✨概率论期末速成(三套卷)——试卷①✨

news2024/11/24 11:11:55

✨博主:命运之光
✨专栏:概率论期末速成(三套卷)

在这里插入图片描述

目录

    • ✨一、填空题(在下列各题填写正确答案,不填、填错,该题无分,每小题3分,共36分)
    • ✨二、计算题(本大题6小题,每小题9分,共54分)。
    • ✨三、应用题(10分)
    • ✨附上原笔记图片(祝大家考试顺利)


前言第一次尝试打数学公式,我是用语雀记得笔记然后直接导入了CSDN但导入后格式和公式都发生了变化,之后我会直接用图片写题解这样格式不会乱,而且比打公式效率高许多。

✨✨为了让大家看的清楚,我在文章的最后附上了导入前笔记的样子,供大家参考


✨一、填空题(在下列各题填写正确答案,不填、填错,该题无分,每小题3分,共36分)

1、设 A , B , C A,B,C A,B,C为3个事件,则表示 A , B , C A,B,C A,B,C中至少两个发生的事件是____.

第一题比较简单,我们通过答案就可以理解,所以这里就不过多阐述。

解题:
A ˉ B C + A B ˉ C + A B C ˉ + A B C \={A}BC+A\={B}C+AB\={C}+ABC AˉBC+ABˉC+ABCˉ+ABC
2、设事件 A , B A,B A,B独立,且 P ( A ) = 0.4 P(A)=0.4 P(A)=0.4 P ( B ) = 0.2 P(B)=0.2 P(B)=0.2,则 P ( A ∪ B ˉ ) = P(A \cup \={B})= P(ABˉ)=____.
知识点:
P ( A ∪ B ) = { P ( A ) + P ( B ) − P ( A B ) P ( A ) + P ( B ) if  A B = ∅ P(A \cup B)=\begin{cases} P(A)+P(B)-P(AB) \\ P(A)+P(B) &\text{if } AB=\emptyset \end{cases} P(AB)={P(A)+P(B)P(AB)P(A)+P(B)if AB=
解题:套用上面知识点

P ( A ∪ B ) = P ( A ) + P ( B ˉ ) − P ( A B ˉ ) = 0.4 + 0.8 − 0.4 × 0.8 = 1.2 − 0.32 = 0.88 \begin{aligned} P(A \cup B) &= P(A)+P(\={B})-P(A\={B}) \\ &= 0.4+0.8-0.4×0.8 \\ &= 1.2-0.32\\ &= 0.88 \end{aligned} P(AB)=P(A)+P(Bˉ)P(ABˉ)=0.4+0.80.4×0.8=1.20.32=0.88

3、设在全部产品中有20%是废品,而合格品有85%是一级品,则任意抽出一个产品是一级品的概率为_____.

这题也较简单看答案就能理解

解题:
合格品: 1 − 20 % = 80 % 1-20\%=80\% 120%=80%
任取一个产品是一级品的概率为: 80 % × 85 % = 0.8 × 0.85 = 0.68 80\%×85\%=0.8×0.85=0.68 80%×85%=0.8×0.85=0.68
4、设在一次试验中,事件A发生的概率为0.6.现进行3次独立试验,则A至少发生概率为_____.

这题也较简单看答案就能理解

分析这题采用反证法:
A A A至少发生概率为: 1 − A 1-A 1A一次也不发生的概率。
题解:
A A A至少发生概率为: 1 − P ˉ = 1 − ( 0.4 × 0.4 × 0.4 ) = 0.936 1-\={P}=1-(0.4×0.4×0.4)=0.936 1Pˉ=1(0.4×0.4×0.4)=0.936
5、设离散型随机变量的 X X X分布函数为 F ( x ) { 0 , x < − 1 0.1 , − 1 ≤ x < 0 0.5 , 0 ≤ x < 2 F(x)\begin{cases} 0,&x<-1\\ 0.1,&-1≤x<0\\ 0.5,&0≤x<2 \end{cases} F(x) 0,0.1,0.5,x<11x00x2 P { x = 0 } = P\begin{Bmatrix}x=0 \end{Bmatrix}= P{x=0}=_____.

这题套用知识点直接解就行

知识点:
P { x = 0 } = P { X ≤ 0 } − P { x < 0 } P\{x=0\}=P\{X≤0\}-P\{x<0\} P{x=0}=P{X0}P{x<0}
解题:套用上面知识点
P { x = 0 } = P { X ≤ 0 } − P { x < 0 } = 0.5 − 0.1 = 0.4 P\{x=0\}=P\{X≤0\}-P\{x<0\}=0.5-0.1=0.4 P{x=0}=P{X0}P{x<0}=0.50.1=0.4
6、设随机变量X的分布函数为 F ( x ) = A + 1 π a r c t a n x F(x)=A+\frac 1 \pi arctanx F(x)=A+π1arctanx,则 A = A= A=.
知识点:
F ( + ∞ ) = 1 F(+\infty)=1 F(+)=1
F ( − ∞ ) = 0 F(-\infty)=0 F()=0
解题:套用上面知识点
KaTeX parse error: {align} can be used only in display mode.
解得: A = 1 2 A=\frac1 2 A=21
7、设随机变量 X ∽ N ( 1 , 4 ) X\backsim N(1,4) XN(1,4),且 Φ ( 2 ) = 0.9772 \Phi(2)=0.9772 Φ(2)=0.9772,则 P { 1 ≤ x ≤ 5 } = P\{1≤x≤5\}= P{1x5}=
.
知识点:
正态分布 X ∽ N ( μ , δ 2 ) X\backsim N( \mu , \delta^2) XN(μ,δ2)
密度 P ( X ) = 1 ( 2 π δ e − ( x − μ ) 2 2 δ 2 P(X)={\frac 1 { \sqrt{\mathstrut 2\pi} \delta}}e^{\frac {-({x-\mu})^2} {2\delta^2}} P(X)=(2π δ1e2δ2(xμ)2
期望 E ( x ) = μ E(x)=\mu E(x)=μ
方差 D ( x ) = δ 2 D(x)=\delta^2 D(x)=δ2
P { a < x < b } = P { a − μ δ < x − μ δ < b − μ δ } = Φ ( b − μ δ ) − Φ ( a − μ δ ) P\{a<x<b\}=P\{\frac {a-\mu} \delta<\frac {x-\mu} \delta<\frac {b-\mu} \delta\}=\Phi(\frac {b-\mu} \delta)-\Phi(\frac {a-\mu} \delta) P{a<x<b}=P{δaμ<δxμ<δbμ}=Φ(δbμ)Φ(δaμ)
Φ ( 0 ) = 0.5 \Phi(0)=0.5 Φ(0)=0.5
解题:套用上面知识点
8.设随机变量 X ∽ P ( λ ) X\backsim P(\lambda) XP(λ),且 E [ X ( X − 2 ) ] = 6 E[X(X-2)]=6 E[X(X2)]=6,则 λ \lambda λ.
知识点:
分布律: P = { x = k } = λ 2 k ! e − λ , ( k = 0 , 1 , 2... , n ) P=\{x=k\}=\frac {\lambda^2} {k!}e^{-\lambda},(k=0,1,2...,n) P={x=k}=k!λ2eλ(k=0,1,2...,n)
E ( x ) = D ( x ) = λ E(x)=D(x)=\lambda E(x)=D(x)=λ
E ( x 2 ) = D ( x ) + E 2 ( x ) = λ + λ 2 E(x^2)=D(x)+E^2(x)=\lambda+\lambda^2 E(x2)=D(x)+E2(x)=λ+λ2
解题:套用上面知识点

KaTeX parse error: {align} can be used only in display mode.

解得: λ = 3 \lambda=3 λ=3
9、设二维随机变量 ( X , Y ) ∽ N ( − 1 , 0 , 4 , 9 , 0.2 ) (X,Y)\backsim N(-1,0,4,9,0.2) (X,Y)N(1,0,4,9,0.2),则 c o v ( X , Y ) = cov(X,Y)= cov(X,Y)=
.
知识点:
二维正态分布 ( X , Y ) ∽ N ( μ 1 , μ 2 , δ 1 2 , δ 2 2 , p ) (X,Y)\backsim N(\mu_1,\mu_2,\delta^2_1,\delta^2_2,p) (X,Y)N(μ1μ2δ12δ22p)
其中
μ 1 = E ( X ) μ 2 = E ( Y ) δ 1 2 = D ( X ) δ 2 2 = D ( Y ) P = P X Y \begin{aligned} &\mu_1=E(X) \\&\mu_2=E(Y) \\&\delta^2_1=D(X) \\&\delta^2_2=D(Y) \\&P=P_{XY} \end{aligned} μ1=E(X)μ2=E(Y)δ12=D(X)δ22=D(Y)P=PXY
c o v ( X , Y ) = ( ( D ( X ) × ( D ( Y ) ) × P cov(X,Y)=(\sqrt{\mathstrut D(X)}×\sqrt{\mathstrut D(Y)} )×P cov(X,Y)=((D(X) ×(D(Y) )×P
X ∽ N ( μ , δ 1 2 ) , Y ∽ N ( μ , δ 2 2 ) X\backsim N(\mu,\delta^2_1),Y\backsim N(\mu,\delta^2_2) XN(μ,δ12)YN(μ,δ22)
解题:套用上面知识点
c o v ( X , Y ) = ( ( D ( X ) × ( D ( Y ) ) × P = 2 × 3 × 0.2 = 1.2 cov(X,Y)=(\sqrt{\mathstrut D(X)}×\sqrt{\mathstrut D(Y)} )×P=2×3×0.2=1.2 cov(X,Y)=((D(X) ×(D(Y) )×P=2×3×0.2=1.2
10.设 X ∽ U ( 0 , 2 ) , Y ∽ E x p ( 1 ) X\backsim U(0,2),Y\backsim E_{xp}(1) XU(02)YExp(1),且 X X X Y Y Y相互独立,则 D ( 2 X − 3 Y + 4 ) = D(2X-3Y+4)= D(2X3Y+4)=_____.
知识点:
均匀分布 X ∽ U ( a , b ) X \backsim U(a,b) XU(ab)
密度 p ( x ) = { 1 b − a , a < x < b 0 , 其他 p(x)=\begin{cases} \frac 1 {b-a},&a<x<b \\0,&其他 \end{cases} p(x)={ba1,0,a<x<b其他
方差 D ( x ) = ( b − a ) 2 12 D(x)=\frac {(b-a)^2} {12} D(x)=12(ba)2
期望 E ( x ) = a + b 2 E(x)=\frac {a+b} 2 E(x)=2a+b


指数分布 X ∽ E x p ( λ ) X\backsim E_{xp}(\lambda) XExp(λ)
密度 P ( x ) = { 1 b − a , a < x < b 0 , 其他 P(x)=\begin{cases} \frac 1 {b-a},&a<x<b\\ 0,&其他 \end{cases} P(x)={ba10,a<x<b其他
方差 D ( x ) = 1 λ 2 D(x)=\frac 1 {\lambda^2} D(x)=λ21
期望 E ( x ) = 1 λ E(x)=\frac 1 \lambda E(x)=λ1
解题:套用上面知识点
μ 1 = E ( X ) μ 2 = E ( Y ) δ 1 2 = D ( X ) δ 2 2 = D ( Y ) P = P X Y \begin{aligned} &\mu_1=E(X) \\&\mu_2=E(Y) \\&\delta^2_1=D(X) \\&\delta^2_2=D(Y) \\&P=P_{XY} \end{aligned} μ1=E(X)μ2=E(Y)δ12=D(X)δ22=D(Y)P=PXY
11.设 X 1 , X 2 , X 3 X_1,X_2,X_3 X1,X2,X3是来自总体 X X X的样本,且 E ( X ) = μ , μ ˆ = 1 4 X 1 + k X 2 + 1 8 X 3 E(X)=\mu,\^{\mu }=\frac 1 4X_1+kX_2+\frac 1 8 X_3 E(X)=μ,μˆ=41X1+kX2+81X3 μ \mu μ的无偏估计,则 k = k= k=.
解题:这题不懂得直接记着就行,题一变就变了比较麻烦
k = 1 − 1 4 − 1 8 = 5 8 k=1-\frac1 4-\frac1 8=\frac5 8 k=14181=85
12.设 X 1 , X 2 , X 3 , X 4 X_1,X_2,X_3,X_4 X1,X2,X3,X4是总体 X ∽ N ( 0 , 2 ) X \backsim N(0,2) XN(02)的随机样本, Y = X 1 2 + X 2 2 + X 3 2 C X 4 2 ∽ F ( 3 , 1 ) Y=\frac{{X_1}^2+{X_2}^2+{X_3}^2} {{CX_4}^2}\backsim F(3,1) Y=CX42X12+X22+X32F(3,1),则 C = C= C=
.
解题:这题不懂得直接记着就行,题一变就变了比较麻烦,反正我问的人都已经选择放弃这一题了/(ㄒoㄒ)/~~所以没有人给我讲这道题。。。。。。
答案:3


✨二、计算题(本大题6小题,每小题9分,共54分)。

X X X-2-1012
P P P2aa1/8a/25a
  1. 试求(1) a a a;(2)概率 P { − 1 < X < 2 } P\{-1<X<2\} P{1<X<2};(3) Y = 2 X 2 + 1 Y=2X^2+1 Y=2X2+1的分布律.

解题:
(1)
因为 2 a + a + 1 8 + a 2 + 5 = 1 2a+a+\frac 1 8+\frac a 2+5=1 2a+a+81+2a+5=1,故 a = 7 68 a=\frac7 {68} a=687
(2)

P { − 1 < X < 2 } = P { X = 0 } + P { X = 1 } = 1 8 + 7 136 = 3 17 \begin{aligned} P\{-1<X<2\}&=P\{X=0\}+P\{X=1\} \\&=\frac 1 8+\frac7 {136} \\&=\frac 3 {17} \end{aligned} P{1<X<2}=P{X=0}+P{X=1}=81+1367=173
(3)
Y = 2 X 2 + 1 Y=2X^2+1 Y=2X2+1取值为1,3,9

Y Y Y139
P P P 1 8 \frac 1 8 81 21 136 \frac {21} {136} 13621 49 68 \frac{49}{68} 6849

14、已知随机变量的 X X X密度函数为: p ( x ) = { 2 x 2 + a , 0 < x < 1 0 , 其他 p(x)=\begin{cases} 2x^2+a,&0<x<1\\ 0,&其他 \end{cases} p(x)={2x2+a,0,0<x<1其他试求(1)常数 a a a;(2) E ( 2 X + 1 ) E(2X+1) E(2X+1);(3) X X X的分布函数 F ( x ) F(x) F(x).
解题:
(1)
因为 ∫ 0 1 ( 2 x 2 + a ) d x = 2 3 + a = 1 \int_0^1(2x^2+a)dx=\frac 2 3+a=1 01(2x2+a)dx=32+a=1
a = 1 3 a=\frac 1 3 a=31
(2)
E ( 2 x + 1 ) = ∫ 0 1 ( 2 x + 1 ) ( 2 x 2 + 1 3 ) d x = 7 3 \begin{aligned} E(2x+1)&=\int_0^1(2x+1)(2x^2+\frac1 3)dx \\&=\frac 7 3 \end{aligned} E(2x+1)=01(2x+1)(2x2+31)dx=37
(3) X X X的分布函数
F ( x ) = ∫ − ∞ x p ( x ) d x = { 0 , x ≤ 0 ; 2 3 x 2 + 1 3 x , 0 ≤ x < 1 ; 1 , x ≥ 1 F(x)=\int_{-\infty}^xp(x)dx=\begin{cases} 0,&x≤0;\\ \frac 2 3x^2+\frac 1 3x,&0≤x<1;\\ 1,&x≥1 \end{cases} F(x)=xp(x)dx= 0,32x2+31x,1,x0;0x1;x1
15.设连续型随机变量 X X X的密度函数为: P x ( x ) = { 2 π ( 1 + x 2 ) , x > 0 0 , x < 0 P_x(x)=\begin{cases} \frac 2 {\pi(1+x^2)},&x>0\\ 0,&x<0 \end{cases} Px(x)={π(1+x2)2,0,x>0x<0求:(1)求概率 P { X 2 ≤ 3 } P\{X^2≤3\} P{X23};(2) Y = ln ⁡ X Y=\ln X Y=lnX的密度函数 p Y ( y ) p_Y(y) pY(y).
解题:
(1)
P { X 2 ≤ 3 } = P { − ( 3 ≤ X ≤ ( 3 } = ∫ − ( 3 0 0 d x + ∫ 0 ( 3 2 π ( 1 + x 2 ) d x = 2 π arctan ⁡ ∣ 0 ( 3 = 2 3 \begin{aligned} P\{X^2≤3\}&=P\{-\sqrt{\mathstrut 3}≤X≤\sqrt{\mathstrut 3}\} \\&=\int_{-\sqrt{\mathstrut 3}}^00dx+\int_0^{\sqrt{\mathstrut 3}}\frac 2 {\pi(1+x^2)}dx \\&=\frac 2 \pi \arctan|_0^{\sqrt{\mathstrut 3}} \\&=\frac 2 3 \end{aligned} P{X23}=P{(3 X(3 }=(3 00dx+0(3 π(1+x2)2dx=π2arctan0(3 =32
(2)
y = ln ⁡ x y=\ln x y=lnx 0 < x < + ∞ 0<x<+\infty 0<x<+的反函数 x = e y x=e^y x=ey − ∞ < y < + ∞ -\infty<y<+\infty <y<+
x 、 = e y x^、=e^y x=ey
Y = ln ⁡ X Y=\ln X Y=lnX的密度函数 P Y ( y ) = 2 e y π ( 1 + e 2 y ) , − ∞ < y < + ∞ P_Y(y)=\frac {2e^y} {\pi(1+e^{2y})},-\infty<y<+\infty PY(y)=π(1+e2y)2ey,<y<+
16.设二维随变量 ( X , Y ) (X,Y) (X,Y)的密度函数为 p ( x , y ) = { 1 8 ( 6 − x − y ) 0 < x < 2 , 2 < y < 4 0 其他 p(x,y)=\begin{cases} \frac 1 8(6-x-y)&0<x<2,2<y<4 \\0&其他 \end{cases} p(x,y)={81(6xy)00<x<2,2<y<4其他求(1)边缘密度函数 p X ( x ) p_X(x) pX(x);(2) p ( X + Y ≤ 4 ) p(X+Y≤4) p(X+Y4).
解题:
(1)边缘密度函数
p X ( x ) = ∫ − ∞ + ∞ p ( x , y ) d y = { ∫ 2 4 1 8 ( 6 − x − y ) d y , 0 < x < 2 ′ 0 , 其他, = { 1 4 ( 3 − x ) , 0 < x < 2 ; 0 , 其他, \begin{aligned} p_X(x)&=\int_{-\infty}^{+\infty}p(x,y)dy \\&=\begin{cases}\int_2^4\frac1 8(6-x-y)dy,&0<x<2'\\0,&其他, \end{cases} \\&=\begin{cases} \frac 14 (3-x),&0<x<2;\\ 0,&其他, \end{cases} \end{aligned} pX(x)=+p(x,y)dy={2481(6xy)dy,0,0<x<2其他,={41(3x),0,0<x<2;其他,
(2)
p { X + Y ≤ 4 } = ∬ x + y ≤ 4 p ( x , y ) d x d y = ∫ 2 4 d y ∫ 0 4 − y 1 8 ( 6 − x − y ) d x = 2 3 \begin{aligned} p\{X+Y≤4\}&=\small\iint_{\mathclap{x+y≤4}}p(x,y)dxdy\\&=\int_2^4dy\int_0^{4-y}\frac1 8(6-x-y)dx \\&=\frac2 3 \end{aligned} p{X+Y4}=x+y4p(x,y)dxdy=24dy04y81(6xy)dx=32
17.设随机变量 ( X , Y ) (X,Y) (X,Y)的分布律为
Y / X 1 2 3 0 0.2 0.1 0.1 − 1 0.15 0.2 0.25 \begin{array}{c|lcr} Y/X & \text{1} & \text{2} & \text{3} \\ \hline 0 & 0.2 & 0.1 & 0.1 \\ -1 & 0.15 & 0.2 & 0.25 \\ \end{array} Y/X0110.20.1520.10.230.10.25(1)求 X X X Y Y Y的边缘分布律,并判断 X X X Y Y Y的独立性;(2)求 Z = X + Y Z=X+Y Z=X+Y的分布律.
解题:
(1)
X X X的边缘分布律
X 1 2 3 P 0.35 0.3 0.35 \begin{array}{c|lcr} X & \text{1} & \text{2} & \text{3} \\ \hline P & 0.35 & 0.3 & 0.35 \\ \end{array} XP10.3520.330.35
Y Y Y的边缘分布律
Y 0 -1 P 0.4 0.6 \begin{array}{c|lcr} Y & \text{0} & \text{-1} \\ \hline P & 0.4 & 0.6\\ \end{array} YP00.4-10.6
因为 P { X = 1 , Y = 0 } = 0.2 ≠ P { X = 1 } P { Y = 0 } = 0.35 × 0.4 = 0.14 P\{X=1,Y=0\}=0.2≠P\{X=1\}P\{Y=0\}=0.35×0.4=0.14 P{X=1,Y=0}=0.2=P{X=1}P{Y=0}=0.35×0.4=0.14
X X X Y Y Y不独立
(2) Z = X + Y Z=X+Y Z=X+Y的取值为0、1、2、3,其分布律
X 0 1 2 3 P 0.15 0.4 0.35 0.1 \begin{array}{c|lcr} X & \text{0} & \text{1} &\text{2}& \text{3} \\ \hline P & 0.15 & 0.4 & 0.35 & 0.1\\ \end{array} XP00.1510.420.3530.1
18.设 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn是取自总体 X X X的简单随机样本,且总体 X X X的密度函数为: p ( x ) = { θ x θ − 1 , 0 < x < 1 , 0 , 其他 p(x)=\begin{cases} \theta x^{\theta -1},&0<x<1,\\ 0,&其他 \end{cases} p(x)={θxθ1,0,0<x<1,其他其中 θ > 0 \theta>0 θ>0未知,求(1) θ \theta θ的矩估计量;(2) θ \theta θ的极大似然估计量.
解题:
(1)
a 1 = E X = ∫ 0 1 x p ( x ) d x = ∫ 0 1 θ x θ d x = θ 1 + θ \begin{aligned} a_1=EX&=\int_0^1xp(x)dx\\&=\int_0^1\theta x^\theta dx \\&=\frac \theta {1+\theta} \end{aligned} a1=EX=01xp(x)dx=01θxθdx=1+θθ
θ = a 1 1 − a 1 \theta = \frac {a_1} {1-a_1} θ=1a1a1
θ \theta θ的矩估计量 θ ^ = X ˉ 1 − X ˉ \hat{\theta}=\frac {\=X} {1-\=X} θ^=1XˉXˉ.
(2)

后面都用照片来写/(ㄒoㄒ)/~~,打公式太慢了~

8a78501333581313f38bac3c4c4fe89.jpg


✨三、应用题(10分)

19、设甲乙两袋,甲袋中有 n n n只白球, m m m只红球,乙袋中有 N N N只白球, M M M只红球,今从甲袋中任意取一只球放入乙袋中,再从乙袋中任意取一只球,(1)从乙袋取到白球的概率:(2)现发现从乙袋取到的球为红球,问从甲袋取的球放入乙袋也是红球的概率是多少?
0b408ae61b871711d85a1678ba65c53.jpg


✨附上原笔记图片(祝大家考试顺利)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/560021.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

《2023金融科技十大趋势报告》重磅发布:安全成为金融科技发展生命线

5月23日&#xff0c;由腾讯研究院、腾讯云、腾讯安全、微信支付、腾讯广告、腾讯优图实验室、招商银行、中信建投证券联合编制的《2023金融科技十大趋势报告》&#xff08;以下简称《报告》&#xff09;正式发布。《报告》从创新篇、智能篇、普惠篇、安全篇、融合篇五个方面总结…

虎牙直播在微服务改造的实践总结2

博主介绍&#xff1a;✌全网粉丝4W&#xff0c;全栈开发工程师&#xff0c;从事多年软件开发&#xff0c;在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战、定制、远程&#xff0c;博主也曾写过优秀论文&#xff0c;查重率极低&#xff0c;在这方面…

常用的Jmeter参数化技巧总结,总有一个你不知道

说起接口测试&#xff0c;相信大家在工作中用的最多的还是Jmeter。 JMeter是一个100&#xff05;的纯Java桌面应用&#xff0c;由Apache组织的开放源代码项目&#xff0c;它是功能和性能测试的工具。具有高可扩展性、支持Web(HTTP/HTTPS)、SOAP、FTP、JAVA 等多种协议。 在做…

安全狗云原生安全能力亮相2023年智能汽车信息安全大会

5月19日&#xff0c;2023年智能汽车信息安全大会在上海顺利落幕。作为国内云原生安全领导厂商&#xff0c;安全狗受邀出席此次活动。 据悉&#xff0c;在领导致辞后&#xff0c;来自汽车行业以及网络安全行业的专家们就智能汽车涉及到的数据安全、安全合规、网络安全等话题展开…

Prompt Engineering | 迭代式优化和完善prompt

&#x1f604; 在尝试编写第一个 prompt时&#xff0c;满足上一博客说过的两个原则&#xff1a;清晰明确&#xff0c;并且给系统足够的时间思考。然后您可以运行它并查看结果。如果第一次效果不好&#xff0c;那么迭代的过程就是找出为什么指令不够清晰或为什么没有给算法足够的…

数据结构初阶——堆

目录 一&#xff0c;堆的概念 二&#xff0c;创建堆 2.1堆的结构 2.2堆的初始化 2.3堆的数据插入 2.4堆的数据的删除 注意点&#xff1a; 2.5 堆顶元素 2.6堆的长度 2.7堆的销毁 思维导图&#xff1a; 一&#xff0c;堆的概念 堆是什么&#xff1f;对于一个对于电脑储存结…

爆肝整理,接口测试到接口自动化测试小技巧,你的测试之路不再简单...

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 Python自动化测试&…

Vue3 详细教程

文章目录 一、API 风格1.1 选项式 API1.2 组合式 API 二、Vue 指令2.1 {{}} 文本插值2.2 v-html 标签元素2.3 v-on 绑定事件2.4 v-show 隐藏元素2.5 v-if 消除元素2.6 v-bind 属性渲染2.7 v-for 列表渲染2.8 v-model 数据双向绑定 三、组件3.1 组件组合3.2 Props 组件交互3.3 自…

Linux:命令date、ntp查看和修改(校准)时间和地区。

Linux&#xff1a;命令date、ntp查看和修改&#xff08;校准&#xff09;时间和地区。 date -d 不仅可以1还可以加其他数字&#xff0c;表达后多久&#xff0c;-表达前多久&#xff1a; 备注&#xff1a;中国所在的时区是东八区 单独使用date时&#xff0c;会出现一串内容&…

Linux驱动入门——基础概念

文章目录 Linux内核简介Unix的历史Linux简介操作系统和内核简介单内核与微内核设计之比较小结 设备驱动简介驱动程序的角色划分内核设备和模块的分类安全问题版权条款 Linux驱动开发概述驱动程序概述设备驱动程序的作用设备驱动的分类Linux操作系统与驱动的关系Linux驱动开发编…

小程序容器技术在构建超级App的技术价值

今年来&#xff0c;随着软件及开源技术的发展&#xff0c;软件应用架构的概念也随之流行起来。它提供了一种组织和设计软件系统的有效方法&#xff0c;具有许多优势和好处&#xff1a; 模块化和可维护性&#xff1a;软件应用架构将系统拆分为模块化的组件&#xff0c;每个组件…

linux 部署jenkins

安装Jenkins 使用wget 命令下载Jenkins 先安装wget yum install wget ,如果已经安装过了&#xff0c;忽略直接到下一步; 若你的java环境为11~17&#xff0c;可以执行&#xff1a;wget http://mirrors.jenkins.io/war-stable/latest/jenkins.war 若你的java环境为8&#xff0…

Python实战基础10-正则表达式

1、正则表达式 在处理字符串时&#xff0c;经常会有查找符合某些复杂规则的字符串需求。正则表达式就算用于描述这些规则的工具。换句话说&#xff0c;正则表达式就是记录文本规则的代码。 1.1 行定位符 行定位符就是用来描述字符串的边界&#xff0c;“A”表示行的开始&…

2023新星导师活动【electron+vue3】方向,开营知识点提纲(2)

文章目录 前言一、vue是什么&#xff1f;二、vue的优势1.依托数据渲染2.新人的边界2.选项式和组合式 总结 前言 上篇文章主要讲解了electron、nodejs的相关概念。本篇文章将主要介绍vue3&#xff0c;以及vue3如何与electron协作完成桌面端功能。 同上篇文章一样&#xff0c;这…

系统集成项目管理工程师 下午 真题 及考点(2019年上半年)

文章目录 一&#xff1a;第10章 项目质量管理&#xff0c;规划质量管理输出&#xff0c;质量成本法&#xff08;一致性成本【预防、评价】 和 非一致性成本【内部失败、外部失败】&#xff09;&#xff0c;七种工具二&#xff1a;第8章 项目进度管理&#xff0c;总浮动时间&…

2023高频前端面试题合集之网络篇

近期整理了一下高频的前端面试题&#xff0c;分享给大家一起来学习。如有问题&#xff0c;欢迎指正&#xff01; 欢迎大家关注该专栏&#xff1a;点赞&#x1f44d; 收藏&#x1f91e; 大厂面试题分享 面试题库 前后端面试题库 &#xff08;面试必备&#xff09; 推荐&…

数据结构学习分享之链式二叉树(二)

&#x1f493;博主CSDN主页:杭电码农-NEO&#x1f493;   ⏩专栏分类:数据结构学习分享⏪   &#x1f69a;代码仓库:NEO的学习日记&#x1f69a;   &#x1f339;关注我&#x1faf5;带你了解更多数据结构的知识   &#x1f51d;&#x1f51d; 数据结构第八课 1. 前言&a…

ClickHouse:(二)数据类型

1.整型 固定长度的整型分为&#xff1a;有符号和无符合整型 有符号整型无符号整型类型范围类型范围Int8 -128 : 127 UInt8 0 : 255 Int16 -32768 : 32767 UInt16 0 : 65535 Int32 -2147483648 : 2147483647 UInt32 0 : 4294967295 Int64 -9223372036854775808 : 9223372036854…

SpringSecurity框架|荣耀磨练

&#x1f648;作者简介&#xff1a;练习时长两年半的Java up主 &#x1f649;个人主页&#xff1a;程序员老茶 &#x1f64a; ps:点赞&#x1f44d;是免费的&#xff0c;却可以让写博客的作者开兴好久好久&#x1f60e; &#x1f4da;系列专栏&#xff1a;Java全栈&#xff0c;…

Unity之使用Photon Server + PUN2 开发局域网多人游戏

一.前言 Photon Engine是一款跨平台的实时多人游戏引擎,它提供了可靠的基础设施和工具,使开发者能够轻松地构建和部署多人游戏。Photon Engine支持多种平台,包括PC、移动设备和Web,同时还提供了多种语言的SDK,如C++、C#、Java、JavaScript等,使得开发者可以使用自己熟悉…