- 我的环境:
训练自己的数据集
- 一、准备自己的数据集
- 1. 编写split_train_val.py文件
- 2.生成训练文件索引文件
- 二、创建训练yaml文件
- 三、开始训练
一、准备自己的数据集
数据集来源:kaggle水果检测
- 目录结构如下:
1. 编写split_train_val.py文件
# 划分train、test、val文件
import os
import random
import argparse
parser = argparse.ArgumentParser()
# xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default='annotations', type=str, help='input txt label path')
# 数据集的划分,地址选择自己数据下的ImageSets/Main
parser.add_argument('--txt_path', default='ImageSets/Main', type=str, help='output txt label path')
opt = parser.parse_args()
trainval_percent = 1
train_percent = 0.9
xmlfilepath = opt.xml_path
txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)
if not os.path.exists(txtsavepath):
os.makedirs(txtsavepath)
num = len(total_xml)
list_index = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list_index, tv)
train = random.sample(trainval, tr)
file_trainval = open(txtsavepath + '/trainval.txt', 'w')
file_test = open(txtsavepath + '/test.txt', 'w')
file_train = open(txtsavepath + '/train.txt', 'w')
file_val = open(txtsavepath + '/val.txt', 'w')
for i in list_index:
name = total_xml[i][:-4] + '\n'
if i in trainval:
file_trainval.write(name)
if i in train:
file_train.write(name)
else:
file_val.write(name)
else:
file_test.write(name)
file_trainval.close()
file_train.close()
file_val.close()
file_test.close()
这个文件的作用主要是划分训练以及验证集的文件名
- 执行之后会生成如下文件:
- 文件中是具体训练和验证的文件名:
2.生成训练文件索引文件
- 主要依靠voc_label.py,代码如下:
import xml.etree.ElementTree as ET
import os
from os import getcwd
sets = ['train', 'val', 'test']
classes = ["banana", "snake fruit", "dragon fruit", "pineapple"] # 改成自己的类别
abs_path = os.getcwd()
print(abs_path)
def convert(size, box):
dw = 1. / (size[0])
dh = 1. / (size[1])
x = (box[0] + box[1]) / 2.0 - 1
y = (box[2] + box[3]) / 2.0 - 1
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return x, y, w, h
def convert_annotation(image_id):
in_file = open('./annotations/%s.xml' % (image_id), encoding='UTF-8')
out_file = open('./labels/%s.txt' % (image_id), 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
b1, b2, b3, b4 = b
# 标注越界修正
if b2 > w:
b2 = w
if b4 > h:
b4 = h
b = (b1, b2, b3, b4)
bb = convert((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
for image_set in sets:
if not os.path.exists('labels/'):
os.makedirs('labels/')
image_ids = open('./ImageSets/Main/%s.txt' % (image_set)).read().strip().split()
list_file = open('./%s.txt' % (image_set),'w')
for image_id in image_ids:
list_file.write(abs_path + '/images/%s.png\n' % (image_id))
convert_annotation(image_id)
list_file.close()
- 执行之后,会生成如下文件:
- 文件具体内容如下:
二、创建训练yaml文件
train: ./paper_data/train.txt
val: ./paper_data/val.txt
nc: 4
names: ["banana", "snake fruit", "dragon fruit", "pineapple"]
三、开始训练
python train.py --img 900 --batch 2 --epoch 100 --data data/test.yaml --cfg models/yolov5s.yaml --weights yolov5s.pt
- 训练过程:
- 训练结果如下:
labels:
- predict:
总结:
这周学会了如何使用yolov5训练自己的数据集,再进一步可以考虑修改模型!
注:近期在忙着写小论文,很多需要复习的点先堆积着😿