DORIS----漏斗转化分析案例实现

news2024/11/26 4:48:51

综合案例之漏斗转化分析

业务目标、到达路径,路径步骤、步骤人数,步骤之间的相对转换率和绝对转换率
每一种业务都有他的核心任务和流程,而流程的每一个步骤,都可能有用户流失。
所以如果把每一个步骤及其对应的数据(如UV)拼接起来,就会形成一个上大下小的漏斗形态,这就是漏斗模型。

在这里插入图片描述
漏斗模型示例:
不同的业务场景有不同的业务路径 : 有先后顺序, 事件可以出现多次
注册转化漏斗 : 启动APP --> APP注册页面—>注册结果 -->提交订单–>支付成功
搜购转化漏斗 : 搜索商品–> 点击商品—>加入购物车–>提交订单–>支付成功
秒杀活动选购转化漏斗: 点击秒杀活动–>参加活动—>参与秒杀–>秒杀成功—>成功支付
电商的购买转化漏斗模型图
在这里插入图片描述
处理步骤 :
明确漏斗名称:购买转化漏斗
起始事件:浏览了商品的详情页
目标事件:支付
业务流程事件链路:详情页->购物车->下单页->支付
[事件之间有没有时间间隔要求 , 链路中相邻的两个事件是否可以有其他事件]

需求:求购买转化漏斗模型的转换率(事件和事件之间没有时间间隔要求,并且相邻两个事件可以去干其他的事)
1.每一个步骤的uv
2.相对的转换率(下一个步骤的uv/上一个步骤的UV),绝对的转换率(当前步骤的UV第一步骤的UV)

关心的事件:e1,e2,e4,e5  ==> 先后顺序不能乱

-- 准备数据
user_id  event_id   event_action  event_time
u001,e1,view_detail_page,2022-11-01 01:10:21
u001,e2,add_bag_page,2022-11-01 01:11:13
u001,e3,collect_goods_page,2022-11-01 02:07:11
u002,e3,collect_goods_page,2022-11-01 01:10:21
u002,e4,order_detail_page,2022-11-01 01:11:13
u002,e5,pay_detail_page,2022-11-01 02:07:11
u002,e6,click_adver_page,2022-11-01 13:07:23
u002,e7,home_page,2022-11-01 08:18:12
u002,e8,list_detail_page,2022-11-01 23:34:29
u002,e1,view_detail_page,2022-11-01 11:25:32
u002,e2,add_bag_page,2022-11-01 12:41:21
u002,e3,collect_goods_page,2022-11-01 16:21:15
u002,e4,order_detail_page,2022-11-01 21:41:12
u003,e5,pay_detail_page,2022-11-01 01:10:21
u003,e6,click_adver_page,2022-11-01 01:11:13
u003,e7,home_page,2022-11-01 02:07:11
u001,e4,order_detail_page,2022-11-01 13:07:23
u001,e5,pay_detail_page,2022-11-01 08:18:12
u001,e6,click_adver_page,2022-11-01 23:34:29
u001,e7,home_page,2022-11-01 11:25:32
u001,e8,list_detail_page,2022-11-01 12:41:21
u001,e1,view_detail_page,2022-11-01 16:21:15
u001,e2,add_bag_page,2022-11-01 21:41:12
u003,e8,list_detail_page,2022-11-01 13:07:23
u003,e1,view_detail_page,2022-11-01 08:18:12
u003,e2,add_bag_page,2022-11-01 23:34:29
u003,e3,collect_goods_page,2022-11-01 11:25:32
u003,e4,order_detail_page,2022-11-01 12:41:21
u003,e5,pay_detail_page,2022-11-01 16:21:15
u003,e6,click_adver_page,2022-11-01 21:41:12
u004,e7,home_page,2022-11-01 01:10:21
u004,e8,list_detail_page,2022-11-01 01:11:13
u004,e1,view_detail_page,2022-11-01 02:07:11
u004,e2,add_bag_page,2022-11-01 13:07:23
u004,e3,collect_goods_page,2022-11-01 08:18:12
u004,e4,order_detail_page,2022-11-01 23:34:29
u004,e5,pay_detail_page,2022-11-01 11:25:32
u004,e6,click_adver_page,2022-11-01 12:41:21
u004,e7,home_page,2022-11-01 16:21:15
u004,e8,list_detail_page,2022-11-01 21:41:12
u005,e1,view_detail_page,2022-11-01 01:10:21
u005,e2,add_bag_page,2022-11-01 01:11:13
u005,e3,collect_goods_page,2022-11-01 02:07:11
u005,e4,order_detail_page,2022-11-01 13:07:23
u005,e5,pay_detail_page,2022-11-01 08:18:12
u005,e6,click_adver_page,2022-11-01 23:34:29
u005,e7,home_page,2022-11-01 11:25:32
u005,e8,list_detail_page,2022-11-01 12:41:21
u005,e1,view_detail_page,2022-11-01 16:21:15
u005,e2,add_bag_page,2022-11-01 21:41:12
u005,e3,collect_goods_page,2022-11-01 01:10:21
u006,e4,order_detail_page,2022-11-01 01:11:13
u006,e5,pay_detail_page,2022-11-01 02:07:11
u006,e6,click_adver_page,2022-11-01 13:07:23
u006,e7,home_page,2022-11-01 08:18:12
u006,e8,list_detail_page,2022-11-01 23:34:29
u006,e1,view_detail_page,2022-11-01 11:25:32
u006,e2,add_bag_page,2022-11-01 12:41:21
u006,e3,collect_goods_page,2022-11-01 16:21:15
u006,e4,order_detail_page,2022-11-01 21:41:12
u006,e5,pay_detail_page,2022-11-01 23:10:21
u006,e6,click_adver_page,2022-11-01 01:11:13
u007,e7,home_page,2022-11-01 02:07:11
u007,e8,list_detail_page,2022-11-01 13:07:23
u007,e1,view_detail_page,2022-11-01 08:18:12
u007,e2,add_bag_page,2022-11-01 23:34:29
u007,e3,collect_goods_page,2022-11-01 11:25:32
u007,e4,order_detail_page,2022-11-01 12:41:21
u007,e5,pay_detail_page,2022-11-01 16:21:15
u007,e6,click_adver_page,2022-11-01 21:41:12
u007,e7,home_page,2022-11-01 01:10:21
u008,e8,list_detail_page,2022-11-01 01:11:13
u008,e1,view_detail_page,2022-11-01 02:07:11
u008,e2,add_bag_page,2022-11-01 13:07:23
u008,e3,collect_goods_page,2022-11-01 08:18:12
u008,e4,order_detail_page,2022-11-01 23:34:29
u008,e5,pay_detail_page,2022-11-01 11:25:32
u008,e6,click_adver_page,2022-11-01 12:41:21
u008,e7,home_page,2022-11-01 16:21:15
u008,e8,list_detail_page,2022-11-01 21:41:12
u008,e1,view_detail_page,2022-11-01 01:10:21
u009,e2,add_bag_page,2022-11-01 01:11:13
u009,e3,collect_goods_page,2022-11-01 02:07:11
u009,e4,order_detail_page,2022-11-01 13:07:23
u009,e5,pay_detail_page,2022-11-01 08:18:12
u009,e6,click_adver_page,2022-11-01 23:34:29
u009,e7,home_page,2022-11-01 11:25:32
u009,e8,list_detail_page,2022-11-01 12:41:21
u009,e1,view_detail_page,2022-11-01 16:21:15
u009,e2,add_bag_page,2022-11-01 21:41:12
u009,e3,collect_goods_page,2022-11-01 01:10:21
u010,e4,order_detail_page,2022-11-01 01:11:13
u010,e5,pay_detail_page,2022-11-01 02:07:11
u010,e6,click_adver_page,2022-11-01 13:07:23
u010,e7,home_page,2022-11-01 08:18:12
u010,e8,list_detail_page,2022-11-01 23:34:29
u010,e5,pay_detail_page,2022-11-01 11:25:32
u010,e6,click_adver_page,2022-11-01 12:41:21
u010,e7,home_page,2022-11-01 16:21:15
u010,e8,list_detail_page,2022-11-01 21:41:12


-- 创建表
drop table if exists event_info_log;
create table event_info_log
(
user_id varchar(20),
event_id varchar(20),
event_action varchar(20),
event_time datetime
)
DUPLICATE KEY(user_id)
DISTRIBUTED BY HASH(user_id) BUCKETS 1;

-- 通过本地文件的方式导入数据
curl \
 -u root: \
 -H "label:event_info_log" \
 -H "column_separator:," \
 -T /root/data/event_log.txt \
 http://linux01:8040/api/test/event_info_log/_stream_load

逻辑分析:

--1. 先将用户的事件序列,按照漏斗模型定义的条件进行过滤,留下满足条件的事件
--2. 将同一个人的满足条件的事件ID收集到数组,按时间先后排序,拼接成字符串
--3. 将拼接好的字符串,匹配漏斗模型抽象出来的正则表达式

1.筛选时间条件,确定每个人的事件序列
select 
user_id,
max(event_ll) as event_seq  
from 
(
select 
user_id,
group_concat(event_id)over(partition by user_id order by report_date) as event_ll
from 
(
  select 
  user_id,event_id,report_date
  from event_info_log
  where event_id in ('e1','e2','e4','e5')
  and to_date(report_date) = '2022-11-01'
  order by user_id,report_date
) as temp
) as temp2
group by user_id;

+---------+------------------------+
| user_id | event_ll               |
+---------+------------------------+
| u006    | e4, e5, e1, e2, e4, e5 |
| u007    | e1, e4, e5, e2         |
| u005    | e1, e2, e5, e4, e1, e2 |
| u004    | e1, e5, e2, e4         |
| u010    | e4, e5, e5             |
| u001    | e1, e2, e5, e4, e1, e2 |
| u003    | e5, e1, e4, e5, e2     |
| u002    | e4, e5, e1, e2, e4     |
| u008    | e1, e1, e5, e2, e4     |
| u009    | e2, e5, e4, e1, e2     |
+---------+------------------------+

2.确定匹配规则模型
select
   user_id,
   '购买转化漏斗' as funnel_name ,
   case
   -- 正则匹配,先触发过e1,在触发过e2,在触发过e4,在触发过e5
   when    event_seq  rlike('e1.*e2.*e4.*e5') then 4
   -- 正则匹配,先触发过e1,在触发过e2,在触发过e4
   when    event_seq  rlike('e1.*e2.*e4') then 3
   -- 正则匹配,先触发过e1,在触发过e2
   when    event_seq  rlike('e1.*e2') then 2
   -- 正则匹配,只触发过e1
   when    event_seq  rlike('e1') then 1
   else 0 end step
from 
(
 select 
user_id,
max(event_ll) as event_seq  
from 
(
select 
user_id,
group_concat(event_id)over(partition by user_id order by report_date) as event_ll
from 
(
  select 
  user_id,event_id,report_date
  from event_info_log
  where event_id in ('e1','e2','e4','e5')
  and to_date(report_date) = '2022-11-01'
  order by user_id,report_date
) as temp
) as temp2
group by user_id
) as tmp3;

+---------+--------------------+------+
| user_id | funnel_name        | step |
+---------+--------------------+------+
| u006    | 购买转化漏斗       |    4 |
| u007    | 购买转化漏斗       |    2 |
| u005    | 购买转化漏斗       |    3 |
| u004    | 购买转化漏斗       |    3 |
| u010    | 购买转化漏斗       |    0 |
| u001    | 购买转化漏斗       |    3 |
| u003    | 购买转化漏斗       |    2 |
| u002    | 购买转化漏斗       |    3 |
| u008    | 购买转化漏斗       |    3 |
| u009    | 购买转化漏斗       |    2 |
+---------+--------------------+------+

-- 最后计算转换率
select 
  funnel_name,
  sum(if(step >= 1 ,1,0)) as step1,
  sum(if(step >= 2 ,1,0)) as step2,
  sum(if(step >= 3 ,1,0)) as step3,
  sum(if(step >= 4 ,1,0)) as step4,
  round(sum(if(step >= 2 ,1,0))/sum(if(step >= 1 ,1,0)),2) as 'step1->step2_radio',
  round(sum(if(step >= 3 ,1,0))/sum(if(step >= 2 ,1,0)),2) as 'step2->step3_radio',
  round(sum(if(step >= 4 ,1,0))/sum(if(step >= 3 ,1,0)),2) as 'step3->step4_radio'
from 
(
     select
        '购买转化漏斗' as funnel_name ,
        case
        -- 正则匹配,先触发过e1,在触发过e2,在触发过e4,在触发过e5
        when    event_seq  regexp('e1.*e2.*e4.*e5') then 4
        -- 正则匹配,先触发过e1,在触发过e2,在触发过e4
        when    event_seq  regexp('e1.*e2.*.*e4') then 3
        -- 正则匹配,先触发过e1,在触发过e2
        when    event_seq  regexp('e1.*e2') then 2
        -- 正则匹配,只触发过e1
        when    event_seq  regexp('e1') then 1
        else 0 end step
     from 
     (
        select 
        user_id,
        max(event_seq) as event_seq 
        from 
        -- 因为在doris1.1版本中还不支持数组,所以拼接字符串的时候还没办法排序
        (
        select 
        user_id,
        -- 用开窗的方式进行排序,然后在有序的按照时间升序,将事件拼接
        group_concat(concat(report_date,'_',event_id),'|')over(partition by user_id order by report_date) as event_seq
        from event_info_log 
        where to_date(report_date) = '2022-11-01'
        and event_id in('e1','e4','e5','e2')
        ) as tmp 
        group by user_id
     ) as t1 
) as t2
group by funnel_name;

+--------------------+-------+-------+-------+-------+--------------------+--------------------+--------------------+
| funnel_name        | step1 | step2 | step3 | step4 | step1->step2_radio | step2->step3_radio | step3->step4_radio |
+--------------------+-------+-------+-------+-------+--------------------+--------------------+--------------------+
| 购买转化漏斗       |     9 |     9 |     6 |     1 |                  1 |               0.67 |               0.17 |
+--------------------+-------+-------+-------+-------+--------------------+--------------------+--------------------+

漏斗模型分析函数window_funnel
封装、要素(时间范围,事件的排序时间依据,漏斗模型的事件链)

语法:
window_funnel(window, mode, timestamp_column, event1, event2, ... , eventN)

漏斗分析函数搜索滑动时间窗口内最大的发生的最大事件序列长度。
-- window :滑动时间窗口大小,单位为秒。
-- mode  :保留,目前只支持default。-- 相邻两个事件之间没有时间间隔要求,并且相邻两个事件中可以做其他的事件
-- timestamp_column :指定时间列,类型为DATETIME, 滑动窗口沿着此列工作。
-- eventN :表示事件的布尔表达式。

select 
user_id,
window_funnel(3600*24, 'default', event_time, event_id='e1', event_id='e2' , event_id='e4', event_id='e5') as step
from event_info_log 
group by user_id

+---------+------+
| user_id | step |
+---------+------+
| u006    |    4 |
| u007    |    2 |
| u005    |    3 |
| u004    |    3 |
| u010    |    0 |
| u001    |    3 |
| u003    |    2 |
| u002    |    3 |
| u008    |    3 |
| u009    |    2 |
+---------+------+



-- 算每一层级的转换率
select
'购买转化漏斗' as funnel_name,
sum(if(step >= 1 ,1,0)) as step1,
sum(if(step >= 2 ,1,0)) as step2,
sum(if(step >= 3 ,1,0)) as step3,
sum(if(step >= 4 ,1,0)) as step4,
round(sum(if(step >= 2 ,1,0))/sum(if(step >= 1 ,1,0)),2) as 'step1->step2_radio',
round(sum(if(step >= 3 ,1,0))/sum(if(step >= 2 ,1,0)),2) as 'step2->step3_radio',
round(sum(if(step >= 4 ,1,0))/sum(if(step >= 3 ,1,0)),2) as 'step3->step4_radio'
from
(
select 
user_id,
window_funnel(3600*24, 'default', report_date, event_id='e1', event_id='e2' , event_id='e4', event_id='e5') as step
from event_info_log 
where to_date(report_date) = '2022-11-01'
and event_id in('e1','e4','e5','e2')
group by user_id
) as t1 

-- res
+--------------------+-------+-------+-------+-------+--------------------+--------------------+--------------------+
| funnel_name        | step1 | step2 | step3 | step4 | step1->step2_radio | step2->step3_radio | step3->step4_radio |
+--------------------+-------+-------+-------+-------+--------------------+--------------------+--------------------+
| 购买转化漏斗       |     9 |     9 |     6 |     1 |                  1 |               0.67 |               0.17 |
+--------------------+-------+-------+-------+-------+--------------------+--------------------+--------------------+

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/585942.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Linux】深入了解冯诺依曼体系结构与操作系统

目录 导读 🌞专栏导读 🌞冯诺依曼 🌞冯诺依曼体系结构 🌛木桶效应 🌞操作系统(Operator System) 🌛概念 🌛设计OS的目的 🌛系统调用和库函数概念 导读 六一儿童节快到了&…

Envoy 物联网模块开发---串口服务器 (一)

一、背景 最近业余时间想基于Envoy 开发一个串口网关,主要是想把一些 modbus、bacnet 以及 mqtt 等物联网协议接入Envoy中,当读到串口数据后可以转发成对应的网络协议 二、Envoy的优势 选择Envoy的话主要是因为Envoy的代码已经十分健全了,零…

(数字图像处理MATLAB+Python)第九章图像形态学运算-第三节:二值图像的形态学处理

文章目录 一:形态滤波(1)概述(2)程序 二:图像的平滑处理(1)概述(2)程序 三:图像的边缘提取(1)概述(2&#xff…

redux与react-redux状态集中管理

一、redux:可用于react、Vue等中 redux应用:状态的管理,共享状态,Redux用一个单独的常量状态树(state对象)保存这一整个应用(如tab选项卡的状态、城市等需要应用在整个页面的信息)的状态。其本…

算法|13.贪心

1.字典序最小的字符串连接方案 题意&#xff1a;给定一个由字符串组成的数组strs&#xff0c;必须把所有的字符串拼接起来&#xff0c;返回所有可能的拼接结果中字典序最小的结果。 public static class MyCom implements Comparator<String>{Overridepublic int compa…

@程序员【提升代码质量,快走出学习迷茫的状态吧】

思路清晰&#xff0c;能上钻一 思路清晰&#xff0c;能上钻一写代码如同打游戏上分。写代码如同中医治病。 思路清晰&#xff0c;能上钻一 ⭐⭐想成为一名优秀的电玩高手&#xff0c;你需要有清晰的思路;想成为一名顶级的电玩高手&#xff0c;你需要的是顶级的思路和异于常人的…

裁员后投递了300次简历,面试22家,终于上岸!

这是一位群友的励志故事&#xff0c;生活虽然很苦&#xff0c;但是朝着自己想要的方向去努力很值得&#xff01; 求职109天&#xff0c;沟通2212次&#xff0c;投简历355次&#xff0c;面试22家&#xff0c;涨薪10%&#xff0c;终于上岸&#xff0c;在这里复盘下我的经历&#…

[创业之路-72] :创业公司发展模式的选择:技工贸还是贸工技?

目录 前言&#xff1a; 一、什么是技、工、贸&#xff1f; 二、概述 2.1 推动力不同 2.2 适合领域不同 2.3 经营模式的主导地位不同 三、技、工、贸详解 3.1 常见的七种营销模式 3.2 常见的三种生产模式 3.3 常见的三种研发模式 四、经营模式的战略选择与影响因素 …

短视频矩阵源码如何做应用编程?

短视频矩阵源码&#xff0c; 短视频矩阵系统技术文档&#xff1a; 可以采用电子文档或者纸质文档的形式交付&#xff0c;具体取决于需求方的要求。电子文档可以通过电子邮件、远程指导交付云存储等方式进行传输、 短视频矩阵{seo}源码是指将抖音平台上的视频资源进行筛选、排…

C++ Primer Plus 第一,二章笔记

目录 第一章笔记 1、C简介 2、C简史 3、可移植性和标准 第二章笔记 1. 进入C 1.3、预处理器和头文件 1.4、名称空间&#xff08;namespace&#xff09; 1.5、使用cout进行C的输出 2. C语句 3. 其他C语句 4. 函数 第一章笔记 1、C简介 C融合了3种不同的编程方式&a…

vsdx文件怎么打开,安装什么软件打开这种后缀名(教程)

目录 简介 安装配置 其他 总结 简介 VSDX 文件是 Microsoft Visio 文件格式&#xff0c;它是一种二进制文件&#xff0c;用于保存 Visio 中的绘图和图表。如果你想要打开 VSDX 文件&#xff0c;可以考虑以下几种方法&#xff1a; 方法一&#xff1a;使用 Microsoft Visio …

C++IO流(详解)

C语言的输入与输出 在C语言当中&#xff0c;我们使用最频繁的输入输出方式就是scanf与printf&#xff1a; scanf&#xff1a; 从标准输入设备&#xff08;键盘&#xff09;读取数据&#xff0c;并将读取到的值存放到某一指定变量当中。 printf&#xff1a; 将指定的数据输出到…

Vivado综合属性系列之十三 FSM_ENCODING

目录 一、前言 二、FSM_ENCODING ​2.1 属性介绍 ​2.2 工程代码 2.3 结果 ​2.4 参考资料 一、前言 ​状态机的实现有很多方式&#xff0c;如auto&#xff0c;one_hot&#xff0c;sequential&#xff0c;如下图中Synthesis中-fsm_extraction的配置项&#xff0c;但此处作用范…

【AI面试】降低过拟合的方式方法横评探究

对于一个“训练调参工程师”来说&#xff0c;在训练过程遇到过拟合现象&#xff0c;是常事。当然&#xff0c;如何降低过拟合&#xff0c;也是在面试过程中&#xff0c;经常被面试官问到的问题&#xff08;没啥可问的&#xff0c;就只能这样问了&#xff09;。以下是我们会常考…

HEVC中,mvd怎么写进码流的?

文章目录 Motion vector difference syntax 标准文档描述语义解释设计意义 Motion vector difference syntax 标准文档描述 语义解释 MvdL1[ x0 ][ y0 ][ compIdx ] L1列表的mvd x0,y0 表示亮度快左上角坐标 compIdx 0表示水平 compIdx 0表示垂直 mvd_l1_zero_flag&#xff1a…

DRF之JWT认证

一、JWT认证 在用户注册或登录后&#xff0c;我们想记录用户的登录状态&#xff0c;或者为用户创建身份认证的凭证。我们不再使用Session认证机制&#xff0c;而使用Json Web Token&#xff08;本质就是token&#xff09;认证机制。 Json web token (JWT), 是为了在网络应用环…

给osg::Geometry(自己绘制的几何体)添加纹理(二)

目录 1. 前言 2. 自会集合体贴纹理 2.1. 一张图贴到整个几何体 2.2. 几何体每个面贴不同的图片纹理 3. 说明 1. 前言 前文讲述了如何给osg自带的几何体&#xff0c;如&#xff1a;BOX等&#xff0c;添加纹理&#xff0c;文章参考链接如下&#xff1a; osg给osg::Geometry&…

动态规划专题一(动态规划的基本模型)

先上例题1 1258&#xff1a;【例9.2】数字金字塔 信息学奥赛一本通&#xff08;C版&#xff09;在线评测系统 (ssoier.cn) 1258&#xff1a;【例9.2】数字金字塔 时间限制: 1000 ms 内存限制: 65536 KB 提交数: 36341 通过数: 21547 【题目描述】 观察下面的数字…

HotSpot虚拟机OutOfMemoryError异常

目录 一、JVM内存区域 二、堆中对象 1. 对象的创建 2. 对象的内存布局 3. 对象的访问定位 三、OOM异常 1. 堆OOM异常测试 2. 栈SOF异常测试 1)&#xff1a;栈容量过小 2)&#xff1a;大量本地变量 3. 常量池OOM异常测试 4. 方法区测试 5. 堆外内存测试 四、参考资料…

详解FreeRTOS:嵌入式多任务系统的任务互斥和优先级反转(理论篇—9)

在嵌入式多任务系统中,有些资源必须是独占使用的,多个任务对这样的资源的并发访问将导致错误的发生。一般来说,对需要独占使用的资源必须使用互斥方法将对其的并发访问串行化。 在优先级多任务系统中引入互斥方案,会导致任务优先级反转的问题:假如某时低优先级的任务占有…