第一章 等待唤醒机制
1.1 线程间通信
概念:多个线程在处理同一个资源,但是处理的动作(线程的任务)却不相同。
比如:线程A用来生成包子的,线程B用来吃包子的,包子可以理解为同一资源,线程A与线程B处理的动作,一个是生产,一个是消费,那么线程A与线程B之间就存在线程通信问题。
为什么要处理线程间通信:
多个线程并发执行时, 在默认情况下CPU是随机切换线程的,当我们需要多个线程来共同完成一件任务,并且我们希望他们有规律的执行, 那么多线程之间需要一些协调通信,以此来帮我们达到多线程共同操作一份数据。
如何保证线程间通信有效利用资源:
多个线程在处理同一个资源,并且任务不同时,需要线程通信来帮助解决线程之间对同一个变量的使用或操作。 就是多个线程在操作同一份数据时, 避免对同一共享变量的争夺。也就是我们需要通过一定的手段使各个线程能有效的利用资源。而这种手段即—— 等待唤醒机制。
1.2 等待唤醒机制
什么是等待唤醒机制
这是多个线程间的一种协作机制。谈到线程我们经常想到的是线程间的竞争(race),比如去争夺锁,但这并不是故事的全部,线程间也会有协作机制。就好比在公司里你和你的同事们,你们可能存在在晋升时的竞争,但更多时候你们更多是一起合作以完成某些任务。
就是在一个线程进行了规定操作后,就进入等待状态(wait()), 等待其他线程执行完他们的指定代码过后 再将其唤醒(notify());在有多个线程进行等待时, 如果需要,可以使用 notifyAll()来唤醒所有的等待线程。
wait/notify 就是线程间的一种协作机制。
等待唤醒中的方法
等待唤醒机制就是用于解决线程间通信的问题的,使用到的3个方法的含义如下:
- wait:线程不再活动,不再参与调度,进入 wait set 中,因此不会浪费 CPU 资源,也不会去竞争锁了,这时的线程状态即是 WAITING。它还要等着别的线程执行一个特别的动作,也即是“通知(notify)”在这个对象上等待的线程从wait set 中释放出来,重新进入到调度队列(ready queue)中
- notify:则选取所通知对象的 wait set 中的一个线程释放;例如,餐馆有空位置后,等候就餐最久的顾客最先入座。
- notifyAll:则释放所通知对象的 wait set 上的全部线程。
注意:
哪怕只通知了一个等待的线程,被通知线程也不能立即恢复执行,因为它当初中断的地方是在同步块内,而此刻它已经不持有锁,所以她需要再次尝试去获取锁(很可能面临其它线程的竞争),成功后才能在当初调用 wait 方法之后的地方恢复执行。
总结如下:
- 如果能获取锁,线程就从 WAITING 状态变成 RUNNABLE 状态;
- 否则,从 wait set 出来,又进入 entry set,线程就从 WAITING 状态又变成 BLOCKED 状态
调用wait和notify方法需要注意的细节
- wait方法与notify方法必须要由同一个锁对象调用。因为:对应的锁对象可以通过notify唤醒使用同一个锁对象调用的wait方法后的线程。
- wait方法与notify方法是属于Object类的方法的。因为:锁对象可以是任意对象,而任意对象的所属类都是继承了Object类的。
- wait方法与notify方法必须要在同步代码块或者是同步函数中使用。因为:必须要通过锁对象调用这2个方法。
1.3 生产者与消费者问题
等待唤醒机制其实就是经典的“生产者与消费者”的问题。
就拿生产包子消费包子来说等待唤醒机制如何有效利用资源:
包子铺线程生产包子,吃货线程消费包子。当包子没有时(包子状态为false),吃货线程等待,包子铺线程生产包子(即包子状态为true),并通知吃货线程(解除吃货的等待状态),因为已经有包子了,那么包子铺线程进入等待状态。接下来,吃货线程能否进一步执行则取决于锁的获取情况。如果吃货获取到锁,那么就执行吃包子动作,包子吃完(包子状态为false),并通知包子铺线程(解除包子铺的等待状态),吃货线程进入等待。包子铺线程能否进一步执行则取决于锁的获取情况。
代码演示
包子资源类:
public class BaoZi {
String pier;
String xianer;
boolean flag=false;//包子资源 是否存在 包子资源状态
}
吃货线程类:
public class ChiHuo extends Thread{
private BaoZi bz;
public ChiHuo(String name,BaoZi bz){
super(name);
this.bz=bz;
}
@Override
public void run() {
while(true){
synchronized (bz){
if(bz.flag==false){
//没包子
try{
bz.wait();
}catch (InterruptedException e){
e.printStackTrace();
}
}
System.out.println("吃货正在吃"+bz.pier+bz.xianer+"包子");
bz.flag=false;
bz.notify();
}
}
}
}
包子铺线程类:
public class BaoZiPu extends Thread{
private BaoZi bz;
public BaoZiPu(String name,BaoZi bz){
super(name);
this.bz=bz;
}
@Override
public void run() {
int count=0;
//造包子
while(true){
//同步
synchronized (bz){
if(bz.flag==true){
//包子资源 存在
try{
bz.wait();
}catch (InterruptedException e){
e.printStackTrace();
}
}
//没有包子 造包子
System.out.println("包子铺开始做包子");
if(count%2==0){
//冰皮 五仁
bz.pier="冰皮";
bz.xianer="五仁";
}else{
//薄皮 牛肉大葱
bz.pier="黄皮";
bz.xianer="牛肉大葱";
}
count++;
bz.flag=true;
System.out.println("包子造好了:"+bz.pier+bz.xianer);
System.out.println("吃货来吃吧");
//唤醒等待线程
bz.notify();
}
}
}
}
测试类:
public class Demo {
public static void main(String[] args) {
//等待唤醒案例
BaoZi bz=new BaoZi();
ChiHuo ch=new ChiHuo("吃货",bz);
BaoZiPu bzp= new BaoZiPu("包子铺",bz);
ch.start();
bzp.start();
}
}
第二章 线程池
2.1 线程池思想概述
我们使用线程的时候就去创建一个线程,这样实现起来非常简便,但是就会有一个问题:
如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低系统的效率,因为频繁创建线程和销毁线程需要时间。
那么有没有一种办法使得线程可以复用,就是执行完一个任务,并不被销毁,而是可以继续执行其他的任务?
在Java中可以通过线程池来达到这样的效果。今天我们就来详细讲解一下Java的线程池。
2.2 线程池概念
- 线程池:其实就是一个容纳多个线程的容器,其中的线程可以反复使用,省去了频繁创建线程对象的操作, 无需反复创建线程而消耗过多资源。
由于线程池中有很多操作都是与优化资源相关的,我们在这里就不多赘述。我们通过一张图来了解线程池的工作原理:
合理利用线程池能够带来三个好处:
- 降低资源消耗。减少了创建和销毁线程的次数,每个工作线程都可以被重复利用,可执行多个任务。
- 提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。
- 提高线程的可管理性。可以根据系统的承受能力,调整线程池中工作线线程的数目,防止因为消耗过多的内存,而把服务器累趴下(每个线程需要大约1MB内存,线程开的越多,消耗的内存也就越大,最后死机)。
2.3 线程池的使用
Java里面线程池的顶级接口是 java.util.concurrent.Executor
,但是严格意义上讲 Executor 并不是一个线程池,而只是一个执行线程的工具。真正的线程池接口是java.util.concurrent.ExecutorService
。要配置一个线程池是比较复杂的,尤其是对于线程池的原理不是很清楚的情况下,很有可能配置的线程池不是较优
的,因此在 java.util.concurrent.Executors
线程工厂类里面提供了一些静态工厂,生成一些常用的线程池。官方建议使用Executors工程类来创建线程池对象。
Executors类中有个创建线程池的方法如下:
- public static ExecutorService newFixedThreadPool(int nThreads)
:返回线程池对象。(创建的是有界线程池,也就是池中的线程个数可以指定最大数量)
获取到了一个线程池ExecutorService 对象,那么怎么使用呢,在这里定义了一个使用线程池对象的方法如下:
- public Future<?> submit(Runnable task) :获取线程池中的某一个线程对象,并执行
使用线程池中线程对象的步骤:
- 创建线程池对象。
- 创建Runnable接口子类对象。(task)
- 提交Runnable接口子类对象。(take task)
- 关闭线程池(一般不做)。
Runnable实现类代码:
public class MyRunnable implements Runnable{
@Override
public void run() {
System.out.println("我要一个教练");
try{
Thread.sleep(2000);
}catch (InterruptedException e){
e.printStackTrace();
}
System.out.println("教练来了:"+Thread.currentThread().getName());
System.out.println("教我游泳,交完后,教练回到了游泳池");
}
}
线程池测试类:
public class ThreadPoolDemo {
public static void main(String[] args) {
//创建线程池对象
ExecutorService service= Executors.newFixedThreadPool(2);//包含2个线程对象
//创建Runaable实例对象
MyRunnable r=new MyRunnable();
//自己创建线程对象的方式
// Thread t=new Thread();
// t.start();//--->调用MyRunnable中的run()
//从线程池中获取线程对象,然后调用MyRunnable中的run()
service.submit(r);
//再获取个线程对象,调用MyRunnable中的run()
service.submit(r);
service.submit(r);
//注意:submit方法调用结束后,程序并不终止,是因为线程池控制了线程的关闭。
//将使用完的线程又归还到了线程池中
//关闭线程池
//service.shutdown();
}
}
第三章 Lambda表达式
3.1 函数式编程思想概述
在数学中,函数就是有输入量、输出量的一套计算方案,也就是“拿什么东西做什么事情”。相对而言,面向对象过分强调“必须通过对象的形式来做事情”,而函数式思想则尽量忽略面向对象的复杂语法——强调做什么,而不是以什么形式做。
面向对象的思想:
做一件事情,找一个能解决这个事情的对象,调用对象的方法,完成事情.
函数式编程思想:
只要能获取到结果,谁去做的,怎么做的都不重要,重视的是结果,不重视过程
3.2 冗余的Runnable代码
传统写法
当需要启动一个线程去完成任务时,通常会通过 java.lang.Runnable
接口来定义任务内容,并使用
java.lang.Thread
类来启动该线程。代码如下:
public class Demo01Runnable {
public static void main(String[] args) {
//匿名内部类
Runnable task=new Runnable() {
@Override
public void run() {
//覆盖重写抽象方法
System.out.println("多线程任务执行!");
}
};
new Thread(task).start();//启动线程
}
}
本着一切皆对象的思想,这种做法是无可厚非的:首先创建一个Runnable接口的匿名内部类对象来指定任务内容,再将其交给一个线程来启动。
代码分析
对于 Runnable 的匿名内部类用法,可以分析出几点内容:
- Thread 类需要 Runnable 接口作为参数,其中的抽象 run 方法是用来指定线程任务内容的核心;
- 为了指定 run 的方法体,不得不需要 Runnable 接口的实现类;
- 为了省去定义一个 RunnableImpl 实现类的麻烦,不得不使用匿名内部类;
- 必须覆盖重写抽象 run 方法,所以方法名称、方法参数、方法返回值不得不再写一遍,且不能写错;
- 而实际上,似乎只有方法体才是关键所在。
3.3 编程思想转换
做什么,而不是怎么做
我们真的希望创建一个匿名内部类对象吗?不。我们只是为了做这件事情而不得不创建一个对象。我们真正希望做的事情是:将 run 方法体内的代码传递给 Thread 类知晓。
传递一段代码——这才是我们真正的目的。而创建对象只是受限于面向对象语法而不得不采取的一种手段方式。
那,有没有更加简单的办法?如果我们将关注点从“怎么做”回归到“做什么”的本质上,就会发现只要能够更好地达到目的,过程与形式其实并不重要。
当我们需要从北京到上海时,可以选择高铁、汽车、骑行或是徒步。我们的真正目的是到达上海,而如何才能到达上海的形式并不重要,所以我们一直在探索有没有比高铁更好的方式——搭乘飞机。
而现在这种飞机(甚至是飞船)已经诞生:2014年3月Oracle所发布的Java 8(JDK 1.8)中,加入了Lambda表达式的重量级新特性,为我们打开了新世界的大门。
3.4 体验Lambda的更优写法
public class Demo02LambdaRunnable {
public static void main(String[] args) {
new Thread(() ‐> System.out.println("多线程任务执行!")).start(); // 启动线程
}
}
这段代码和刚才的执行效果是完全一样的,可以在1.8或更高的编译级别下通过。从代码的语义中可以看出:我们启动了一个线程,而线程任务的内容以一种更加简洁的形式被指定。
不再有“不得不创建接口对象”的束缚,不再有“抽象方法覆盖重写”的负担,就是这么简单!
3.5 回顾匿名内部类
Lambda是怎样击败面向对象的?在上例中,核心代码其实只是如下所示的内容:
() ‐> System.out.println("多线程任务执行!")
为了理解Lambda的语义,我们需要从传统的代码起步。
使用实现类
要启动一个线程,需要创建一个 Thread 类的对象并调用 start 方法。而为了指定线程执行的内容,需要调用Thread 类的构造方法:
- public Thread(Runnable target)
为了获取 Runnable 接口的实现对象,可以为该接口定义一个实现类 RunnableImpl :
public class RunnableImpl implements Runnable {
@Override
public void run() {
System.out.println("多线程任务执行!");
}
}
然后创建该实现类的对象作为 Thread 类的构造参数:
public class Demo03ThreadInitParam {
public static void main(String[] args) {
Runnable task = new RunnableImpl();
new Thread(task).start();
}
}
使用匿名内部类
这个 RunnableImpl 类只是为了实现 Runnable 接口而存在的,而且仅被使用了唯一一次,所以使用匿名内部类的语法即可省去该类的单独定义,即匿名内部类:
public class Demo04ThreadNameless {
public static void main(String[] args) {
new Thread(new Runnable() {
@Override
public void run() {
System.out.println("多线程任务执行!");
}
}).start();
}
}
匿名内部类的好处与弊端
一方面,匿名内部类可以帮我们省去实现类的定义;另一方面,匿名内部类的语法——确实太复杂了!
语义分析
仔细分析该代码中的语义, Runnable 接口只有一个 run 方法的定义:
- public abstract void run();
即制定了一种做事情的方案(其实就是一个函数):
- 无参数:不需要任何条件即可执行该方案。
- 无返回值:该方案不产生任何结果。
- 代码块(方法体):该方案的具体执行步骤。
同样的语义体现在 Lambda
语法中,要更加简单:
() ‐> System.out.println("多线程任务执行!")
- 前面的一对小括号即 run 方法的参数(无),代表不需要任何条件;
- 中间的一个箭头代表将前面的参数传递给后面的代码;
- 后面的输出语句即业务逻辑代码。
3.6 Lambda标准格式
Lambda省去面向对象的条条框框,格式由3个部分组成:
- 一些参数
- 一个箭头
- 一段代码
Lambda表达式的标准格式为:
(参数类型 参数名称) ‐> { 代码语句 }
格式说明:
- 小括号内的语法与传统方法参数列表一致:无参数则留空;多个参数则用逗号分隔。
- -> 是新引入的语法格式,代表指向动作。
- 大括号内的语法与传统方法体要求基本一致。
3.7 练习:使用Lambda标准格式(无参无返回)
题目
给定一个厨子 Cook 接口,内含唯一的抽象方法 makeFood ,且无参数、无返回值。如下:
public interface Cook {
void makeFood();
}
在下面的代码中,请使用Lambda的标准格式调用 invokeCook 方法,打印输出“吃饭啦!”字样:
public class Demo05InvokeCook {
public static void main(String[] args) {
//请在此处使用Lambda【标准格式】调用invokeCooK方法
}
private static void invokeCook(Cook cook){
cook.makeFood();
}
}
解答
public static void main(String[] args) {
invokeCook(()->{
System.out.println("吃饭啦!");
});
}
备注:小括号代表 Cook 接口 makeFood 抽象方法的参数为空,大括号代表 makeFood 的方法体。
3.8 Lambda的参数和返回值
需求:
- 使用数组存储多个Person对象
- 对数组中的Person对象使用Arrays的sort方法通过年龄进行升序排序
下面举例演示 java.util.Comparator<T>
接口的使用场景代码,其中的抽象方法定义为:
public abstract int compare(T o1, T o2);
当需要对一个对象数组进行排序时, Arrays.sort
方法需要一个 Comparator
接口实例来指定排序的规则。假设有一个 Person
类,含有 String name
和 int age
两个成员变量:
public class Person {
private String name;
private int age;
// 省略构造器、toString方法与Getter Setter
}
传统写法
如果使用传统的代码对Person[]数组进行排序,写法如下:
import java.util.Arrays;
import java.util.Comparator;
public class Demo06Comparator {
public static void main(String[] args) {
// 本来年龄乱序的对象数组
Person[] array = {
new Person("古力娜扎", 19),
new Person("迪丽热巴", 18),
new Person("马尔扎哈", 20) };
// 匿名内部类
Comparator<Person> comp = new Comparator<Person>() {
@Override
public int compare(Person o1, Person o2) {
return o1.getAge() ‐ o2.getAge();
}
};
Arrays.sort(array, comp); // 第二个参数为排序规则,即Comparator接口实例
for (Person person : array) {
System.out.println(person);
}
}
}
这种做法在面向对象的思想中,似乎也是理所当然的,其中Comparator接口的实例(使用了匿名内部类)代表了“按照年龄从小到大”的排序规则。
代码分析
下面我们来搞清楚上述代码真正要做什么事情。
- 为了排序,Arrays.sort方法需要排序规则,即Comparator接口的实例,抽象方法compare是关键;
- 为了指定compare的方法体,不得不需要Comparator接口的是西安类。
- 为了省去定义一个ComparatorImp1实现类的麻烦,不得不使用匿名内部类。
- 必须覆盖重写抽象compare方法,所以方法名称、方法参数、方法返回值不得不再写一遍,且不能写错;
- 实际上,只有参数和方法体才是关键。
Lambda写法
import java.util.Arrays;
import java.util.Comparator;
public class Demo06Comparator {
public static void main(String[] args) {
Person[] array={
new Person("古力娜扎",19),
new Person("迪丽热巴",18),
new Person("马儿扎哈",20)
};
Arrays.sort(array,(Person a,Person b)->{
return a.getAge()-b.getAge();
});
for(Person person:array){
System.out.println(person);
}
}
}
3.9练习:使用Lambda标准格式(有参数有返回)
题目
给定一个计算器 Calculator 接口,内含抽象方法 calc 可以将两个int数字相加得到和值:
public interface Calculator {
int calc(int a, int b);
}
在下面的代码中,请使用Lambda的标准格式调用invokeCalc方法,完成120和130的相加计算:
public class Demo06Comparator {
public static void main(String[] args) {
//TODO 请在此使用Lambda【标准格式】调用invokeCal方法来计算120+130的结果
}
private static void invokeCalc(int a,int b,Calculator calculator){
int result= calculator.calc(a,b);
System.out.println("结果是:"+result);
}
}
解答
public static void main(String[] args) {
//TODO 请在此使用Lambda【标准格式】调用invokeCal方法来计算120+130的结果
invokeCalc(120,130,(int a,int b)->{
return a+b;
});
}
备注:小括号代表Calculator接口calc抽象方法的参数,大括号代表calc的方法体。
3.10 Lambda省略格式
可推导即可省略
Lambda强调的是“做什么”而不是“怎么做”,所以凡是可以根据上下文推导得知的信息,都可以省略。例如上例还可以使用Lambda的省略写法:
public static void main(String[] args) {
//TODO 请在此使用Lambda【标准格式】调用invokeCal方法来计算120+130的结果
invokeCalc(120,130,(a,b)->a+b);
}
省略规则
在Lambda标准格式的基础上,使用省略写法的规则为:
- 小括号内参数的类型可以省略
- 如果小括号内有且仅有一个参数,则小括号可以省略
- 如果大括号内有且仅有一个语句,则无论是否有返回值,都可以省略大括号,return关键字及语句分号
3.11 练习:使用Lambda省略格式
题目
仍然使用前文含有唯一makeFood抽象方法的厨子Cook接口,在下面的代码中,请使用Lambda的省略格式调用invokeCook方法,打印输出“吃饭啦”字样:
public class Demo06Comparator {
public static void main(String[] args) {
//TODO请在此处使用Lambda【省略格式】调用invokeCook方法
}
private static void invokeCook(Cook cook){
cook.makeFood();
}
}
解答
public static void main(String[] args) {
//TODO请在此处使用Lambda【省略格式】调用invokeCook方法
invokeCook(()-> System.out.println("吃饭啦!"));
}
3.12 Lambda的使用前提
Lambda的语法非常简洁,完全没有面向对象复杂的束缚。但是使用时有几个问题需要特别注意:
- 使用Lambda必须具有接口,且接口中有且仅有一个抽象方法。无论是JDK内值的Runnable、Comparator接口还是自定义的接口,只有当接口中的抽象方法存在且唯一时,才可以使用Lambda
- 使用Lambda必须具有上下文推断。也就是方法的参数或局部变量类型必须为Lambda对应的接口类型,才能使用Lambda作为该接口的实例。
备注:有且仅有一个抽象方法的接口,称为函数接口。