b;3、打开Matlab设置路径&#xff1a;设置路径4、测试是否安装成功&#xff1a;5、小试牛刀叮嘟&#xff01;这里是小啊…

【ASE+python学习】-批量识别石墨烯团簇结构中的吡啶氮,并删除与其相连的氢

批量识别石墨烯团簇结构中的吡啶氮&#xff0c;并删除与其相连的氢文章背景任务内容程序实现思路实现代码建立标准结构中边缘碳与氢的位置差值标准数据集读入待修改结构&#xff0c;识别氮与氢位置差值是否存在标准数据集代码细节剖析文章背景 在科研工作中&#xff0c;我的工…

STM32系列(HAL库)——串口IAP

前言 IAP&#xff08;In Application Programming&#xff09;即在应用编程&#xff0c;IAP 是用户自己的程序在运行过程中对 User Flash 的部分区域进行烧写&#xff0c;目的是为了在产品发布后可以方便地通过预留的通信口对产 品中的固件程序进行更新升级。 设备具备IAP功能…

javaScript学习———变量概述 变量的使用 变量语法扩展 变量命名规范交换 变量案例

博主每篇博文的浪漫主义&#xff1a; 【东京girl秀场上那些甜度爆表的女孩子们。&#x1f496;】 https://www.bilibili.com/video/BV1pG411F7KT/?share_sourcecopy_web&vd_source385ba0043075be7c24c4aeb4aaa73352 东京girl秀场上那些甜度爆表的女孩子们。&#x1f496;…

计算机组成原理--------12.4---------开始

计算机硬件的基本组成 冯诺依曼计算机的特点 冯诺依曼首次提出“存储程序”概念 计算机由五大部件组成&#xff1a;I/O设备&#xff08;输入输出&#xff09;&#xff0c;存储器&#xff08;存放数据和程序&#xff09;&#xff0c;运算器&#xff08;算术运算、逻辑运算&…

[附源码]JAVA毕业设计科研项目审批管理系统(系统+LW)

[附源码]JAVA毕业设计科研项目审批管理系统&#xff08;系统LW&#xff09; 目运行 环境项配置&#xff1a; Jdk1.8 Tomcat8.5 Mysql HBuilderX&#xff08;Webstorm也行&#xff09; Eclispe&#xff08;IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持&#xff09;。 项目…

关于解释型语言和编译性语言的区别

关于博主每篇博文的浪漫主义 【初恋是整遍《手写的从前》】 https://www.bilibili.com/video/BV1JP411g7qF/?share_sourcecopy_web&vd_source385ba0043075be7c24c4aeb4aaa73352 初恋是整遍《手写的从前》能够知道解释性语言和编译型语言的特点能够知道标识符不能是关键字…

docker_重装mysql

1.docker ps 查看docker正在运行的容器 2.docker stop xxx 停止正在运行的mysql 3.docker pull mysql:5.7 docker拉取mysql指定版本的镜像 docker pull mysql docker拉取最新版本的镜像 4.docker run -itd --name mysql-test -p 3306:3306 -e MYSQL_ROOT_PASSWORD123456 mysql:…

PHP代码审计系列(一)

PHP代码审计系列&#xff08;一&#xff09; 本系列将收集多个PHP代码安全审计项目从易到难&#xff0c;并加入个人详细的源码解读。此系列将进行持续更新。 extract变量覆盖 源码如下 <?php$flagextractFlag.txt; extract($_GET);if(isset($shiyan)){ $contenttrim(f…

YOLO算法创新改进系列(项目汇总)

&#x1f680;&#x1f680;&#x1f680;——YOLO算法创新改进系列项目汇总——&#x1f384;&#x1f384;&#x1f384; &#x1f680; YOLO算法创新改进系列 &#xff08;项目汇总&#xff09;&#x1f384;&#x1f388; &#x1f340; 改进YOLOv5/YOLOv7——魔改YOLOv5/Y…

文件操作及IO

目录 一、文件的分类 二、文件路径 三、File 常见方法 1、get 相关方法使用 2、文件的创建和删除 3、遍历目录下所有文件 四、文件读写 一、文件的分类 站在程序员的角度&#xff0c;文件通常可以分为两类&#xff1a; 文本文件&#xff1a;以字符形式存储二进制文件&…

Java基于SSM的海淘商城系统

随着计算机网络的普及,电子商务的兴起,网络支付以及网络安全体系逐渐完善,人们的生活进入了网络时代,越来越多的人习惯于乐于网上购物,只需上网轻轻点击鼠标便能够买到心仪商品。 本系统主要是针对广大网络消费者而开发的,专为网络消费者打造,建设一个”全球购”海淘商城系统。…

Redis学习笔记(五)

主从复制 单机redis的风险和问题 机器故障&#xff1a;硬盘故障、系统崩溃容量瓶颈&#xff1a;内存不足&#xff0c;无限升级内存结论&#xff1a;为了避免单点redis服务器故障&#xff0c;准备多台服务器互相连通&#xff0c;将数据复制多个副本保存在不同的服务器上&#xf…

Vue 官方文档2.x教程学习笔记 1 基础 1.5 计算属性和侦听器 1.5.2 侦听器

Vue 官方文档2.x教程学习笔记 文章目录Vue 官方文档2.x教程学习笔记1 基础1.5 计算属性和侦听器1.5.2 侦听器1 基础 1.5 计算属性和侦听器 1.5.2 侦听器 虽然计算属性在大多数情况下更合适&#xff0c;但有时也需要一个自定义的侦听器。 这就是为什么 Vue 通过 watch 选项提…

图像处理:模糊图像判断

目录 上期回顾 采用Laplace算子的原因 实现的效果 图片素材 代码的展示与讲解 效果展示 项目资源 上期回顾 上一次的图像清晰度评价没有成功&#xff0c;主要的原因是那几张图像清晰度评价函数都实际都采用了梯度求解&#xff0c;不同的场景灰度的明暗不同&#xff0c;…

数据结构栈的实现

目录栈的概念栈的结构声明初始化数据入栈出栈判断栈是否为空取栈顶的值销毁栈栈的概念 栈是一种线性表&#xff0c;插入数据的一端叫栈顶&#xff0c;另一端叫栈底。 入栈&#xff1a;数据从栈顶进入栈中 出栈&#xff1a;数据从栈顶删除 所以&#xff0c;栈的特点就是先进后出…

Spark - OnYARN 模式搭建,并使用 Scala、Java、Python 三种语言测试

一、SparkOnYarn搭建 安装前需要提前安装好 hadoop 环境&#xff0c;关于 HDFS 和 Yarn 集群的搭建可以参考下面我的博客&#xff1a; https://blog.csdn.net/qq_43692950/article/details/127158935 下面是我 Hadoop 的安装结构 主机规划设置主机名角色192.168.40.172node1N…

1. STL六大组件

0. 介绍 STL提供六大组件&#xff0c;它们之间可以彼此套用&#xff0c;如下图所示&#xff1a; 容器&#xff08;containers&#xff09;&#xff1a;用于存放数据&#xff1b; 算法&#xff08;algorithms&#xff09;&#xff1a;包含各种常用算法&#xff1b; 迭代器&…