06. 数据结构之散列表

news2024/10/3 4:39:45

前言

散列表也叫作哈希表(hash table),这种数据结构提供了键(Key)和值(Value)的映射关系。只要给出一个Key,就可以高效查找到它所匹配的Value,时间复杂度接近于O(1)

1. 概念

散列表(Hash table,也叫哈希表),是根据关键码值(Key value)而直接进行访问的数据结构。也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。这个映射函数叫做散列函数,存放记录的数组叫做散列表。给定表M,存在函数f(key),对任意给定的关键字值key,代入函数后若能得到包含该关键字的记录在表中的地址,则称表M为哈希(Hash)表,函数f(key)为哈希(Hash) 函数。

2. 存储原理

2.1 散列表存储简介

散列表在本质上也是一个数组。散列表的Key则是以字符串类型为主的,通过hash函数把Key和数组下标进行转换,作用是把任意长度的输入通过散列算法转换成固定类型、固定长度的散列值

//数组下标=取key的hashcode模数组的长度后的余数
index = HashCode (Key) % Array.length
int index=Math.abs("Hello".hashCode())%10;0-9

如上代码所示,是一种比较简单的计算方式。

实际应用中,会有很多的hash函数:CRC16、CRC32、siphash 、murmurHash、times 33等,此种Hash计算方式为固定Hash方式,也称为传统Hash。该方式在数组固定时,可以快速检索,但当数组长度变化时,需要重新计算数组下标,所以说传统Hash法虽然比较简单,但不利于扩展,如果要扩展可以采用一致性Hash

2.2 一致性哈希介绍

上面提到,常规的哈希算法可以实现快速检索,但是不利于扩展,当哈希表长度不够的时候,扩容的话,所有内容需要重新哈希。此时成本会比较大,为此,一致性哈希方式被提了出来。

关于一致性哈希更多介绍,因为内容较多,拆到另外一个博客讲解。

3. 操作

3.1 写

写操作就是在散列表中插入新的键值对

  1. 通过哈希函数,把Key转化成数组下标
  2. 如果数组下标对应的位置没有元素,就把这个Entry填充到数组下标的位置。

3.2 读

读操作就是通过给定的Key,在散列表中查找对应的Value

  1. 通过哈希函数,把Key转化成数组下标
  2. 找到数组下标所对应的元素,如果key不正确,说明产生了hash冲突,则顺着头节点遍历该单链表,再根据key即可取值

3.3 扩容

散列表是基于数组实现的,当经过多次元素插入,散列表达到一定饱和度时,Key映射位置发生冲突的概率会逐渐提高。这样一来,大量元素拥挤在相同的数组下标位置,形成很长的链表,对后续插入操作和查询操作的性能都有很大影响。

扩容的步骤:

  1. 扩容,创建一个新的Entry空数组,长度是原数组的2倍
  2. 重新Hash,遍历原Entry数组,把所有的Entry重新Hash到新数组中

关于HashMap的实现,JDK 8和以前的版本有着很大的不同。当多个Entry被Hash到同一个数组下标位置时,为了提升插入和查找的效率,HashMap会把Entry的链表转化为红黑树这种数据结构JDK1.8前在HashMap扩容时,会反序单链表,这样在高并发时会有死循环的可能。

3.4 代码实现

3.4.1 定义链表节点

package org.wanlong.hash;

/**
 * @author wanlong
 * @version 1.0
 * @description: 链表节点
 * @date 2023/5/24 15:23
 */
public class Node {

    String key;
    String value;
    // 指向下一个结点
    Node next;

    public Node(String key, String value, Node next) {
        this.key = key;
        this.value = value;
        this.next = next;
    }
}

3.4.2 定义链表

package org.wanlong.hash;

/**
 * @author wanlong
 * @version 1.0
 * @description: 链表实现
 * @date 2023/5/24 15:23
 */
public class ListNode {

    Node head; //头结点

    public void addNode(String key, String value) {

        if (head == null)
            return;
        // 创建结点
        Node node = new Node(key, value, null);
        // 临时变量
        Node tmp = head;
        //循环遍历单链表
        while (true) {
            //key相同覆盖值 从head开始
            if (key.equals(tmp.key)) {
                tmp.value = value;
                break;
            }
            if (tmp.next == null) {
                break;
            }
            //指向下一个
            tmp = tmp.next;
        }
        //在循环外挂载最后一个结点
        tmp.next = node;
    }


    /**
     * @param key:
     * @return java.lang.String
     * @Description: 从链表获取值
     * @Author: wanlong
     * @Date: 2023/5/24 15:27
     **/
    public String getVal(String key) {
        if (head == null)
            return null;
        //只有一个结点
        if (head.next == null) {
            return head.value;
        } else {
            //遍历单链表
            Node tmp = head;
            while (tmp != null) {
                //找到匹配的key
                if (key.equals(tmp.key)) {
                    return tmp.value;
                }
                //指向下一个
                tmp = tmp.next;
            }
            return null;
        }
    }
}

3.4.3 散列表实现

package org.wanlong.hash;

/**
 * @author wanlong
 * @version 1.0
 * @description: 测试 哈希map
 * @date 2023/5/24 15:24
 */
public class TestHashMap {

    //数组初始化 2的3次方
    ListNode[] map = new ListNode[8];
    //ListNode的个数
    int size;

    /**
     * @param key:
     * @param value:
     * @return void
     * @Description: 往map放值
     * @Author: wanlong
     * @Date: 2023/5/24 15:29
     **/
    public void put(String key, String value) {
        //该扩容了 这里0.75 是负载因子,jdk源码也是这个值 这里需要扩容直接报错
        if (size >= map.length * 0.75) {
            System.out.println("map需要扩容");
            ListNode[] tempMap=map;
            map=resize();
            //释放引用,交给jvm回收
            tempMap=null;
        }
        //计算索引 数组下标
        int index = Math.abs(key.hashCode()) % map.length;
        //获得该下标处的ListNode
        ListNode ln = map[index];
        //该下标处无值
        if (ln == null) {
            //创建单链表
            ListNode lnNew = new ListNode();
            //创建头结点
            Node head = new Node(key, value, null);
            //挂载头结点
            lnNew.head = head;
            //把单链放到数组里
            map[index] = lnNew;
            size++;
        } else {
            //该下标有值,hash碰撞单链表挂结点
            ln.addNode(key, value);
        }
    }

    /***
     * @Description: 扩容方法,将原来集合中的数据,放到新的map中
     * @Author: wanlong
     * @Date: 2023/5/24 15:54
     * @return org.wanlong.hash.ListNode[]
     **/
    private ListNode[] resize(){
        //容量扩大两倍
        ListNode[] newListNodes = new ListNode[map.length * 2];
        //原来的数据重新哈希,放入新的哈希表中
        for (int i = 0; i < map.length; i++) {
            ListNode listNode = map[i];
            if (listNode!=null){
                Node head = listNode.head;
                //遍历单链表,取出每个元素,放到新链表里面
                while (head!=null){
                    String key = head.key;
                    String value = head.value;
                    //计算索引 数组下标
                    int index = Math.abs(key.hashCode()) % newListNodes.length;
                    //获得该下标处的ListNode
                    ListNode ln = newListNodes[index];
                    //该下标处无值
                    if (ln == null) {
                        //创建单链表
                        ListNode lnNew = new ListNode();
                        //创建头结点
                        Node nodeHead = new Node(key, value, null);
                        //挂载头结点
                        lnNew.head = nodeHead;
                        //把单链放到数组里
                        newListNodes[index] = lnNew;
                    } else {
                        //该下标有值,hash碰撞单链表挂结点
                        ln.addNode(key, value);
                    }
                    //下一个节点
                    head=head.next;
                }
            }
        }
        return newListNodes;
    }

    public String get(String key) {
        int index = Math.abs(key.hashCode()) % map.length;
        ListNode ln = map[index];
        if (ln == null)
            return null;
        return ln.getVal(key);
    }
}

3.4.4 测试类

package org.wanlong.hash;

import org.junit.Test;

/**
 * @author wanlong
 * @version 1.0
 * @description:
 * @date 2023/5/24 15:45
 */
public class Client {

    @Test
    public void testMap() {
        TestHashMap testHashMap = new TestHashMap();
        testHashMap.put("1", "wo");
        testHashMap.put("2", "shi");
        testHashMap.put("3", "dai");
        testHashMap.put("4", "zi");
        testHashMap.put("5", "cai");
        testHashMap.put("6", "cai");
        testHashMap.put("7", "wo");
        testHashMap.put("8", "shi");
        testHashMap.put("9", "shui");

        for (int i = 1; i <= 9; i++) {
            String key = "" + i;
            System.out.println("key:" + key + "的值为:" + testHashMap.get(key));
        }

    }
}

3.4.5 运行结果以及分析

map需要扩容
key:1的值为:wo
key:2的值为:shi
key:3的值为:dai
key:4的值为:zi
key:5的值为:cai
key:6的值为:cai
key:7的值为:wo
key:8的值为:shi
key:9的值为:shui

通过运行结果可以看到,我们散列表初始长度设置的是8 ,因为添加了9个元素,在添加的时候,实现了扩容,里面添加的元素正常打印。这个要留意一个细节,其实不是添加到8个元素的时候才开始扩容,而是当元素个数大于容量*负载因子的时候就开始扩容了。

示例代码中用到的负载因子,也是java8 中HashMap的默认负载因子。

4. 时间复杂度

  1. 写操作: O(1) + O(m) = O(m) m为单链元素个数
  2. 读操作:O(1) + O(m) m为单链元素个数
  3. Hash冲突写单链表:O(m)
  4. Hash扩容:O(n) n是数组元素个数 rehash
  5. Hash冲突读单链表:O(m) m为单链元素个数

5. 优缺点

5.1 优点

读写快

5.2 缺点

  1. 哈希表中的元素是没有被排序的
  2. Hash冲突如果频繁发生,散列表会退化为链表
  3. 散列表需要扩容的时候, 重新计算散列表中所有元素在新的散列表中的位置

6. 应用

6.1 redis 字典

Redis字典dict又称散列表(hash),是用来存储键值对的一种数据结构。Redis整个数据库是用字典来存储的(K-V结构)。对Redis进行CURD操作其实就是对字典中的数据进行CURD操作。Redis字典实现包括:字典(dict)、Hash表(dictht)、Hash表节点(dictEntry)。
在这里插入图片描述

6.2 布隆过滤器

6.2.1 布隆过滤器简介

布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机hash映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法。
在这里插入图片描述

6.2.2 布隆过滤器原理

当一个元素被加入集合时,通过K个Hash函数将这个元素映射成一个数组中的K个点,把它们置为1。检索时,我们只要看看这些点是不是都是1就(大约)知道集合中有没有它了:如果这些点有任何一个0,则被检元素一定不在;如果都是1,则被检元素很可能在。这就是布隆过滤器的基本思想

简单来说:因为哈希算法,

  1. 同样的key,同样的哈希函数,一定会得到同样的摘要值。
  2. 同样的key A,用K个哈希算法来计算,一定会得到K个固定的值。
  3. 那么如果有一个Key B ,我们通过同样的K 个哈希算法计算 得到 K 个值,如果这K 个值 和前面的K 个值不完全一样,那么Key B一定和KeyA 不相等。

由此可得,布隆过滤器在检索一个元素是否在一个集合中可以做出如下判断:

  1. 如果Key多次哈希的值都能命中,说明这个key 可能在集合中
  2. 如果Key多次哈希的值有某一个对不上,说明这个Key一定不存在

6.3 位图

Bitmap 的基本原理就是用一个 bit 来标记某个元素对应的 Value,而Key即是该元素。由于采用一个bit 来存储一个数据,因此可以大大的节省空间。Java 中 int 类型占用 4 个字节,即 4 byte,又 1 byte = 8 bit,所以 一个 int 数字的表示大概如下:
在这里插入图片描述
试想以下,如果有一个很大的 int 数组,如 10000000,数组中每一个数值都要占用 4 个字节,则一共需要占用 10000000 * 4 = 40000000 个字节,即 40000000 / 1024.0 / 1024.0 = 38 M。

如果使用 bit 来存放上述 10000000 个元素,只需要 10000000 个 bit 即可, 10000000 / 8.0 / 1024.0/ 1024.0 = 1.19 M 左右,可以看到 bitmap 可以大大的节约内存。使用 bit 来表示数组 [1, 2, 5] 如下所示,可以看到只用 1 字节即可表示:
在这里插入图片描述

7.HashMap源码解析

7.1 源码注释翻译

package java.util;

import java.io.IOException;
import java.io.InvalidObjectException;
import java.io.Serializable;
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import java.util.function.BiConsumer;
import java.util.function.BiFunction;
import java.util.function.Consumer;
import java.util.function.Function;
import sun.misc.SharedSecrets;

/**
 * Hash table based implementation of the <tt>Map</tt> interface.  This
 * implementation provides all of the optional map operations, and permits
 * <tt>null</tt> values and the <tt>null</tt> key.  (The <tt>HashMap</tt>
 * class is roughly equivalent to <tt>Hashtable</tt>, except that it is
 * unsynchronized and permits nulls.)  This class makes no guarantees as to
 * the order of the map; in particular, it does not guarantee that the order
 * will remain constant over time.
 *
 * 基于哈希表的Map接口实现,hashmap提供了所有map相关操作。允许null 作为key 和 value
 * (hashmap和hashtable 很相似,唯一的差别是hashmap 不是线程安全的,允许空元素)
 * hashmap 不保证元素的顺序,特别要说明的是,hashmap也不保证顺序一直不变
 *
 * <p>This implementation provides constant-time performance for the basic
 * operations (<tt>get</tt> and <tt>put</tt>), assuming the hash function
 * disperses the elements properly among the buckets.  Iteration over
 * collection views requires time proportional to the "capacity" of the
 * <tt>HashMap</tt> instance (the number of buckets) plus its size (the number
 * of key-value mappings).  Thus, it's very important not to set the initial
 * capacity too high (or the load factor too low) if iteration performance is
 * important.
 *
 * 如果哈希函数能把元素正确均匀的分配在一个个桶里,基本操作(get和put)性能是很好的。
 * 对集合视图的迭代需要与HashMap实例的“容量”(bucket的数量)加上其大小(键值映射的数量)成比例的时间
 * 因此,如果关注迭代性能,不要把初始化容量设置的太高(或者设置负载因子太低)
 *
 *
 * <p>An instance of <tt>HashMap</tt> has two parameters that affect its
 * performance: <i>initial capacity</i> and <i>load factor</i>.  The
 * <i>capacity</i> is the number of buckets in the hash table, and the initial
 * capacity is simply the capacity at the time the hash table is created.  The
 * <i>load factor</i> is a measure of how full the hash table is allowed to
 * get before its capacity is automatically increased.  When the number of
 * entries in the hash table exceeds the product of the load factor and the
 * current capacity, the hash table is <i>rehashed</i> (that is, internal data
 * structures are rebuilt) so that the hash table has approximately twice the
 * number of buckets.
 *
 * 一个hashmap对象有两个因素影响性能,初始化容量capacity和负载因子load factor。容量是散列表中桶的数量,
 * capacity是散列表中桶的数量,初始化capacity是在散列表创建的时候的容量。
 * 载因子load factor是一种度量方式,表中元素达到容量的多少的时候,需要自动扩容
 * 当表中的元素达到 负载因子* 容量 ,散列表重新哈希(内部数据结构重建)。容量会*2
 *
 * <p>As a general rule, the default load factor (.75) offers a good
 * tradeoff between time and space costs.  Higher values decrease the
 * space overhead but increase the lookup cost (reflected in most of
 * the operations of the <tt>HashMap</tt> class, including
 * <tt>get</tt> and <tt>put</tt>).  The expected number of entries in
 * the map and its load factor should be taken into account when
 * setting its initial capacity, so as to minimize the number of
 * rehash operations.  If the initial capacity is greater than the
 * maximum number of entries divided by the load factor, no rehash
 * operations will ever occur.
 *
 * 作为一个通用规则,默认的负载因子(0.75)在时间和内存空间开销上面表现良好,所以一般不建议调整这个参数
 * 更高的负载因子减少了存储空间消耗但是增加了hashmap查询时间(包括get和put操作)
 * 当设置初始容量的时候,map存储的元素预期个数和它的负载因子应该考虑在内,以便能减少重新扩容,重新哈希的次数
 * 如果初始化容量* 负载因子 大于 预期的最大元素个数,那么map不需要扩容,重新哈希,此时性能会比较高
 *
 * <p>If many mappings are to be stored in a <tt>HashMap</tt>
 * instance, creating it with a sufficiently large capacity will allow
 * the mappings to be stored more efficiently than letting it perform
 * automatic rehashing as needed to grow the table.  Note that using
 * many keys with the same {@code hashCode()} is a sure way to slow
 * down performance of any hash table. To ameliorate impact, when keys
 * are {@link Comparable}, this class may use comparison order among
 * keys to help break ties.
 *
 * 如果确定知道map要存储大量的元素,创建一个大容量的map来存储元素
 * 比让hashmap随着元素个数增多,多次重新哈希效率要高得多
 * 要注意如果很多存储元素的key的hashcode一样的话,一定会拖慢散列表的性能,因为这会退化为链表
 * 为了改善这种情况,当键为{@link-Comparable}时,此类可以使用键之间的比较顺序来帮助打破联系。
 *
 *
 * <p><strong>Note that this implementation is not synchronized.</strong>
 * If multiple threads access a hash map concurrently, and at least one of
 * the threads modifies the map structurally, it <i>must</i> be
 * synchronized externally.  (A structural modification is any operation
 * that adds or deletes one or more mappings; merely changing the value
 * associated with a key that an instance already contains is not a
 * structural modification.)  This is typically accomplished by
 * synchronizing on some object that naturally encapsulates the map.
 *
 * 注意hashmap 不是线程安全的。如果多个现在并发的访问一个map对象,某个线程修改结构,需要调用端在外面加锁。
 *
 *
 * If no such object exists, the map should be "wrapped" using the
 * {@link Collections#synchronizedMap Collections.synchronizedMap}
 * method.  This is best done at creation time, to prevent accidental
 * unsynchronized access to the map:<pre>
 *   Map m = Collections.synchronizedMap(new HashMap(...));</pre>
 *
 *   可以在创建的时候使用这种封装的方式加锁 Map m = Collections.synchronizedMap(new HashMap(...));
 *
 * <p>The iterators returned by all of this class's "collection view methods"
 * are <i>fail-fast</i>: if the map is structurally modified at any time after
 * the iterator is created, in any way except through the iterator's own
 * <tt>remove</tt> method, the iterator will throw a
 * {@link ConcurrentModificationException}.  Thus, in the face of concurrent
 * modification, the iterator fails quickly and cleanly, rather than risking
 * arbitrary, non-deterministic behavior at an undetermined time in the
 * future.
 *
 * 这个类的所有“集合视图方法”返回的迭代器是fail-fast:在迭代器创建后,除了迭代器自己的remove方法外,这个map发生任何结构性变化
 * 迭代器会抛出异常ConcurrentModificationException
 * 因此,面对并发修改的时候,迭代器快速干净失败,而不是把风险留给将来,以免发生预期之外的影响
 *
 *
 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
 * as it is, generally speaking, impossible to make any hard guarantees in the
 * presence of unsynchronized concurrent modification.  Fail-fast iterators
 * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
 * Therefore, it would be wrong to write a program that depended on this
 * exception for its correctness: <i>the fail-fast behavior of iterators
 * should be used only to detect bugs.</i>
 *
 *
  * 注意,迭代器的快速失败行为不能确保一定生效。通常来说,在一个不加同步锁的并发修改中,做出任何坚决保证是不可能的。
 * Fail-fast iterators 尽最大努力会抛出ConcurrentModificationException异常
 * 因此,写一个 依赖这个异常 确保程序正确性 是不正确的做法,迭代器的快速失败行为应该只是用来检测bug
 *
 * <p>This class is a member of the
 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 * Java Collections Framework</a>.
 *
 * @param <K> the type of keys maintained by this map
 * @param <V> the type of mapped values
 *
 * @author  Doug Lea
 * @author  Josh Bloch
 * @author  Arthur van Hoff
 * @author  Neal Gafter
 * @see     Object#hashCode()
 * @see     Collection
 * @see     Map
 * @see     TreeMap
 * @see     Hashtable
 * @since   1.2
 */
public class HashMap<K,V> extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable {

    private static final long serialVersionUID = 362498820763181265L;

    /*
     * Implementation notes.
     *
     * This map usually acts as a binned (bucketed) hash table, but
     * when bins get too large, they are transformed into bins of
     * TreeNodes, each structured similarly to those in
     * java.util.TreeMap. Most methods try to use normal bins, but
     * relay to TreeNode methods when applicable (simply by checking
     * instanceof a node).  Bins of TreeNodes may be traversed and
     * used like any others, but additionally support faster lookup
     * when overpopulated. However, since the vast majority of bins in
     * normal use are not overpopulated, checking for existence of
     * tree bins may be delayed in the course of table methods.
     *
     * 这个map通常是链表,但是当元素太多的时候,节点转换为树节点,(每个树节点和java.util.TreeMap里面的类似)
     * 大多数方法使用普通的散列表,合适的时候调整到树节点方法(只需检查节点的实例)
     * 树节点使用和其他一样,但是当元素很多的时候会提供更高的查询性能。
     * 但是,通常情况下,大多数map存不了很多元素,此时使用树因为涉及到树结构调整,可能会比链表性能还差
     *
     * Tree bins (i.e., bins whose elements are all TreeNodes) are
     * ordered primarily by hashCode, but in the case of ties, if two
     * elements are of the same "class C implements Comparable<C>",
     * type then their compareTo method is used for ordering. (We
     * conservatively check generic types via reflection to validate
     * this -- see method comparableClassFor).  The added complexity
     * of tree bins is worthwhile in providing worst-case O(log n)
     * operations when keys either have distinct hashes or are
     * orderable, Thus, performance degrades gracefully under
     * accidental or malicious usages in which hashCode() methods
     * return values that are poorly distributed, as well as those in
     * which many keys share a hashCode, so long as they are also
     * Comparable. (If neither of these apply, we may waste about a
     * factor of two in time and space compared to taking no
     * precautions. But the only known cases stem from poor user
     * programming practices that are already so slow that this makes
     * little difference.)
     *
     * 树的节点主要是根据元素的hashcode排序,但是在关联的过程中,如果两个元素是同样的(类实现了Comparable接口),
     * 会用接口定义的compareTo方法做排序(我们适当的通过反射校验类型来验证这一点  详见comparableClassFor方法)
     * 当key既没有hash分散到不同的位置,也不是有序的时候,操作树节点的时间复杂度是O(log n),是值得的
     * 因此,当元素的hashcode()返回的值不是均衡分布的,或者很多的key用同一个hashcode, 只要它们也是可比较的,
     * 这种意外或者恶意使用会导致元素操作性能适度下降。
     * (如果两者都不适用,比起不采取预防措施,我们可能会花费两边的时间在时间和空间上面
     * 但唯一已知的案例源于糟糕的用户编程实践,这些实践已经非常缓慢,几乎没有什么区别)
     * todo
     *
     * Because TreeNodes are about twice the size of regular nodes, we
     * use them only when bins contain enough nodes to warrant use
     * (see TREEIFY_THRESHOLD). And when they become too small (due to
     * removal or resizing) they are converted back to plain bins.  In
     * usages with well-distributed user hashCodes, tree bins are
     * rarely used.  Ideally, under random hashCodes, the frequency of
     * nodes in bins follows a Poisson distribution
     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
     * parameter of about 0.5 on average for the default resizing
     * threshold of 0.75, although with a large variance because of
     * resizing granularity. Ignoring variance, the expected
     * occurrences of list size k are (exp(-0.5) * pow(0.5, k) /
     * factorial(k)). The first values are:
     *
     * 0:    0.60653066
     * 1:    0.30326533
     * 2:    0.07581633
     * 3:    0.01263606
     * 4:    0.00157952
     * 5:    0.00015795
     * 6:    0.00001316
     * 7:    0.00000094
     * 8:    0.00000006
     * more: less than 1 in ten million
     *
     * 因为树节点是常规节点两倍大小,我们只有当包含足够多的节点的时候再使用它。详见TREEIFY_THRESHOLD
     * 当删除元素或者重置大小的时候树节点很少,树节点会退化为普通链表节点
     * 在哈希算法分布的很好的情况下,树节点这种方式是很少使用的
     * 理想情况下,在随机的hashcode下,节点的频率遵循泊松分布(http://en.wikipedia.org/wiki/Poisson_distribution)
     * 对于默认调整大小阈值0.75,平均约为0.5 ,尽管由于调整粒度的原因,差异很大
     * 忽略误差,期待的数组大小占用k 是  exp(-0.5) * pow(0.5, k) /factorial(k)
     *
     * 0:    0.60653066
     * 1:    0.30326533
     * 2:    0.07581633
     * 3:    0.01263606
     * 4:    0.00157952
     * 5:    0.00015795
     * 6:    0.00001316
     * 7:    0.00000094
     * 8:    0.00000006
     * 更大的: 小于千万分之一
     *
     *
     * The root of a tree bin is normally its first node.  However,
     * sometimes (currently only upon Iterator.remove), the root might
     * be elsewhere, but can be recovered following parent links
     * (method TreeNode.root()).
     *
     * 树的根节点通常是第一个节点,然而,有时候(当前仅在Iterator.remove上),根节点可能在其他地方
     * 但是,可以沿着父链接恢复(TreeNode.root())
     *
     * All applicable internal methods accept a hash code as an
     * argument (as normally supplied from a public method), allowing
     * them to call each other without recomputing user hashCodes.
     * Most internal methods also accept a "tab" argument, that is
     * normally the current table, but may be a new or old one when
     * resizing or converting.
     *
     * 所有适用的内部方法都接受哈希代码作为参数(通常由公共方法提供)
     * 允许他们调用不重新计算哈希码
     * 大多数内部方法也接受一个tab参数,通常是当前的table表,但是当重置大小或者转换的时候,
     * 也可能 是之前的或者新的表
     *
     *
     *
     * When bin lists are treeified, split, or untreeified, we keep
     * them in the same relative access/traversal order (i.e., field
     * Node.next) to better preserve locality, and to slightly
     * simplify handling of splits and traversals that invoke
     * iterator.remove. When using comparators on insertion, to keep a
     * total ordering (or as close as is required here) across
     * rebalancings, we compare classes and identityHashCodes as
     * tie-breakers.
     *
     * 当bin列表被树化、拆分或未搜索时,
     * 我们将它们保持在相同的相对访问/遍历顺序(即字段Node.next)中,
     * 以更好地保留局部性,并稍微简化调用迭代器.remove的拆分和遍历的处理。
     * 当在插入的时候使用比较器的时候,通过重新平衡保持全局有序,
     * 我们将类和identityHashCodes作为平局决胜器进行比较。
     *
     *
     *
     *
     * The use and transitions among plain vs tree modes is
     * complicated by the existence of subclass LinkedHashMap. See
     * below for hook methods defined to be invoked upon insertion,
     * removal and access that allow LinkedHashMap internals to
     * otherwise remain independent of these mechanics. (This also
     * requires that a map instance be passed to some utility methods
     * that may create new nodes.)
     *
     * 普通模式与树模式之间的使用和转换
     * 因子类LinkedHashMap的存在而变得复杂。
     * 请参阅以下内容,了解定义为在插入、移除和访问时调用的钩子方法,
     * 这些方法允许LinkedHashMap内部保持独立于这些机制。
     * (这也要求将map对象传递给一些可能创建新节点的公共程序方法。)
     *
     * The concurrent-programming-like SSA-based coding style helps
     * avoid aliasing errors amid all of the twisty pointer operations.
     *
     * 基于SSA的并发编程风格有助于避免在所有扭曲的指针操作中出现混叠错误。
     *
     */

    /**
     * The default initial capacity - MUST be a power of two.
     *
     * 默认初始化容量,必须是2 的幂
     * 下面左移四位相当于 1 * 2 的 四次方
     */
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

    /**
     * The maximum capacity, used if a higher value is implicitly specified
     * by either of the constructors with arguments.
     * MUST be a power of two <= 1<<30.
     *
     * 最大容量,如果一个更大的值被通过构造器参数指定,必须是一个小于 2的30次方的 2的幂
     *
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;

    /**
     * The load factor used when none specified in constructor.
     * 默认的负载因子
     */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    /**
     * The bin count threshold for using a tree rather than list for a
     * bin.  Bins are converted to trees when adding an element to a
     * bin with at least this many nodes. The value must be greater
     * than 2 and should be at least 8 to mesh with assumptions in
     * tree removal about conversion back to plain bins upon
     * shrinkage.
     *
     * 使用树而不是列表作为垃圾箱的垃圾箱计数阈值。
     * 当向至少有这么多节点的bin添加元素时,bin会转换为树。
     * 该值必须大于2,并且应至少为8,以符合移除树木时关于在shrinka转换回普通垃圾箱的假设
     *
     *
     */
    static final int TREEIFY_THRESHOLD = 8;

    /**
     * The bin count threshold for untreeifying a (split) bin during a
     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
     * most 6 to mesh with shrinkage detection under removal.
     *
     * 在调整大小操作期间,用于取消搜索(拆分)垃圾箱的垃圾箱计数阈值。
     * 应小于TREEIFY_THRESHOLD,且最多为6,以便在移除时进行收缩检测。
     */
    static final int UNTREEIFY_THRESHOLD = 6;

    /**
     * The smallest table capacity for which bins may be treeified.
     * (Otherwise the table is resized if too many nodes in a bin.)
     * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
     * between resizing and treeification thresholds.
     *
     *  可以将存储箱树化的最小表容量。
     *  (否则,如果一个bin中的节点太多,则会调整表的大小。)
     *  应至少为4*TREEIFY_THRESHOLD,以避免调整大小阈值和树化阈值之间的冲突。
     *
     */
    static final int MIN_TREEIFY_CAPACITY = 64;

    /**
     * Basic hash bin node, used for most entries.  (See below for
     * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
     *
     * 大多数entry用到的,基本的哈希 node
     *
     */
    static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;

        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }

        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }

    /* ---------------- Static utilities -------------- */

    /**
     * Computes key.hashCode() and spreads (XORs) higher bits of hash
     * to lower.  Because the table uses power-of-two masking, sets of
     * hashes that vary only in bits above the current mask will
     * always collide. (Among known examples are sets of Float keys
     * holding consecutive whole numbers in small tables.)  So we
     * apply a transform that spreads the impact of higher bits
     * downward. There is a tradeoff between speed, utility, and
     * quality of bit-spreading. Because many common sets of hashes
     * are already reasonably distributed (so don't benefit from
     * spreading), and because we use trees to handle large sets of
     * collisions in bins, we just XOR some shifted bits in the
     * cheapest possible way to reduce systematic lossage, as well as
     * to incorporate impact of the highest bits that would otherwise
     * never be used in index calculations because of table bounds.
     *
     * 计算key的哈希code并和hash码的高位做 (异或) 运算。
     * 因为这样相当于让哈希码的高位也参与运算了,(因为使用2的指数次方标记,
     * 大多数只在bit上有差异的哈希码会造成频繁的哈希碰撞)
     * 所以应该将哈希吗高位的影响也能影响到低位的运算
     * 因为通常很多哈希码是合理的均匀分布的(所以从高位到低位的运算中并不会更好)
     * 而且因为我们用了树结构来解决管理大量的碰撞。我们仅仅需要用更高效快速的方式
     * 异或运算一些转换的高位字节来减少一些系统性损失,并且 合并 由于哈希表边界而在索引计算中永远不会使用 的最高位的影响
     *
     * 意思就是正常因为哈希表的长度问题,可能正常的哈希码的高位不会参与运算,但是通过将哈希码的高位下移,
     * 可以让高位也参与运算,这样相当于哈希的更均匀了
     *
     */
    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

    /**
     * Returns x's Class if it is of the form "class C implements
     * Comparable<C>", else null.
     *
     * 如果某个类实现了接口Comparable 会返回这个类信息,否则返回null
     */
    static Class<?> comparableClassFor(Object x) {
        if (x instanceof Comparable) {
            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
            if ((c = x.getClass()) == String.class) // bypass checks
                return c;
            if ((ts = c.getGenericInterfaces()) != null) {
                for (int i = 0; i < ts.length; ++i) {
                    if (((t = ts[i]) instanceof ParameterizedType) &&
                        ((p = (ParameterizedType)t).getRawType() ==
                         Comparable.class) &&
                        (as = p.getActualTypeArguments()) != null &&
                        as.length == 1 && as[0] == c) // type arg is c
                        return c;
                }
            }
        }
        return null;
    }

    /**
     * Returns k.compareTo(x) if x matches kc (k's screened comparable
     * class), else 0.
     *
     * 如果x 的类和 kc 一样的,使用k的compareTo方法和x 比较,否则返回0
     */
    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
    static int compareComparables(Class<?> kc, Object k, Object x) {
        return (x == null || x.getClass() != kc ? 0 :
                ((Comparable)k).compareTo(x));
    }

    /**
     * Returns a power of two size for the given target capacity.
     * 返回 一个2的指数对于给定的容量 ,意思是不管给的构造器容量是多少,哈希map都会最终变成2的指数次方管理容量
     */
    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

    /* ---------------- Fields -------------- */

    /**
     * The table, initialized on first use, and resized as
     * necessary. When allocated, length is always a power of two.
     * (We also tolerate length zero in some operations to allow
     * bootstrapping mechanics that are currently not needed.)
     *
     * 这个表在第一次初始化的时候使用,并且可以在需要的时候重置大小。
     * 分配的时候,长度一定是2的次方
     * (我们也一些操作中,允许长度为0 ,以允许目前不需要的自举机制。)
     * 这个没太懂,啥是自举机制?
     */
    transient Node<K,V>[] table;

    /**
     * Holds cached entrySet(). Note that AbstractMap fields are used
     * for keySet() and values().
     *
     * 持有缓存的entryset,注意AbstractMap字段用于keySet()和values()。
     *
     */
    transient Set<Map.Entry<K,V>> entrySet;

    /**
     * The number of key-value mappings contained in this map.
     * 这个map中包含的键值对
     */
    transient int size;

    /**
     * The number of times this HashMap has been structurally modified
     * Structural modifications are those that change the number of mappings in
     * the HashMap or otherwise modify its internal structure (e.g.,
     * rehash).  This field is used to make iterators on Collection-views of
     * the HashMap fail-fast.  (See ConcurrentModificationException).
     *
     * 这个map结构性修改的次数
     */
    transient int modCount;

    /**
     * The next size value at which to resize (capacity * load factor).
     *
     * 下一次重置大小的值
     * @serial
     */
    // (The javadoc description is true upon serialization.
    // Additionally, if the table array has not been allocated, this
    // field holds the initial array capacity, or zero signifying
    // DEFAULT_INITIAL_CAPACITY.)
    int threshold;

    /**
     * The load factor for the hash table.
     * 负载因子
     * @serial
     */
    final float loadFactor;

    /* ---------------- Public operations -------------- */

    /**
     * Constructs an empty <tt>HashMap</tt> with the specified initial
     * capacity and load factor.
     *
     * 用指定的容量和负载因子构造一个空的哈希map
     *
     * @param  initialCapacity the initial capacity
     * @param  loadFactor      the load factor
     * @throws IllegalArgumentException if the initial capacity is negative
     *         or the load factor is nonpositive
     */
    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }

    /**
     * Constructs an empty <tt>HashMap</tt> with the specified initial
     * capacity and the default load factor (0.75).
     *
     *  用指定的容量大小和默认的负载因子创建空的hashmap
     *
     * @param  initialCapacity the initial capacity.
     * @throws IllegalArgumentException if the initial capacity is negative.
     */
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

    /**
     * Constructs an empty <tt>HashMap</tt> with the default initial capacity
     * (16) and the default load factor (0.75).
     *
     * 创建map 容量16 负载因子 0.75
     *
     */
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

    /**
     * Constructs a new <tt>HashMap</tt> with the same mappings as the
     * specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with
     * default load factor (0.75) and an initial capacity sufficient to
     * hold the mappings in the specified <tt>Map</tt>.
     *
     * 创建一个新的map,和指定的map包含相同的元素 。
     * 新的map负载因子是0.75 初始化容量和入参map的元素数量有关
     *
     * @param   m the map whose mappings are to be placed in this map
     * @throws  NullPointerException if the specified map is null
     */
    public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }

    /**
     * Implements Map.putAll and Map constructor
     *
     * 实现putall 方法
     *
     * @param m the map
     * @param evict false when initially constructing this map, else
     * true (relayed to method afterNodeInsertion).
     */
    final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
        int s = m.size();
        if (s > 0) {
            if (table == null) { // pre-size
                float ft = ((float)s / loadFactor) + 1.0F;
                int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                         (int)ft : MAXIMUM_CAPACITY);
                if (t > threshold)
                    threshold = tableSizeFor(t);
            }
            else if (s > threshold)
                resize();
            for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
                K key = e.getKey();
                V value = e.getValue();
                putVal(hash(key), key, value, false, evict);
            }
        }
    }

    /**
     * Returns the number of key-value mappings in this map.
     *
     * 返回map中的键值对
     *
     * @return the number of key-value mappings in this map
     */
    public int size() {
        return size;
    }

    /**
     * Returns <tt>true</tt> if this map contains no key-value mappings.
     *
     * @return <tt>true</tt> if this map contains no key-value mappings
     */
    public boolean isEmpty() {
        return size == 0;
    }

    /**
     * Returns the value to which the specified key is mapped,
     * or {@code null} if this map contains no mapping for the key.
     *
     * 返回key对应的value ,如果key不存在,返回null
     *
     * <p>More formally, if this map contains a mapping
     * from a key
     * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
     * key.equals(k))}, then this method returns {@code v}; otherwise
     * it returns {@code null}.  (There can be at most one such mapping.)
     *
     * <p>A return value of {@code null} does not <i>necessarily</i>
     * indicate that the map contains no mapping for the key; it's also
     * possible that the map explicitly maps the key to {@code null}.
     * The {@link #containsKey containsKey} operation may be used to
     * distinguish these two cases.
     *
     * 返回为null 不代表一定是这个map不包含这个key
     * 也可能是这个map明确这个key 是null
     * 方法containsKey 可以区分这两种情况
     *
     * @see #put(Object, Object)
     */
    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

    /**
     * Implements Map.get and related methods
     * 实现Map的get方法
     * @param hash hash for key
     * @param key the key
     * @return the node, or null if none
     */
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

    /**
     * Returns <tt>true</tt> if this map contains a mapping for the
     * specified key.
     * 如果map 包含指定key的键值对 返回true
     *
     * @param   key   The key whose presence in this map is to be tested
     * @return <tt>true</tt> if this map contains a mapping for the specified
     * key.
     */
    public boolean containsKey(Object key) {
        return getNode(hash(key), key) != null;
    }

    /**
     * Associates the specified value with the specified key in this map.
     * If the map previously contained a mapping for the key, the old
     * value is replaced.
     *
     * 替换指定key的指定value
     *
     * @param key key with which the specified value is to be associated
     * @param value value to be associated with the specified key
     * @return the previous value associated with <tt>key</tt>, or
     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
     *         (A <tt>null</tt> return can also indicate that the map
     *         previously associated <tt>null</tt> with <tt>key</tt>.)
     */
    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

    /**
     * Implements Map.put and related methods
     *
     * @param hash hash for key
     * @param key the key
     * @param value the value to put
     * @param onlyIfAbsent if true, don't change existing value
     * @param evict if false, the table is in creation mode.
     * @return previous value, or null if none
     */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

    /**
     * Initializes or doubles table size.  If null, allocates in
     * accord with initial capacity target held in field threshold.
     * Otherwise, because we are using power-of-two expansion, the
     * elements from each bin must either stay at same index, or move
     * with a power of two offset in the new table.
     *
     * 初始化或者扩容一杯表的大小,
     *
     * 否则,因为我们使用2的指数次方扩容,每个桶中的元素一定是要么在原来的下标桶下面
     * 要么在新表中的一个2的指数资方下标下面
     *
     * @return the table
     */
    final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

    /**
     * Replaces all linked nodes in bin at index for given hash unless
     * table is too small, in which case resizes instead.
     *
     * 根绝给定的哈希码计算下标,替换对应下标的所有节点转换为树
     * 除非表太小,此时需要扩容
     *
     */
    final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            resize();
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            TreeNode<K,V> hd = null, tl = null;
            do {
                TreeNode<K,V> p = replacementTreeNode(e, null);
                if (tl == null)
                    hd = p;
                else {
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null)
                hd.treeify(tab);
        }
    }

    /**
     * Copies all of the mappings from the specified map to this map.
     * These mappings will replace any mappings that this map had for
     * any of the keys currently in the specified map.
     *
     * 复制指定的map里面的键值对到新的map里面
     * 如果两个map有重复的key的话,会覆盖
     *
     * @param m mappings to be stored in this map
     * @throws NullPointerException if the specified map is null
     */
    public void putAll(Map<? extends K, ? extends V> m) {
        putMapEntries(m, true);
    }

    /**
     * Removes the mapping for the specified key from this map if present.
     *
     * 如果存在的话,会删除指定的key
     *
     * @param  key key whose mapping is to be removed from the map
     * @return the previous value associated with <tt>key</tt>, or
     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
     *         (A <tt>null</tt> return can also indicate that the map
     *         previously associated <tt>null</tt> with <tt>key</tt>.)
     */
    public V remove(Object key) {
        Node<K,V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }

    /**
     * Implements Map.remove and related methods
     *
     * 实现了map 的remove 方法和相关方法
     * @param hash hash for key
     * @param key the key
     * @param value the value to match if matchValue, else ignored
     * @param matchValue if true only remove if value is equal
     * @param movable if false do not move other nodes while removing
     * @return the node, or null if none
     */
    final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            Node<K,V> node = null, e; K k; V v;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            else if ((e = p.next) != null) {
                if (p instanceof TreeNode)
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else {
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                else if (node == p)
                    tab[index] = node.next;
                else
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }

    /**
     * Removes all of the mappings from this map.
     * The map will be empty after this call returns.
     *
     * 删除所有元素
     */
    public void clear() {
        Node<K,V>[] tab;
        modCount++;
        if ((tab = table) != null && size > 0) {
            size = 0;
            for (int i = 0; i < tab.length; ++i)
                tab[i] = null;
        }
    }

    /**
     * Returns <tt>true</tt> if this map maps one or more keys to the
     * specified value.
     * 如果有一个或者多个键值对的值能对应,返回true
     *
     * @param value value whose presence in this map is to be tested
     * @return <tt>true</tt> if this map maps one or more keys to the
     *         specified value
     */
    public boolean containsValue(Object value) {
        Node<K,V>[] tab; V v;
        if ((tab = table) != null && size > 0) {
            for (int i = 0; i < tab.length; ++i) {
                for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                    if ((v = e.value) == value ||
                        (value != null && value.equals(v)))
                        return true;
                }
            }
        }
        return false;
    }

    /**
     * Returns a {@link Set} view of the keys contained in this map.
     * The set is backed by the map, so changes to the map are
     * reflected in the set, and vice-versa.  If the map is modified
     * while an iteration over the set is in progress (except through
     * the iterator's own <tt>remove</tt> operation), the results of
     * the iteration are undefined.  The set supports element removal,
     * which removes the corresponding mapping from the map, via the
     * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
     * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
     * operations.
     *
     * 返回map中包含的key的Set集合
     * 这个set底层是map,为此map的修改会体现到set上面。反之亦然
     * 当有一个创建的迭代器在运行中的时候,如果map被修改了,迭代的结果是出乎意料的。
     * 通过Iterator.remove, Set.remove, removeAll, retainAll, and clear
     * 操作,这个set集合支持元素删除
     * 不支持 add 和 addall操作
     *
     *
     *
     *
     * @return a set view of the keys contained in this map
     */
    public Set<K> keySet() {
        Set<K> ks = keySet;
        if (ks == null) {
            ks = new KeySet();
            keySet = ks;
        }
        return ks;
    }

    final class KeySet extends AbstractSet<K> {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        public final Iterator<K> iterator()     { return new KeyIterator(); }
        public final boolean contains(Object o) { return containsKey(o); }
        public final boolean remove(Object key) {
            return removeNode(hash(key), key, null, false, true) != null;
        }
        public final Spliterator<K> spliterator() {
            return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
        }
        public final void forEach(Consumer<? super K> action) {
            Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K,V> e = tab[i]; e != null; e = e.next)
                        action.accept(e.key);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

    /**
     * Returns a {@link Collection} view of the values contained in this map.
     * The collection is backed by the map, so changes to the map are
     * reflected in the collection, and vice-versa.  If the map is
     * modified while an iteration over the collection is in progress
     * (except through the iterator's own <tt>remove</tt> operation),
     * the results of the iteration are undefined.  The collection
     * supports element removal, which removes the corresponding
     * mapping from the map, via the <tt>Iterator.remove</tt>,
     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
     * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
     * support the <tt>add</tt> or <tt>addAll</tt> operations.
     *
     *
     * 返回map中包含的Value的Collection集合
     * 这个集合底层是map,为此map的修改会体现到集合上面。反之亦然
     * 当有一个创建的迭代器在运行中的时候,如果map被修改了,迭代的结果是出乎意料的。
     * 通过 Iterator.remove, Collection.remove, removeAll, retainAll and clear
     * 操作,这个集合支持元素删除
     * 不支持 add 和 addall操作
     *
     *
     * @return a view of the values contained in this map
     */
    public Collection<V> values() {
        Collection<V> vs = values;
        if (vs == null) {
            vs = new Values();
            values = vs;
        }
        return vs;
    }

    final class Values extends AbstractCollection<V> {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        public final Iterator<V> iterator()     { return new ValueIterator(); }
        public final boolean contains(Object o) { return containsValue(o); }
        public final Spliterator<V> spliterator() {
            return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
        }
        public final void forEach(Consumer<? super V> action) {
            Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K,V> e = tab[i]; e != null; e = e.next)
                        action.accept(e.value);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

    /**
     * Returns a {@link Set} view of the mappings contained in this map.
     * The set is backed by the map, so changes to the map are
     * reflected in the set, and vice-versa.  If the map is modified
     * while an iteration over the set is in progress (except through
     * the iterator's own <tt>remove</tt> operation, or through the
     * <tt>setValue</tt> operation on a map entry returned by the
     * iterator) the results of the iteration are undefined.  The set
     * supports element removal, which removes the corresponding
     * mapping from the map, via the <tt>Iterator.remove</tt>,
     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
     * <tt>clear</tt> operations.  It does not support the
     * <tt>add</tt> or <tt>addAll</tt> operations.
     *
     * 返回map中包含的键值对的Set集合
     * 这个集合底层是map,为此map的修改会体现到集合上面。反之亦然
     * 当有一个创建的迭代器在运行中的时候,如果map被修改了,迭代的结果是出乎意料的。
     * 通过Iterator.remove, Set.remove, removeAll, retainAll, and clear
     * 操作,这个集合支持元素删除
     * 不支持 add 和 addall操作
     *
     * @return a set view of the mappings contained in this map
     */
    public Set<Map.Entry<K,V>> entrySet() {
        Set<Map.Entry<K,V>> es;
        return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
    }

    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        public final Iterator<Map.Entry<K,V>> iterator() {
            return new EntryIterator();
        }
        public final boolean contains(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<?,?> e = (Map.Entry<?,?>) o;
            Object key = e.getKey();
            Node<K,V> candidate = getNode(hash(key), key);
            return candidate != null && candidate.equals(e);
        }
        public final boolean remove(Object o) {
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>) o;
                Object key = e.getKey();
                Object value = e.getValue();
                return removeNode(hash(key), key, value, true, true) != null;
            }
            return false;
        }
        public final Spliterator<Map.Entry<K,V>> spliterator() {
            return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
        }
        public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
            Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K,V> e = tab[i]; e != null; e = e.next)
                        action.accept(e);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

    // Overrides of JDK8 Map extension methods
    //重写jdk8map 的扩展方法

    @Override
    public V getOrDefault(Object key, V defaultValue) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
    }

    @Override
    public V putIfAbsent(K key, V value) {
        return putVal(hash(key), key, value, true, true);
    }

    @Override
    public boolean remove(Object key, Object value) {
        return removeNode(hash(key), key, value, true, true) != null;
    }

    @Override
    public boolean replace(K key, V oldValue, V newValue) {
        Node<K,V> e; V v;
        if ((e = getNode(hash(key), key)) != null &&
            ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
            e.value = newValue;
            afterNodeAccess(e);
            return true;
        }
        return false;
    }

    @Override
    public V replace(K key, V value) {
        Node<K,V> e;
        if ((e = getNode(hash(key), key)) != null) {
            V oldValue = e.value;
            e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
        return null;
    }

    @Override
    public V computeIfAbsent(K key,
                             Function<? super K, ? extends V> mappingFunction) {
        if (mappingFunction == null)
            throw new NullPointerException();
        int hash = hash(key);
        Node<K,V>[] tab; Node<K,V> first; int n, i;
        int binCount = 0;
        TreeNode<K,V> t = null;
        Node<K,V> old = null;
        if (size > threshold || (tab = table) == null ||
            (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((first = tab[i = (n - 1) & hash]) != null) {
            if (first instanceof TreeNode)
                old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
            else {
                Node<K,V> e = first; K k;
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k)))) {
                        old = e;
                        break;
                    }
                    ++binCount;
                } while ((e = e.next) != null);
            }
            V oldValue;
            if (old != null && (oldValue = old.value) != null) {
                afterNodeAccess(old);
                return oldValue;
            }
        }
        V v = mappingFunction.apply(key);
        if (v == null) {
            return null;
        } else if (old != null) {
            old.value = v;
            afterNodeAccess(old);
            return v;
        }
        else if (t != null)
            t.putTreeVal(this, tab, hash, key, v);
        else {
            tab[i] = newNode(hash, key, v, first);
            if (binCount >= TREEIFY_THRESHOLD - 1)
                treeifyBin(tab, hash);
        }
        ++modCount;
        ++size;
        afterNodeInsertion(true);
        return v;
    }

    public V computeIfPresent(K key,
                              BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
        if (remappingFunction == null)
            throw new NullPointerException();
        Node<K,V> e; V oldValue;
        int hash = hash(key);
        if ((e = getNode(hash, key)) != null &&
            (oldValue = e.value) != null) {
            V v = remappingFunction.apply(key, oldValue);
            if (v != null) {
                e.value = v;
                afterNodeAccess(e);
                return v;
            }
            else
                removeNode(hash, key, null, false, true);
        }
        return null;
    }

    @Override
    public V compute(K key,
                     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
        if (remappingFunction == null)
            throw new NullPointerException();
        int hash = hash(key);
        Node<K,V>[] tab; Node<K,V> first; int n, i;
        int binCount = 0;
        TreeNode<K,V> t = null;
        Node<K,V> old = null;
        if (size > threshold || (tab = table) == null ||
            (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((first = tab[i = (n - 1) & hash]) != null) {
            if (first instanceof TreeNode)
                old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
            else {
                Node<K,V> e = first; K k;
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k)))) {
                        old = e;
                        break;
                    }
                    ++binCount;
                } while ((e = e.next) != null);
            }
        }
        V oldValue = (old == null) ? null : old.value;
        V v = remappingFunction.apply(key, oldValue);
        if (old != null) {
            if (v != null) {
                old.value = v;
                afterNodeAccess(old);
            }
            else
                removeNode(hash, key, null, false, true);
        }
        else if (v != null) {
            if (t != null)
                t.putTreeVal(this, tab, hash, key, v);
            else {
                tab[i] = newNode(hash, key, v, first);
                if (binCount >= TREEIFY_THRESHOLD - 1)
                    treeifyBin(tab, hash);
            }
            ++modCount;
            ++size;
            afterNodeInsertion(true);
        }
        return v;
    }

    @Override
    public V merge(K key, V value,
                   BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
        if (value == null)
            throw new NullPointerException();
        if (remappingFunction == null)
            throw new NullPointerException();
        int hash = hash(key);
        Node<K,V>[] tab; Node<K,V> first; int n, i;
        int binCount = 0;
        TreeNode<K,V> t = null;
        Node<K,V> old = null;
        if (size > threshold || (tab = table) == null ||
            (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((first = tab[i = (n - 1) & hash]) != null) {
            if (first instanceof TreeNode)
                old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
            else {
                Node<K,V> e = first; K k;
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k)))) {
                        old = e;
                        break;
                    }
                    ++binCount;
                } while ((e = e.next) != null);
            }
        }
        if (old != null) {
            V v;
            if (old.value != null)
                v = remappingFunction.apply(old.value, value);
            else
                v = value;
            if (v != null) {
                old.value = v;
                afterNodeAccess(old);
            }
            else
                removeNode(hash, key, null, false, true);
            return v;
        }
        if (value != null) {
            if (t != null)
                t.putTreeVal(this, tab, hash, key, value);
            else {
                tab[i] = newNode(hash, key, value, first);
                if (binCount >= TREEIFY_THRESHOLD - 1)
                    treeifyBin(tab, hash);
            }
            ++modCount;
            ++size;
            afterNodeInsertion(true);
        }
        return value;
    }

    @Override
    public void forEach(BiConsumer<? super K, ? super V> action) {
        Node<K,V>[] tab;
        if (action == null)
            throw new NullPointerException();
        if (size > 0 && (tab = table) != null) {
            int mc = modCount;
            for (int i = 0; i < tab.length; ++i) {
                for (Node<K,V> e = tab[i]; e != null; e = e.next)
                    action.accept(e.key, e.value);
            }
            if (modCount != mc)
                throw new ConcurrentModificationException();
        }
    }

    @Override
    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
        Node<K,V>[] tab;
        if (function == null)
            throw new NullPointerException();
        if (size > 0 && (tab = table) != null) {
            int mc = modCount;
            for (int i = 0; i < tab.length; ++i) {
                for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                    e.value = function.apply(e.key, e.value);
                }
            }
            if (modCount != mc)
                throw new ConcurrentModificationException();
        }
    }

    /* ------------------------------------------------------------ */
    // Cloning and serialization
    //克隆并且序列化

    /**
     * Returns a shallow copy of this <tt>HashMap</tt> instance: the keys and
     * values themselves are not cloned.
     * 返回一个对象的浅拷贝
     *
     * @return a shallow copy of this map
     */
    @SuppressWarnings("unchecked")
    @Override
    public Object clone() {
        HashMap<K,V> result;
        try {
            result = (HashMap<K,V>)super.clone();
        } catch (CloneNotSupportedException e) {
            // this shouldn't happen, since we are Cloneable
            throw new InternalError(e);
        }
        result.reinitialize();
        result.putMapEntries(this, false);
        return result;
    }

    // These methods are also used when serializing HashSets
    //这些方法在序列化hashset的时候也会被使用
    final float loadFactor() { return loadFactor; }
    final int capacity() {
        return (table != null) ? table.length :
            (threshold > 0) ? threshold :
            DEFAULT_INITIAL_CAPACITY;
    }

    /**
     * Save the state of the <tt>HashMap</tt> instance to a stream (i.e.,
     * serialize it).
     *
     * 序列化
     *
     * @serialData The <i>capacity</i> of the HashMap (the length of the
     *             bucket array) is emitted (int), followed by the
     *             <i>size</i> (an int, the number of key-value
     *             mappings), followed by the key (Object) and value (Object)
     *             for each key-value mapping.  The key-value mappings are
     *             emitted in no particular order.
     */
    private void writeObject(java.io.ObjectOutputStream s)
        throws IOException {
        int buckets = capacity();
        // Write out the threshold, loadfactor, and any hidden stuff
        s.defaultWriteObject();
        s.writeInt(buckets);
        s.writeInt(size);
        internalWriteEntries(s);
    }

    /**
     * Reconstitute the {@code HashMap} instance from a stream (i.e.,
     * deserialize it).
     * 反序列化
     */
    private void readObject(java.io.ObjectInputStream s)
        throws IOException, ClassNotFoundException {
        // Read in the threshold (ignored), loadfactor, and any hidden stuff
        s.defaultReadObject();
        reinitialize();
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new InvalidObjectException("Illegal load factor: " +
                                             loadFactor);
        s.readInt();                // Read and ignore number of buckets
        int mappings = s.readInt(); // Read number of mappings (size)
        if (mappings < 0)
            throw new InvalidObjectException("Illegal mappings count: " +
                                             mappings);
        else if (mappings > 0) { // (if zero, use defaults)
            // Size the table using given load factor only if within
            // range of 0.25...4.0
            float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f);
            float fc = (float)mappings / lf + 1.0f;
            int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ?
                       DEFAULT_INITIAL_CAPACITY :
                       (fc >= MAXIMUM_CAPACITY) ?
                       MAXIMUM_CAPACITY :
                       tableSizeFor((int)fc));
            float ft = (float)cap * lf;
            threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ?
                         (int)ft : Integer.MAX_VALUE);

            // Check Map.Entry[].class since it's the nearest public type to
            // what we're actually creating.
            SharedSecrets.getJavaOISAccess().checkArray(s, Map.Entry[].class, cap);
            @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] tab = (Node<K,V>[])new Node[cap];
            table = tab;

            // Read the keys and values, and put the mappings in the HashMap
            for (int i = 0; i < mappings; i++) {
                @SuppressWarnings("unchecked")
                    K key = (K) s.readObject();
                @SuppressWarnings("unchecked")
                    V value = (V) s.readObject();
                putVal(hash(key), key, value, false, false);
            }
        }
    }

    /* ------------------------------------------------------------ */
    // iterators
    //迭代器
    abstract class HashIterator {
        Node<K,V> next;        // next entry to return
        Node<K,V> current;     // current entry
        int expectedModCount;  // for fast-fail
        int index;             // current slot

        HashIterator() {
            expectedModCount = modCount;
            Node<K,V>[] t = table;
            current = next = null;
            index = 0;
            if (t != null && size > 0) { // advance to first entry
                do {} while (index < t.length && (next = t[index++]) == null);
            }
        }

        public final boolean hasNext() {
            return next != null;
        }

        final Node<K,V> nextNode() {
            Node<K,V>[] t;
            Node<K,V> e = next;
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            if (e == null)
                throw new NoSuchElementException();
            if ((next = (current = e).next) == null && (t = table) != null) {
                do {} while (index < t.length && (next = t[index++]) == null);
            }
            return e;
        }

        public final void remove() {
            Node<K,V> p = current;
            if (p == null)
                throw new IllegalStateException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            current = null;
            K key = p.key;
            removeNode(hash(key), key, null, false, false);
            expectedModCount = modCount;
        }
    }

    final class KeyIterator extends HashIterator
        implements Iterator<K> {
        public final K next() { return nextNode().key; }
    }

    final class ValueIterator extends HashIterator
        implements Iterator<V> {
        public final V next() { return nextNode().value; }
    }

    final class EntryIterator extends HashIterator
        implements Iterator<Map.Entry<K,V>> {
        public final Map.Entry<K,V> next() { return nextNode(); }
    }

    /* ------------------------------------------------------------ */
    // spliterators
    //并行迭代器
    static class HashMapSpliterator<K,V> {
        final HashMap<K,V> map;
        Node<K,V> current;          // current node
        int index;                  // current index, modified on advance/split
        int fence;                  // one past last index
        int est;                    // size estimate
        int expectedModCount;       // for comodification checks

        HashMapSpliterator(HashMap<K,V> m, int origin,
                           int fence, int est,
                           int expectedModCount) {
            this.map = m;
            this.index = origin;
            this.fence = fence;
            this.est = est;
            this.expectedModCount = expectedModCount;
        }

        final int getFence() { // initialize fence and size on first use
            int hi;
            if ((hi = fence) < 0) {
                HashMap<K,V> m = map;
                est = m.size;
                expectedModCount = m.modCount;
                Node<K,V>[] tab = m.table;
                hi = fence = (tab == null) ? 0 : tab.length;
            }
            return hi;
        }

        public final long estimateSize() {
            getFence(); // force init
            return (long) est;
        }
    }

    static final class KeySpliterator<K,V>
        extends HashMapSpliterator<K,V>
        implements Spliterator<K> {
        KeySpliterator(HashMap<K,V> m, int origin, int fence, int est,
                       int expectedModCount) {
            super(m, origin, fence, est, expectedModCount);
        }

        public KeySpliterator<K,V> trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid || current != null) ? null :
                new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
                                        expectedModCount);
        }

        public void forEachRemaining(Consumer<? super K> action) {
            int i, hi, mc;
            if (action == null)
                throw new NullPointerException();
            HashMap<K,V> m = map;
            Node<K,V>[] tab = m.table;
            if ((hi = fence) < 0) {
                mc = expectedModCount = m.modCount;
                hi = fence = (tab == null) ? 0 : tab.length;
            }
            else
                mc = expectedModCount;
            if (tab != null && tab.length >= hi &&
                (i = index) >= 0 && (i < (index = hi) || current != null)) {
                Node<K,V> p = current;
                current = null;
                do {
                    if (p == null)
                        p = tab[i++];
                    else {
                        action.accept(p.key);
                        p = p.next;
                    }
                } while (p != null || i < hi);
                if (m.modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }

        public boolean tryAdvance(Consumer<? super K> action) {
            int hi;
            if (action == null)
                throw new NullPointerException();
            Node<K,V>[] tab = map.table;
            if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                while (current != null || index < hi) {
                    if (current == null)
                        current = tab[index++];
                    else {
                        K k = current.key;
                        current = current.next;
                        action.accept(k);
                        if (map.modCount != expectedModCount)
                            throw new ConcurrentModificationException();
                        return true;
                    }
                }
            }
            return false;
        }

        public int characteristics() {
            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
                Spliterator.DISTINCT;
        }
    }

    static final class ValueSpliterator<K,V>
        extends HashMapSpliterator<K,V>
        implements Spliterator<V> {
        ValueSpliterator(HashMap<K,V> m, int origin, int fence, int est,
                         int expectedModCount) {
            super(m, origin, fence, est, expectedModCount);
        }

        public ValueSpliterator<K,V> trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid || current != null) ? null :
                new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
                                          expectedModCount);
        }

        public void forEachRemaining(Consumer<? super V> action) {
            int i, hi, mc;
            if (action == null)
                throw new NullPointerException();
            HashMap<K,V> m = map;
            Node<K,V>[] tab = m.table;
            if ((hi = fence) < 0) {
                mc = expectedModCount = m.modCount;
                hi = fence = (tab == null) ? 0 : tab.length;
            }
            else
                mc = expectedModCount;
            if (tab != null && tab.length >= hi &&
                (i = index) >= 0 && (i < (index = hi) || current != null)) {
                Node<K,V> p = current;
                current = null;
                do {
                    if (p == null)
                        p = tab[i++];
                    else {
                        action.accept(p.value);
                        p = p.next;
                    }
                } while (p != null || i < hi);
                if (m.modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }

        public boolean tryAdvance(Consumer<? super V> action) {
            int hi;
            if (action == null)
                throw new NullPointerException();
            Node<K,V>[] tab = map.table;
            if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                while (current != null || index < hi) {
                    if (current == null)
                        current = tab[index++];
                    else {
                        V v = current.value;
                        current = current.next;
                        action.accept(v);
                        if (map.modCount != expectedModCount)
                            throw new ConcurrentModificationException();
                        return true;
                    }
                }
            }
            return false;
        }

        public int characteristics() {
            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);
        }
    }

    static final class EntrySpliterator<K,V>
        extends HashMapSpliterator<K,V>
        implements Spliterator<Map.Entry<K,V>> {
        EntrySpliterator(HashMap<K,V> m, int origin, int fence, int est,
                         int expectedModCount) {
            super(m, origin, fence, est, expectedModCount);
        }

        public EntrySpliterator<K,V> trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid || current != null) ? null :
                new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
                                          expectedModCount);
        }

        public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
            int i, hi, mc;
            if (action == null)
                throw new NullPointerException();
            HashMap<K,V> m = map;
            Node<K,V>[] tab = m.table;
            if ((hi = fence) < 0) {
                mc = expectedModCount = m.modCount;
                hi = fence = (tab == null) ? 0 : tab.length;
            }
            else
                mc = expectedModCount;
            if (tab != null && tab.length >= hi &&
                (i = index) >= 0 && (i < (index = hi) || current != null)) {
                Node<K,V> p = current;
                current = null;
                do {
                    if (p == null)
                        p = tab[i++];
                    else {
                        action.accept(p);
                        p = p.next;
                    }
                } while (p != null || i < hi);
                if (m.modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }

        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
            int hi;
            if (action == null)
                throw new NullPointerException();
            Node<K,V>[] tab = map.table;
            if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                while (current != null || index < hi) {
                    if (current == null)
                        current = tab[index++];
                    else {
                        Node<K,V> e = current;
                        current = current.next;
                        action.accept(e);
                        if (map.modCount != expectedModCount)
                            throw new ConcurrentModificationException();
                        return true;
                    }
                }
            }
            return false;
        }

        public int characteristics() {
            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
                Spliterator.DISTINCT;
        }
    }

    /* ------------------------------------------------------------ */
    // LinkedHashMap support


    /*
     * The following package-protected methods are designed to be
     * overridden by LinkedHashMap, but not by any other subclass.
     * Nearly all other internal methods are also package-protected
     * but are declared final, so can be used by LinkedHashMap, view
     * classes, and HashSet.
     *
     * 下面的包保护级别的方法是设计用来linkedhashmap重写的,但是不是被其他子类
     *  几乎所有的其他内部方法也是包级别的,但是被声明为final  ,所以可以被linkedhashmap hashset
     *  使用
     */

    // Create a regular (non-tree) node
    //创建一个非树节点
    Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
        return new Node<>(hash, key, value, next);
    }

    // For conversion from TreeNodes to plain nodes
    //转换树节点到链表节点
    Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
        return new Node<>(p.hash, p.key, p.value, next);
    }

    // Create a tree bin node
    //创建一个树节点
    TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
        return new TreeNode<>(hash, key, value, next);
    }

    // For treeifyBin
    //treeifyBin 方法调用
    TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
        return new TreeNode<>(p.hash, p.key, p.value, next);
    }

    /**
     * Reset to initial default state.  Called by clone and readObject.
     * 重置来初始化到默认状态,被克隆和反序列化方法调用
     */
    void reinitialize() {
        table = null;
        entrySet = null;
        keySet = null;
        values = null;
        modCount = 0;
        threshold = 0;
        size = 0;
    }

    // Callbacks to allow LinkedHashMap post-actions
    //提供给子类的回调函数来传递行为,这也叫钩子函数
    void afterNodeAccess(Node<K,V> p) { }
    void afterNodeInsertion(boolean evict) { }
    void afterNodeRemoval(Node<K,V> p) { }

    // Called only from writeObject, to ensure compatible ordering.
    //序列化的时候才会被调用,来确保顺序
    void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
        Node<K,V>[] tab;
        if (size > 0 && (tab = table) != null) {
            for (int i = 0; i < tab.length; ++i) {
                for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                    s.writeObject(e.key);
                    s.writeObject(e.value);
                }
            }
        }
    }

    /* ------------------------------------------------------------ */
    // Tree bins

    /**
     * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
     * extends Node) so can be used as extension of either regular or
     * linked node.
     *
     * 树节点,继承了 LinkedHashMap.Entry(也就是继承了Node节点)
     * 所以可以用来扩展常规节点或者链表节点
     */
    static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
        TreeNode<K,V> parent;  // red-black tree links
        TreeNode<K,V> left;
        TreeNode<K,V> right;
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;
        TreeNode(int hash, K key, V val, Node<K,V> next) {
            super(hash, key, val, next);
        }

        /**
         * Returns root of tree containing this node.
         * 返回树节点的根节点
         */
        final TreeNode<K,V> root() {
            for (TreeNode<K,V> r = this, p;;) {
                if ((p = r.parent) == null)
                    return r;
                r = p;
            }
        }

        /**
         * Ensures that the given root is the first node of its bin.
         * 确定给定的root节点是 第一个节点
         */
        static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
            int n;
            if (root != null && tab != null && (n = tab.length) > 0) {
                int index = (n - 1) & root.hash;
                TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
                if (root != first) {
                    Node<K,V> rn;
                    tab[index] = root;
                    TreeNode<K,V> rp = root.prev;
                    if ((rn = root.next) != null)
                        ((TreeNode<K,V>)rn).prev = rp;
                    if (rp != null)
                        rp.next = rn;
                    if (first != null)
                        first.prev = root;
                    root.next = first;
                    root.prev = null;
                }
                assert checkInvariants(root);
            }
        }

        /**
         * Finds the node starting at root p with the given hash and key.
         * The kc argument caches comparableClassFor(key) upon first use
         * comparing keys.
         *
         * 用知道的哈希码和key 找一个从根节点开始的节点
         * kc参数缓存了 comparableClassFor(key) 的结构,在第一次使用比较key的时候
         */
        final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
            TreeNode<K,V> p = this;
            do {
                int ph, dir; K pk;
                TreeNode<K,V> pl = p.left, pr = p.right, q;
                if ((ph = p.hash) > h)
                    p = pl;
                else if (ph < h)
                    p = pr;
                else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                    return p;
                else if (pl == null)
                    p = pr;
                else if (pr == null)
                    p = pl;
                else if ((kc != null ||
                          (kc = comparableClassFor(k)) != null) &&
                         (dir = compareComparables(kc, k, pk)) != 0)
                    p = (dir < 0) ? pl : pr;
                else if ((q = pr.find(h, k, kc)) != null)
                    return q;
                else
                    p = pl;
            } while (p != null);
            return null;
        }

        /**
         * Calls find for root node.
         * 调用查找根节点。
         */
        final TreeNode<K,V> getTreeNode(int h, Object k) {
            return ((parent != null) ? root() : this).find(h, k, null);
        }

        /**
         * Tie-breaking utility for ordering insertions when equal
         * hashCodes and non-comparable. We don't require a total
         * order, just a consistent insertion rule to maintain
         * equivalence across rebalancings. Tie-breaking further than
         * necessary simplifies testing a bit.
         *
         * 当哈希码相等还没法排序的时候,有序插入节点程序
         * 我们不是要求一个完整的顺序,仅仅是一个始终如一的插入规则来
         * 在重新平衡之间保持一致。
         * Tie-breaking 可以在必要的时候稍微简化测试
         */
        static int tieBreakOrder(Object a, Object b) {
            int d;
            if (a == null || b == null ||
                (d = a.getClass().getName().
                 compareTo(b.getClass().getName())) == 0)
                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
                     -1 : 1);
            return d;
        }

        /**
         * Forms tree of the nodes linked from this node.
         * 将链表节点变为树
         * @return root of tree
         */
        final void treeify(Node<K,V>[] tab) {
            TreeNode<K,V> root = null;
            for (TreeNode<K,V> x = this, next; x != null; x = next) {
                next = (TreeNode<K,V>)x.next;
                x.left = x.right = null;
                if (root == null) {
                    x.parent = null;
                    x.red = false;
                    root = x;
                }
                else {
                    K k = x.key;
                    int h = x.hash;
                    Class<?> kc = null;
                    for (TreeNode<K,V> p = root;;) {
                        int dir, ph;
                        K pk = p.key;
                        if ((ph = p.hash) > h)
                            dir = -1;
                        else if (ph < h)
                            dir = 1;
                        else if ((kc == null &&
                                  (kc = comparableClassFor(k)) == null) ||
                                 (dir = compareComparables(kc, k, pk)) == 0)
                            dir = tieBreakOrder(k, pk);

                        TreeNode<K,V> xp = p;
                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
                            x.parent = xp;
                            if (dir <= 0)
                                xp.left = x;
                            else
                                xp.right = x;
                            root = balanceInsertion(root, x);
                            break;
                        }
                    }
                }
            }
            moveRootToFront(tab, root);
        }

        /**
         * Returns a list of non-TreeNodes replacing those linked from
         * this node.
         *
         *  把这个节点指向的所有节点返回为一个非树节点的链表,去除树化
         */
        final Node<K,V> untreeify(HashMap<K,V> map) {
            Node<K,V> hd = null, tl = null;
            for (Node<K,V> q = this; q != null; q = q.next) {
                Node<K,V> p = map.replacementNode(q, null);
                if (tl == null)
                    hd = p;
                else
                    tl.next = p;
                tl = p;
            }
            return hd;
        }

        /**
         * Tree version of putVal.
         * 树版本的putval
         */
        final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
                                       int h, K k, V v) {
            Class<?> kc = null;
            boolean searched = false;
            TreeNode<K,V> root = (parent != null) ? root() : this;
            for (TreeNode<K,V> p = root;;) {
                int dir, ph; K pk;
                if ((ph = p.hash) > h)
                    dir = -1;
                else if (ph < h)
                    dir = 1;
                else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                    return p;
                else if ((kc == null &&
                          (kc = comparableClassFor(k)) == null) ||
                         (dir = compareComparables(kc, k, pk)) == 0) {
                    if (!searched) {
                        TreeNode<K,V> q, ch;
                        searched = true;
                        if (((ch = p.left) != null &&
                             (q = ch.find(h, k, kc)) != null) ||
                            ((ch = p.right) != null &&
                             (q = ch.find(h, k, kc)) != null))
                            return q;
                    }
                    dir = tieBreakOrder(k, pk);
                }

                TreeNode<K,V> xp = p;
                if ((p = (dir <= 0) ? p.left : p.right) == null) {
                    Node<K,V> xpn = xp.next;
                    TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
                    if (dir <= 0)
                        xp.left = x;
                    else
                        xp.right = x;
                    xp.next = x;
                    x.parent = x.prev = xp;
                    if (xpn != null)
                        ((TreeNode<K,V>)xpn).prev = x;
                    moveRootToFront(tab, balanceInsertion(root, x));
                    return null;
                }
            }
        }

        /**
         * Removes the given node, that must be present before this call.
         * This is messier than typical red-black deletion code because we
         * cannot swap the contents of an interior node with a leaf
         * successor that is pinned by "next" pointers that are accessible
         * independently during traversal. So instead we swap the tree
         * linkages. If the current tree appears to have too few nodes,
         * the bin is converted back to a plain bin. (The test triggers
         * somewhere between 2 and 6 nodes, depending on tree structure).
         *
         * 移除给定的节点(这个节点在这次调用之前必须存在)
         * 这个比传统的红黑树删除节点麻烦,因为我们不能将内部节点的内容与叶后继节点交换,
         * 叶后继节点由遍历期间可独立访问的“下一个”指针固定
         * 所以,替代的是,如果一个当前树包含节点太少,我们把树退化为链表(测试有时候是2个到6个节点,取决于树的结构)
         *
         */
        final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
                                  boolean movable) {
            int n;
            if (tab == null || (n = tab.length) == 0)
                return;
            int index = (n - 1) & hash;
            TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
            TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
            if (pred == null)
                tab[index] = first = succ;
            else
                pred.next = succ;
            if (succ != null)
                succ.prev = pred;
            if (first == null)
                return;
            if (root.parent != null)
                root = root.root();
            if (root == null || root.right == null ||
                (rl = root.left) == null || rl.left == null) {
                tab[index] = first.untreeify(map);  // too small
                return;
            }
            TreeNode<K,V> p = this, pl = left, pr = right, replacement;
            if (pl != null && pr != null) {
                TreeNode<K,V> s = pr, sl;
                while ((sl = s.left) != null) // find successor
                    s = sl;
                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
                TreeNode<K,V> sr = s.right;
                TreeNode<K,V> pp = p.parent;
                if (s == pr) { // p was s's direct parent
                    p.parent = s;
                    s.right = p;
                }
                else {
                    TreeNode<K,V> sp = s.parent;
                    if ((p.parent = sp) != null) {
                        if (s == sp.left)
                            sp.left = p;
                        else
                            sp.right = p;
                    }
                    if ((s.right = pr) != null)
                        pr.parent = s;
                }
                p.left = null;
                if ((p.right = sr) != null)
                    sr.parent = p;
                if ((s.left = pl) != null)
                    pl.parent = s;
                if ((s.parent = pp) == null)
                    root = s;
                else if (p == pp.left)
                    pp.left = s;
                else
                    pp.right = s;
                if (sr != null)
                    replacement = sr;
                else
                    replacement = p;
            }
            else if (pl != null)
                replacement = pl;
            else if (pr != null)
                replacement = pr;
            else
                replacement = p;
            if (replacement != p) {
                TreeNode<K,V> pp = replacement.parent = p.parent;
                if (pp == null)
                    root = replacement;
                else if (p == pp.left)
                    pp.left = replacement;
                else
                    pp.right = replacement;
                p.left = p.right = p.parent = null;
            }

            TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);

            if (replacement == p) {  // detach
                TreeNode<K,V> pp = p.parent;
                p.parent = null;
                if (pp != null) {
                    if (p == pp.left)
                        pp.left = null;
                    else if (p == pp.right)
                        pp.right = null;
                }
            }
            if (movable)
                moveRootToFront(tab, r);
        }

        /**
         * Splits nodes in a tree bin into lower and upper tree bins,
         * or untreeifies if now too small. Called only from resize;
         * see above discussion about split bits and indices.
         *
         * 拆分一个树的节点到低位和高位两个树节点,如果节点太少的话,可以先不树化。
         * 只有resize 方法会调用
         *
         * @param map the map
         * @param tab the table for recording bin heads
         * @param index the index of the table being split
         * @param bit the bit of hash to split on
         */
        final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
            TreeNode<K,V> b = this;
            // Relink into lo and hi lists, preserving order
            TreeNode<K,V> loHead = null, loTail = null;
            TreeNode<K,V> hiHead = null, hiTail = null;
            int lc = 0, hc = 0;
            for (TreeNode<K,V> e = b, next; e != null; e = next) {
                next = (TreeNode<K,V>)e.next;
                e.next = null;
                if ((e.hash & bit) == 0) {
                    if ((e.prev = loTail) == null)
                        loHead = e;
                    else
                        loTail.next = e;
                    loTail = e;
                    ++lc;
                }
                else {
                    if ((e.prev = hiTail) == null)
                        hiHead = e;
                    else
                        hiTail.next = e;
                    hiTail = e;
                    ++hc;
                }
            }

            if (loHead != null) {
                if (lc <= UNTREEIFY_THRESHOLD)
                    tab[index] = loHead.untreeify(map);
                else {
                    tab[index] = loHead;
                    if (hiHead != null) // (else is already treeified)
                        loHead.treeify(tab);
                }
            }
            if (hiHead != null) {
                if (hc <= UNTREEIFY_THRESHOLD)
                    tab[index + bit] = hiHead.untreeify(map);
                else {
                    tab[index + bit] = hiHead;
                    if (loHead != null)
                        hiHead.treeify(tab);
                }
            }
        }

        /* ------------------------------------------------------------ */
        // Red-black tree methods, all adapted from CLR
        //左旋
        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
                                              TreeNode<K,V> p) {
            TreeNode<K,V> r, pp, rl;
            if (p != null && (r = p.right) != null) {
                if ((rl = p.right = r.left) != null)
                    rl.parent = p;
                if ((pp = r.parent = p.parent) == null)
                    (root = r).red = false;
                else if (pp.left == p)
                    pp.left = r;
                else
                    pp.right = r;
                r.left = p;
                p.parent = r;
            }
            return root;
        }

        //右旋
        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
                                               TreeNode<K,V> p) {
            TreeNode<K,V> l, pp, lr;
            if (p != null && (l = p.left) != null) {
                if ((lr = p.left = l.right) != null)
                    lr.parent = p;
                if ((pp = l.parent = p.parent) == null)
                    (root = l).red = false;
                else if (pp.right == p)
                    pp.right = l;
                else
                    pp.left = l;
                l.right = p;
                p.parent = l;
            }
            return root;
        }

        //平衡插入
        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
                                                    TreeNode<K,V> x) {
            x.red = true;
            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
                if ((xp = x.parent) == null) {
                    x.red = false;
                    return x;
                }
                else if (!xp.red || (xpp = xp.parent) == null)
                    return root;
                if (xp == (xppl = xpp.left)) {
                    if ((xppr = xpp.right) != null && xppr.red) {
                        xppr.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    }
                    else {
                        if (x == xp.right) {
                            root = rotateLeft(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                root = rotateRight(root, xpp);
                            }
                        }
                    }
                }
                else {
                    if (xppl != null && xppl.red) {
                        xppl.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    }
                    else {
                        if (x == xp.left) {
                            root = rotateRight(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                root = rotateLeft(root, xpp);
                            }
                        }
                    }
                }
            }
        }

        //平衡,删除
        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
                                                   TreeNode<K,V> x) {
            for (TreeNode<K,V> xp, xpl, xpr;;)  {
                if (x == null || x == root)
                    return root;
                else if ((xp = x.parent) == null) {
                    x.red = false;
                    return x;
                }
                else if (x.red) {
                    x.red = false;
                    return root;
                }
                else if ((xpl = xp.left) == x) {
                    if ((xpr = xp.right) != null && xpr.red) {
                        xpr.red = false;
                        xp.red = true;
                        root = rotateLeft(root, xp);
                        xpr = (xp = x.parent) == null ? null : xp.right;
                    }
                    if (xpr == null)
                        x = xp;
                    else {
                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
                        if ((sr == null || !sr.red) &&
                            (sl == null || !sl.red)) {
                            xpr.red = true;
                            x = xp;
                        }
                        else {
                            if (sr == null || !sr.red) {
                                if (sl != null)
                                    sl.red = false;
                                xpr.red = true;
                                root = rotateRight(root, xpr);
                                xpr = (xp = x.parent) == null ?
                                    null : xp.right;
                            }
                            if (xpr != null) {
                                xpr.red = (xp == null) ? false : xp.red;
                                if ((sr = xpr.right) != null)
                                    sr.red = false;
                            }
                            if (xp != null) {
                                xp.red = false;
                                root = rotateLeft(root, xp);
                            }
                            x = root;
                        }
                    }
                }
                else { // symmetric
                    if (xpl != null && xpl.red) {
                        xpl.red = false;
                        xp.red = true;
                        root = rotateRight(root, xp);
                        xpl = (xp = x.parent) == null ? null : xp.left;
                    }
                    if (xpl == null)
                        x = xp;
                    else {
                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
                        if ((sl == null || !sl.red) &&
                            (sr == null || !sr.red)) {
                            xpl.red = true;
                            x = xp;
                        }
                        else {
                            if (sl == null || !sl.red) {
                                if (sr != null)
                                    sr.red = false;
                                xpl.red = true;
                                root = rotateLeft(root, xpl);
                                xpl = (xp = x.parent) == null ?
                                    null : xp.left;
                            }
                            if (xpl != null) {
                                xpl.red = (xp == null) ? false : xp.red;
                                if ((sl = xpl.left) != null)
                                    sl.red = false;
                            }
                            if (xp != null) {
                                xp.red = false;
                                root = rotateRight(root, xp);
                            }
                            x = root;
                        }
                    }
                }
            }
        }

        /**
         * Recursive invariant check
         *
         * 递归的恒等校验
         */
        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
                tb = t.prev, tn = (TreeNode<K,V>)t.next;
            if (tb != null && tb.next != t)
                return false;
            if (tn != null && tn.prev != t)
                return false;
            if (tp != null && t != tp.left && t != tp.right)
                return false;
            if (tl != null && (tl.parent != t || tl.hash > t.hash))
                return false;
            if (tr != null && (tr.parent != t || tr.hash < t.hash))
                return false;
            if (t.red && tl != null && tl.red && tr != null && tr.red)
                return false;
            if (tl != null && !checkInvariants(tl))
                return false;
            if (tr != null && !checkInvariants(tr))
                return false;
            return true;
        }
    }

}

7.2 存储说明

JDK1.7中HashMap使用一个table数组来存储数据,用key的hashcode取模来决定key会被放到数组里的位置,如果hashcode相同,或者hashcode取模后的结果相同,那么这些key会被定位到Entry数组的同一个格子里,这些key会形成一个链表,在极端情况下比如说所有key的hashcode都相同,将会导致这个链表会很长,那么put/get操作需要遍历整个链表,那么最差情况下时间复杂度变为O(n)

在这里插入图片描述

针对JDK1.7中的这个性能缺陷,JDK1.8中的table数组中可能存放的是链表结构,也可能存放的是红黑树结构,如果链表中节点数量不超过8个则使用链表存储,超过8个会调用treeifyBin函数,将链表转换为红黑树 。那么即使所有key的hashcode完全相同,由于红黑树的特点,查找某个特定元素,也只需要O(logn)的开销。

7.3 关注点

  1. hashmap 初始化容量是2的4次方,最大容量是2的30次方
  2. 默认负载因子是0.75 ,可以在创建的时候指定,但是不建议
  3. 在链表节点大于8时,会转为红黑树,在节点小于6时会转化为链表
  4. hashmap 不是线程安全的,里面维护了modcount ,多线程修改时,会报错
  5. 通过方法名也可以看出来KeySet 和 EntrySet 返回的是set集合 ,Values返回的是Collection集合
  6. 并行迭代器HashMapSpliterator是java8的新特性,提高并行处理效率
  7. hashmap实现了红黑树相关操作,比如左旋,右旋,平衡插入等

以上,本人菜鸟一枚,如有错误,请不吝指正

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/584583.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

photoshop矫正扫描图片的倾斜问题以及修改图片内容

由于工程原因&#xff0c;资料需要重新梳理 1.扫描工程表格到电脑中 2.在ps中导入表格内容&#xff08;表格有时候是倾斜的&#xff09; 需要修正为正常状态&#xff0c;即垂直状态 设置步骤&#xff1a; 1.调整ps的背景颜色与所在图片的背景颜色一致 用吸管工具&#xff…

AbandonedConnectionCleanupThread$ConnectionFinalizerPhantomReference内存溢出

网上查了查资料&#xff0c;根据自己情况在这里整理了一下&#xff0c;供大家学习和参考。 目录 1、现象 2、mysql-connector-java 源码分析 3、解决方法 3.1、配置disableAbandonedConnectionCleanup 3.2、暴力解决方式-----定时GC 4、什么是虚引用 5、关联对象真的被回…

数据可视化:趋势类可视化图表大全

图表是处理数据的重要组成部分&#xff0c;因为它们是一种将大量数据压缩为易于理解的格式的方法。数据可视化可以让受众快速Get到重点。 数据可视化的图表类型极其丰富多样&#xff0c;而且每种都有不同的用例&#xff0c;通常&#xff0c;创建数据可视化最困难的部分是确定哪…

【Linux】常用命令的汇总学习

文章目录 1.目录切换命令2.目录操作命令3.把ls -l中包含字母file&#xff08;不区分大小写&#xff09;的内容输出4.统计txt中的某个字符串5.grep命令的使用6.linux查找当前目录下所有txt文件7.linux中的find命令8.查看系统所有的进程信息9.如何确定文件的类型10.tar解压缩11.U…

员工防范网络钓鱼攻击的10个实用技巧

你知道网络钓鱼攻击的危害吗&#xff1f;以下是网络钓鱼的定义及其引起关注的原因&#xff1a; Verizon 最近的一份报告显示&#xff0c;82&#xff05;的网络漏洞均由人为因素造成&#xff0c;比如窃取凭证、网络钓鱼攻击、社会工程学、冒名顶替、滥用或错误等。网络钓鱼攻击…

惊!掌握千问通义的关键,从这些必知内容开始!

今年快过半了&#xff0c;要说顶流话题还得是ChatGPT&#xff0c;相关话题的热度居高不下&#xff0c;而其从GPT-3.5到GPT-4的升级&#xff0c;也让我们深刻了解了什么叫一代版本一代神&#xff0c;从GPT-3.5到GPT-4&#xff0c;真的就是一个跨阶级式的升级。 技术内涵 ChatGPT…

某SRC的渗透测试实战

前言 因为不甘心被称作会只点鼠标的猴子&#xff0c;所以开始了一次某SRC漏洞挖掘&#xff0c;为期一个多星期。文章有点长&#xff0c;但请耐心看完&#xff0c;记录了完整的SRC漏洞挖掘实战 渗透过程 因为选择的幸运儿没有对测试范围进行规划&#xff0c;所以此次范围就是…

OPC UA客户端访问 OPC DA服务器

目标 用OPC UA客户端&#xff08;如UaExpert&#xff09;读取OPC DA服务器上的点。 原理 OPC DA是基于COM/DCOM的&#xff0c;传统OPC DA客户端访问非本机OPC DA服务时需要配置DCOM。OPC UA客户端无法直接访问 OPC DA服务&#xff0c;需要将OPC DA服务映射为OPC UA服务&#x…

【Excel技巧】3个限制权限,保护表格不被人随意改动

Excel表格是很多人工作中经常用到的办公软件&#xff0c;有时候做好表格发给对方后&#xff0c;总是担心会被不小心做了改动。 如果有这种顾虑&#xff0c;就一定要用上Excel表格的3个“限制权限”&#xff0c;可以根据不同的情况&#xff0c;设置不同保护。下面就来看看可以设…

LAMP配置安装

目录 一&#xff1a;LAMP 1、(平台)Linux 2、(前台)Apache 3、(后台)MySQL 4、(中间连接)PHP/Perl/Python 5. Lamp工作原理 二&#xff1a;编译安装Apache httpd服务 1.关闭防火墙&#xff0c;将安装Apache所需软件包传到/opt目录下 2.安装环境依赖包 3.配置软件模块…

打造繁荣社区:Solaris 与 Web3 合作的力量

在去中心化金融&#xff08;DeFi&#xff09;的动态格局中&#xff0c;Solaris 作为一股开创性力量涌现&#xff0c;为衍生品提供了强大的 Web3 基础设施。Solaris 成功的关键在于其充满活力且迅速增长的社区&#xff0c;该社区在塑造平台影响力和促进创新方面发挥着关键作用。…

C++ 新特性

1.auto、decltype 用于自动推断类型 2.自动追踪返回值类型 3. 列表初始化和列表方式类型收窄 //列表初始化 vector<int>res{1,2,3,4,5}; //防止类型收窄 int a 1024; char b a;//可以执行 char b{a};//报错 4.基于范围的for循环 vector<int>res{1,2,3,4}; fo…

“外行转网工,我只用了三个月”

大家好&#xff0c;我是老杨。 在这行发展了这么多年&#xff0c;经常会有人来问我&#xff0c;网工该怎么提升自己&#xff0c;又或是怎么入行。 其实这事儿不难想&#xff0c;技术工种最需要做的是什么&#xff0c;自然是提升技术。 而技术提升&#xff0c;途径也只有学习…

k维空间中的超平面的维度是多少?

超平面中的任何点 x x x可以用一个法向量 w w w和超平面上的一个点 x 0 x_0 x0​表示. x x x可以用 w w w和 x 0 x_0 x0​表示&#xff1a; ( x − x 0 ) ⋅ w 0 w T x − w T x 0 0 w T x b 0 \begin{split} (x-x_0) \cdot w &0 \\ w^Tx-w^Tx_0 &0 \\ w^Txb &a…

高压断路器工作运行要求是什么

1、断路器应在规定的技术参数范围内运行。 2、断路器必须配备可靠的操作电源和合闸电源。 3、送电应先合刀闸后合断路器&#xff1b;停电先断开断路器&#xff0c;检查确已断开后再拉刀闸。 4、110kV高压设备的巡视检查可由一人进行&#xff0c;但距带电体的距离应不小于1.5…

三分钟了解Spring Cloud Gateway路由转发之自动路由

文章目录 一、前言二、路由配置1. 静态路由2. 动态路由3. 自动路由 三、Spring Cloud Gateway 是如何实现动态路由工作原理源码解析路由转发原理路由转发源码解析 四 、问题核心DiscoveryClientRouteDefinitionLocator源码解析 五、总结 大家好&#xff0c;我是冰点&#xff0c…

领导者指南:用四步空杯学习法避免你的成就成为累赘

好的领导者需要不断学习。而优秀的领导者更知道什么时候忘记过去&#xff0c;才能在未来取得成功。经营任何成功都存在学习曲线。但是&#xff0c;一旦你开始依赖过去的成就&#xff0c;或者陷入过时的思维和实践&#xff0c;不再起作用&#xff0c;你必须退后一步——空杯学习…

安捷伦E4440A(Agilent) e4440a 3HZ-26.5G频谱分析仪

Agilent E4440A、Keysight E4440A、HP E4440A频谱分析仪&#xff0c;3 Hz - 26.5 GHz&#xff08;PSA 系列&#xff09; ​Agilent / Keysight PSA 系列 E4440A 高性能频谱分析仪提供强大的一键式测量、多功能功能集和前沿技术&#xff0c;可满足您的项目和需求。选项可供您选…

Python实战基础14-递归函数

1、什么是递归函数 如果一个函数在内部不调用其它的函数&#xff0c;而是自己本身的话&#xff0c;这个函数就递归函数。 遵循&#xff1a; 必须要有出口每次递归向出口靠近 # 1-10 打印数字 def test(i):if i 10:print(10)else:print(i)i 1test(i) test(1)# 1-10 的累加…

海外网红营销ROI评估:出海品牌如何科学衡量投资回报?

随着全球化的不断推进&#xff0c;出海品牌越来越多地将目光投向海外市场&#xff0c;并利用海外网红的影响力进行营销。然而&#xff0c;对于出海品牌而言&#xff0c;如何科学衡量海外网红营销的投资回报率&#xff08;ROI&#xff09;却是一个关键的挑战。本文Nox聚星将和大…