Java面试知识点(全)- Java面试基础部分二

news2025/1/21 10:21:47

[Java面试知识点(全)(https://nanxiang.blog.csdn.net/article/details/130640392):
导航: https://nanxiang.blog.csdn.net/article/details/130640392
注:随时更新

TPS&QPS

TPS:是Transactions PerSecond的缩写,也就是事务数/秒。它是软件测试结果的测量单位。一个事务是指一个客户机向服务器发送请求然后服务器做出反应的过程。客户机在发送请求时开始计时,收到服务器响应后结束计时,以此来计算使用的时间和完成的事务个数。
QPS:是Queries Per Second的缩写,意思是每秒查询率,是一台服务器每秒能够相应的查询次数,是对一个特定的查询服务器在规定时间内所处理流量多少的衡量标准。
区别及理解:
1、TPS即每秒处理事务数,包括:”用户请求服务器”、”服务器自己的内部处理”、”服务器返回给用户”,这三个过程,每秒能够完成N个这三个过程,TPS也就是3;
2、QPS基本类似于TPS,但是不同的是,对于一个页面的一次访问,形成一个TPS;但一次页面请求,可能产生多次对服务器的请求,服务器对这些请求,就可计入QPS之中。
3、一般的,评价系统性能均以每秒钟完成的技术交易的数量来衡量。系统整体处理能力取决于处理能力最低模块的TPS值。
4、QPS对应fetches/sec,即每秒的响应请求数,也即是最大吞吐能力。

什么是线程安全

就是线程同步的意思,就是当一个程序对一个线程安全的方法或者语句进行访问的时候,其他的不能再对他进行操作了,必须等到这次访问结束以后才能对这个线程安全的方法进行访问
什么叫线程安全:
如果你的代码所在的进程中有多个线程在同时运行,而这些线程可能会同时运行这段代码。如果每次运行结果和单线程运行的结果是一样的,而且其他的变量的值也和预期的是一样的,就是线程安全的。
或者说:一个类或者程序所提供的接口对于线程来说是原子操作或者多个线程之间的切换不会导致该接口的执行结果存在二义性,也就是说我们不用考虑同步的问题。

线程安全问题都是由全局变量及静态变量引起的。
若每个线程中对全局变量、静态变量只有读操作,而无写操作,一般来说,这个全局变量是线程安全的;若有多个线程同时执行写操作,一般都需要考虑线程同步,否则就可能影响线程安全。
存在竞争的线程不安全,不存在竞争的线程就是安全的

Callable接口和Runnable

Callable接口的call()方法可以有返回值(通过Future接口的get()方法,不过此方法是阻塞性的),而Runnable接口的run()方法没有返回值
Callable接口的call()方法可以声明抛出异常,而Runnable接口的run()方法不可以声明抛出异常(run方法出现异常时会直接抛出,打印出堆栈信息,不过可以通过自定义ThreadFactory的方法来捕捉异常)

wait方法和sleep

1、这两个方法来自不同的类分别是Thread和Object
2、最主要是sleep方法没有释放锁,而wait方法释放了锁,使得其他线程可以使用同步控制块或者方法(锁代码块和方法锁)。
3、wait,notify和notifyAll只能在同步控制方法或者同步控制块里面使用,而sleep可以在任何地方使用(使用范围)
4、sleep必须捕获异常,而wait,notify和notifyAll不需要捕获异常
5、sleep方法属于Thread类中方法,表示让一个线程进入睡眠状态,等待一定的时间之后,自动醒来进入到可运行状态,不会马上进入运行状态,因为线程调度机制恢复线程的运行也需要时间,一个线程对象调用了sleep方法之后,并不会释放他所持有的所有对象锁,所以也就不会影响其他进程对象的运行。但在sleep的过程中过程中有可能被其他对象调用它的interrupt(),产生InterruptedException异常,如果你的程序不捕获这个异常,线程就会异常终止,进入TERMINATED状态,如果你的程序捕获了这个异常,那么程序就会继续执行catch语句块(可能还有finally语句块)以及以后的代码。
6、注意sleep()方法是一个静态方法,也就是说他只对当前对象有效,通过t.sleep()让t对象进入sleep,这样的做法是错误的,它只会是使当前线程被sleep而不是t线程
7、wait属于Object的成员方法,一旦一个对象调用了wait方法,必须要采用notify()和notifyAll()方法唤醒该进程;如果线程拥有某个或某些对象的同步锁,那么在调用了wait()后,这个线程就会释放它持有的所有同步资源,而不限于这个被调用了wait()方法的对象。wait()方法也同样会在wait的过程中有可能被其他对象调用interrupt()方法而产生

线程池 四种创建方式

Java通过Executors提供四种线程池,分别为:
newCachedThreadPool创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程。
newFixedThreadPool 创建一个定长线程池,可控制线程最大并发数,超出的线程会在队列中等待。
newScheduledThreadPool 创建一个定长线程池,支持定时及周期性任务执行。
newSingleThreadExecutor 创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行

Java多线程基础

用多线程只有一个目的,那就是更好的利用cpu的资源,因为所有的多线程代码都可以用单线程来实现。说这个话其实只有一半对,因为反应“多角色”的程序代码,最起码每个角色要给他一个线程吧,否则连实际场景都无法模拟,当然也没法说能用单线程来实现:比如最常见的“生产者,消费者模型”。
很多人都对其中的一些概念不够明确,如同步、并发等等,让我们先建立一个数据字典,以免产生误会。
多线程:指的是这个程序(一个进程)运行时产生了不止一个线程

并行与并发:

并行:多个cpu实例或者多台机器同时执行一段处理逻辑,是真正的同时。
并发:通过cpu调度算法,让用户看上去同时执行,实际上从cpu操作层面不是真正的同时。并发往往在场景中有公用的资源,那么针对这个公用的资源往往产生瓶颈,我们会用TPS或者QPS来反应这个系统的处理能力。

并发与并行

线程安全:经常用来描绘一段代码。指在并发的情况之下,该代码经过多线程使用,线程的调度顺序不影响任何结果。这个时候使用多线程,我们只需要关注系统的内存,cpu是不是够用即可。反过来,线程不安全就意味着线程的调度顺序会影响最终结果,如不加事务的转账代码:

void transferMoney(User from, User to, float amount){
  to.setMoney(to.getBalance() + amount);
  from.setMoney(from.getBalance() - amount);
}

同步:Java中的同步指的是通过人为的控制和调度,保证共享资源的多线程访问成为线程安全,来保证结果的准确。如上面的代码简单加入@synchronized关键字。在保证结果准确的同时,提高性能,才是优秀的程序。线程安全的优先级高于性能。

线程状态

在这里插入图片描述
在这里插入图片描述

线程状态转换
各种状态一目了然,值得一提的是"blocked"这个状态:
线程在Running的过程中可能会遇到阻塞(Blocked)情况
1.调用join()和sleep()方法,sleep()时间结束或被打断,join()中断,IO完成都会回到Runnable状态,等待JVM的调度。
2.调用wait(),使该线程处于等待池(wait blocked pool),直到notify()/notifyAll(),线程被唤醒被放到锁定池(lock blocked pool ),释放同步锁使线程回到可运行状态(Runnable)
3.对Running状态的线程加同步锁(Synchronized)使其进入(lock blocked pool ),同步锁被释放进入可运行状态(Runnable)。
此外,在runnable状态的线程是处于被调度的线程,此时的调度顺序是不一定的。Thread类中的yield方法可以让一个running状态的线程转入runnable。

monitor

他们是应用于同步问题的人工线程调度工具。讲其本质,首先就要明确monitor的概念,Java中的每个对象都有一个监视器,来监测并发代码的重入。在非多线程编码时该监视器不发挥作用,反之如果在synchronized 范围内,监视器发挥作用。
wait/notify必须存在于synchronized块中。并且,这三个关键字针对的是同一个监视器(某对象的监视器)。这意味着wait之后,其他线程可以进入同步块执行。
当某代码并不持有监视器的使用权时(如图中5的状态,即脱离同步块)去wait或notify,会抛出java.lang.IllegalMonitorStateException。也包括在synchronized块中去调用另一个对象的wait/notify,因为不同对象的监视器不同,同样会抛出此异常。
再讲用法:
synchronized单独使用:
代码块:如下,在多线程环境下,synchronized块中的方法获取了lock实例的monitor,如果实例相同,那么只有一个线程能执行该块内容


public class Thread1 implements Runnable {
   Object lock;
   public void run() {  
       synchronized(lock){
         ..do something
       }
   }
}

直接用于方法: 相当于上面代码中用lock来锁定的效果,实际获取的是Thread1类的monitor。更进一步,如果修饰的是static方法,则锁定该类所有实例。
public class Thread1 implements Runnable {
public synchronized void run() {
…do something
}
}
synchronized, wait, notify结合:典型场景生产者消费者问题


/**
   * 生产者生产出来的产品交给店员
   */
  public synchronized void produce()
  {
      if(this.product >= MAX_PRODUCT)
      {
          try
          {
              wait();  
              System.out.println("产品已满,请稍候再生产");
          }
          catch(InterruptedException e)
          {
              e.printStackTrace();
          }
          return;
      }
      this.product++;
      System.out.println("生产者生产第" + this.product + "个产品.");
      notifyAll();   //通知等待区的消费者可以取出产品了
  }
  /**
   * 消费者从店员取产品
   */
  public synchronized void consume()
  {
      if(this.product <= MIN_PRODUCT)
      {
          try 
          {
              wait(); 
              System.out.println("缺货,稍候再取");
          } 
          catch (InterruptedException e) 
          {
              e.printStackTrace();
          }
          return;
      }
      System.out.println("消费者取走了第" + this.product + "个产品.");
      this.product--;
      notifyAll();   //通知等待去的生产者可以生产产品了
  }

volatile

先补充一下概念:Java 内存模型中的可见性、原子性和有序性。
可见性:
  可见性是一种复杂的属性,因为可见性中的错误总是会违背我们的直觉。通常,我们无法确保执行读操作的线程能适时地看到其他线程写入的值,有时甚至是根本不可能的事情。为了确保多个线程之间对内存写入操作的可见性,必须使用同步机制。
  可见性,是指线程之间的可见性,一个线程修改的状态对另一个线程是可见的。也就是一个线程修改的结果。另一个线程马上就能看到。比如:用volatile修饰的变量,就会具有可见性。volatile修饰的变量不允许线程内部缓存和重排序,即直接修改内存。所以对其他线程是可见的。但是这里需要注意一个问题,volatile只能让被他修饰内容具有可见性,但不能保证它具有原子性。比如 volatile int a = 0;之后有一个操作 a++;这个变量a具有可见性,但是a++ 依然是一个非原子操作,也就是这个操作同样存在线程安全问题。
  在 Java 中 volatile、synchronized 和 final 实现可见性。

原子性:
  原子是世界上的最小单位,具有不可分割性。比如 a=0;(a非long和double类型) 这个操作是不可分割的,那么我们说这个操作时原子操作。再比如:a++; 这个操作实际是a = a + 1;是可分割的,所以他不是一个原子操作。非原子操作都会存在线程安全问题,需要我们使用同步技术(sychronized)来让它变成一个原子操作。一个操作是原子操作,那么我们称它具有原子性。java的concurrent包下提供了一些原子类,我们可以通过阅读API来了解这些原子类的用法。比如:AtomicInteger、AtomicLong、AtomicReference等。
  在 Java 中 synchronized 和在 lock、unlock 中操作保证原子性。

有序性:
  Java 语言提供了 volatile 和 synchronized 两个关键字来保证线程之间操作的有序性,volatile 是因为其本身包含“禁止指令重排序”的语义,synchronized 是由“一个变量在同一个时刻只允许一条线程对其进行 lock 操作”这条规则获得的,此规则决定了持有同一个对象锁的两个同步块只能串行执行。
  下面一段代码在多线程环境下,将存在问题。



 public class NoVisibility {
      private static boolean ready;
      private static int number;
      private static class ReaderThread extends Thread {
          @Override
          public void run() {
             while(!ready) {
                 Thread.yield();
             }
             System.out.println(number);
                 }
     }
     public static void main(String[] args) {
         new ReaderThread().start();
         number = 42;
         ready = true;
    }
 }

NoVisibility可能会持续循环下去,因为读线程可能永远都看不到ready的值。甚至NoVisibility可能会输出0,因为读线程可能看到了写入ready的值,但却没有看到之后写入number的值,这种现象被称为“重排序”。只要在某个线程中无法检测到重排序情况(即使在其他线程中可以明显地看到该线程中的重排序),那么就无法确保线程中的操作将按照程序中指定的顺序来执行。当主线程首先写入number,然后在没有同步的情况下写入ready,那么读线程看到的顺序可能与写入的顺序完全相反。
  在没有同步的情况下,编译器、处理器以及运行时等都可能对操作的执行顺序进行一些意想不到的调整。在缺乏足够同步的多线程程序中,要想对内存操作的执行春旭进行判断,无法得到正确的结论。
  这个看上去像是一个失败的设计,但却能使JVM充分地利用现代多核处理器的强大性能。例如,在缺少同步的情况下,Java内存模型允许编译器对操作顺序进行重排序,并将数值缓存在寄存器中。此外,它还允许CPU对操作顺序进行重排序,并将数值缓存在处理器特定的缓存中。

Volatile原理

Java语言提供了一种稍弱的同步机制,即volatile变量,用来确保将变量的更新操作通知到其他线程。当把变量声明为volatile类型后,编译器与运行时都会注意到这个变量是共享的,因此不会将该变量上的操作与其他内存操作一起重排序。volatile变量不会被缓存在寄存器或者对其他处理器不可见的地方,因此在读取volatile类型的变量时总会返回最新写入的值。
  在访问volatile变量时不会执行加锁操作,因此也就不会使执行线程阻塞,因此volatile变量是一种比sychronized关键字更轻量级的同步机制。

在这里插入图片描述

当对非 volatile 变量进行读写的时候,每个线程先从内存拷贝变量到CPU缓存中。如果计算机有多个CPU,每个线程可能在不同的CPU上被处理,这意味着每个线程可以拷贝到不同的 CPU cache 中。
  而声明变量是 volatile 的,JVM 保证了每次读变量都从内存中读,跳过 CPU cache 这一步。
当一个变量定义为 volatile 之后,将具备两种特性:
  1.保证此变量对所有的线程的可见性,这里的“可见性”,如本文开头所述,当一个线程修改了这个变量的值,volatile 保证了新值能立即同步到主内存,以及每次使用前立即从主内存刷新。但普通变量做不到这点,普通变量的值在线程间传递均需要通过主内存(详见:Java内存模型)来完成。
  2.禁止指令重排序优化。有volatile修饰的变量,赋值后多执行了一个“load addl $0x0, (%esp)”操作,这个操作相当于一个内存屏障(指令重排序时不能把后面的指令重排序到内存屏障之前的位置),只有一个CPU访问内存时,并不需要内存屏障;(什么是指令重排序:是指CPU采用了允许将多条指令不按程序规定的顺序分开发送给各相应电路单元处理)。
volatile 性能:
  volatile 的读性能消耗与普通变量几乎相同,但是写操作稍慢,因为它需要在本地代码中插入许多内存屏障指令来保证处理器不发生乱序执行。

线程启动编码

通过thread类,此类继承了Runable


 public class PrintThread extends Thread {
    private String message;
    public PrintThread(String message) {
      this.message = message;
    }
    @Override
    public void run() {
      for (int i = 0; i < 1000; i++) {
        System.out.println(message);
      }
    }
  }

Main 类是用于创建上面声明的PrintThread 类的两个实例并利用它们来启动两个线程的程序。
  利用PrintThread 类启动2 个线程(Main.java)


  public class Main {
    public static void main(String[] args) {
      new PrintThread("Good!").start();
      new PrintThread("Nice!").start();
    }
  }
public class Printer implements Runnable {
    private String message;
    public Printer(String message) {
      this.message = message;
    }
    @Override
    public void run() {
      for (int i = 0; i < 1000; i++) {
        System.out.println(message);
      }
    }
  }

Main 类是用于创建两个Printer 类的实例,并利用它们来启动两个线程的程序。
  利用Runnable 接口启动两个线程(Main.java)


  public class Main {
    public static void main(String[] args) {
      new Thread(new Printer("Good")).start();
      new Thread(new Printer("Nice")).start();
    }
  }

等待/通知机制

等待/通知机制,是指一个线程A调用了对象O的wait()方法进入等待状态,而另一个线程B 调用了对象O的notify()或者notifyAll()方法,线程A收到通知后从对象O的wait()方法返回,进而执行后续操作。

在这里插入图片描述

注意:
1)使用wait()、notify()和notifyAll()时需要先对调用对象加锁。
2)调用wait()方法后,线程状态由RUNNING变为WAITING,并将当前线程放置到对象的等待队列。
3)notify()或notifyAll()方法调用后,等待线程依旧不会从wait()返回,需要调用notify()或 notifAll()的线程释放锁之后,等待线程才有机会从wait()返回。
4)notify()方法将等待队列中的一个等待线程从等待队列中移到同步队列中,而notifyAll() 方法则是将等待队列中所有的线程全部移到同步队列,被移动的线程状态由WAITING变为 BLOCKED。
5)从wait()方法返回的前提是获得了调用对象的锁。

在这里插入图片描述

WaitThread首先获取了对象的锁,然后调用对象的wait()方法,从而放弃了锁并进入了对象的等待队列WaitQueue中,进入等待状态。由于WaitThread释放了对象的锁, NotifyThread随后获取了对象的锁,并调用对象的notify()方法,将WaitThread从WaitQueue移到 SynchronizedQueue中,此时WaitThread的状态变为阻塞状态。NotifyThread释放了锁之后, WaitThread再次获取到锁并从wait()方法返回继续执行。

notify和notifyAll的区别

notifyAll调用后,会将全部线程由等待队列移到同步锁队列,然后参与锁的竞争,竞争成功则继续执行,如果不成功则留在同步锁队列等待锁被释放后再次参与竞争。而notify只会唤醒一个线程。所以notify可能会导致死锁,而notifyAll则不会死锁

Thread.join()的使用

如果一个线程A执行了thread.join()语句,其含义是:当前线程A等待thread线程终止之后才执行。
从thread.join()返回。线程Thread除了提供join()方法之外,还提供了join(longmillis)和join(longmillis,int nanos)两个具备超时特性的方法。这两个超时方法表示,如果线程thread在给定的超时时间里没有终止,那么将会从该超时方法中返回。

Thread类相关方法

//当前线程可转让cpu控制权,让别的就绪状态线程运行(切换)
public static Thread.yield()
//暂停一段时间
public static Thread.sleep()
//在一个线程中调用other.join(),将等待other执行完后才继续本线程。    
public join()
//后两个函数皆可以被打断
public interrupte()
关于中断:它并不像stop方法那样会中断一个正在运行的线程。线程会不时地检测中断标识位,以判断线程是否应该被中断(中断标识值是否为true)。终端只会影响到wait状态、sleep状态和join状态。被打断的线程会抛出InterruptedException。
Thread.interrupted()检查当前线程是否发生中断,返回boolean
synchronized在获锁的过程中是不能被中断的。
中断是一个状态!interrupt()方法只是将这个状态置为true而已。所以说正常运行的程序不去检测状态,就不会终止,而wait等阻塞方法会去检查并抛出异常。如果在正常运行的程序中添加while(!Thread.interrupted()) ,则同样可以在中断后离开代码体

高级多线程控制类

以上都属于内功心法,接下来是实际项目中常用到的工具了,Java1.5提供了一个非常高效实用的多线程包:java.util.concurrent, 提供了大量高级工具,可以帮助开发者编写高效、易维护、结构清晰的Java多线程程序。

1.ThreadLocal类

用处:保存线程的独立变量。对一个线程类(继承自Thread),
当使用ThreadLocal维护变量时,ThreadLocal为每个使用该变量的线程提供独立的变量副本,所以每一个线程都可以独立地改变自己的副本,而不会影响其它线程所对应的副本。常用于用户登录控制,如记录session信息。
实现:每个Thread都持有一个TreadLocalMap类型的变量(该类是一个轻量级的Map,功能与map一样,区别是桶里放的是entry而不是entry的链表。功能还是一个map。)以本身为key,以目标为value。
主要方法是get()和set(T a),set之后在map里维护一个threadLocal -> a,get时将a返回。ThreadLocal是一个特殊的容器。

2.原子类(AtomicInteger、AtomicBoolean……)

如果使用atomic wrapper class如atomicInteger,或者使用自己保证原子的操作,则等同于synchronized
//返回值为boolean
AtomicInteger.compareAndSet(int expect,int update)
该方法可用于实现乐观锁,考虑文中最初提到的如下场景:a给b付款10元,a扣了10元,b要加10元。此时c给b2元,但是b的加十元代码约为:
if(b.value.compareAndSet(old, value)){
return ;
}else{
//try again
// if that fails, rollback and log
}
AtomicReference
对于AtomicReference 来讲,也许对象会出现,属性丢失的情况,即oldObject == current,但是oldObject.getPropertyA != current.getPropertyA。
这时候,AtomicStampedReference就派上用场了。这也是一个很常用的思路,即加上版本号

3.Lock锁

lock: 在java.util.concurrent包内。共有三个实现:
ReentrantLock
ReentrantReadWriteLock.ReadLock
ReentrantReadWriteLock.WriteLock
主要目的是和synchronized一样, 两者都是为了解决同步问题,处理资源争端而产生的技术。功能类似但有一些区别。

区别如下:

lock更灵活,可以自由定义多把锁的枷锁解锁顺序(synchronized要按照先加的后解顺序)
提供多种加锁方案,lock 阻塞式, trylock 无阻塞式, lockInterruptily 可打断式, 还有trylock的带超时时间版本。
本质上和监视器锁(即synchronized是一样的)
能力越大,责任越大,必须控制好加锁和解锁,否则会导致灾难。
和Condition类的结合。
性能更高,对比如下图:

在这里插入图片描述

synchronized和Lock性能对比

ReentrantLock    
可重入的意义在于持有锁的线程可以继续持有,并且要释放对等的次数后才真正释放该锁。
使用方法是:
1.先new一个实例
static ReentrantLock r=new ReentrantLock();
2.加锁      
r.lock()或r.lockInterruptibly();
此处也是个不同,后者可被打断。当a线程lock后,b线程阻塞,此时如果是lockInterruptibly,那么在调用b.interrupt()之后,b线程退出阻塞,并放弃对资源的争抢,进入catch块。(如果使用后者,必须throw interruptable exception 或catch)    
3.释放锁   
r.unlock()
必须做!何为必须做呢,要放在finally里面。以防止异常跳出了正常流程,导致灾难。这里补充一个小知识点,finally是可以信任的:经过测试,哪怕是发生了OutofMemoryError,finally块中的语句执行也能够得到保证。
ReentrantReadWriteLock
可重入读写锁(读写锁的一个实现) 
 ReentrantReadWriteLock lock = new ReentrantReadWriteLock()
  ReadLock r = lock.readLock();
  WriteLock w = lock.writeLock();
两者都有lock,unlock方法。写写,写读互斥;读读不互斥。可以实现并发读的高效线程安全代码

4.容器类

这里就讨论比较常用的两个:
BlockingQueue
ConcurrentHashMap

BlockingQueue
阻塞队列。该类是java.util.concurrent包下的重要类,通过对Queue的学习可以得知,这个queue是单向队列,可以在队列头添加元素和在队尾删除或取出元素。类似于一个管  道,特别适用于先进先出策略的一些应用场景。普通的queue接口主要实现有PriorityQueue(优先队列),有兴趣可以研究
BlockingQueue在队列的基础上添加了多线程协作的功能:
在这里插入图片描述

BlockingQueue
除了传统的queue功能(表格左边的两列)之外,还提供了阻塞接口put和take,带超时功能的阻塞接口offer和poll。put会在队列满的时候阻塞,直到有空间时被唤醒;take在队 列空的时候阻塞,直到有东西拿的时候才被唤醒。用于生产者-消费者模型尤其好用,堪称神器。
常见的阻塞队列有:
ArrayListBlockingQueue
LinkedListBlockingQueue
DelayQueue
SynchronousQueue
ConcurrentHashMap
高效的线程安全哈希map。请对比hashTable , concurrentHashMap, HashMap

5.管理类

管理类的概念比较泛,用于管理线程,本身不是多线程的,但提供了一些机制来利用上述的工具做一些封装。

Worker时使用ReentrantLock保证多线程并发问题
了解到的值得一提的管理类:ThreadPoolExecutor和 JMX框架下的系统级管理类 ThreadMXBean

外传

😜 原创不易,如若本文能够帮助到您的同学
🎉 支持我:关注我+点赞👍+收藏⭐️
📝 留言:探讨问题,看到立马回复
💬 格言:己所不欲勿施于人 扬帆起航、游历人生、永不言弃!🔥

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/522511.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

elment-ui/plus不定高度容器收缩折叠动画组件

文章目录 学习链接效果代码 学习链接 原生js手动实现一个多级菜单效果&#xff08;高度可过渡变化&#xff09; - 自己的链接 vue实现折叠展开收缩动画 - 自己的链接 效果 代码 在使用element-plus的折叠组件的时候&#xff0c;一般用的是<el-collapse>组件&#xff0…

Vector - CAPL - CANoe硬件配置函数 - 04

目录 getChipType -- 确定当前所用的CAN控制器类型 代码示例 setCanCabsMode -- 设置 CANcab 模式 代码示例 setOcr -- 设置输出寄存器 代码示例 setBtr -- 设置位时序寄存器BTR 代码示例 getChipType -- 确定当前所用的CAN控制器类型 功能&#xff1a;确定所用 CAN 控制…

身边不动点定理的有意思应用

最近读高观点下的数学这本书&#xff0c;对书中介绍的布劳威尔不动点定理的有趣性质印象很深&#xff0c;原因是这个定理的某些性质能够解释我们生活中的一些常见现象&#xff0c;这里结合一个例题&#xff0c;聊以记录。 从一个数学题讲起&#xff1a; f(x)是定义在[0,1]上的…

Netty 服务端开发及性能优化

Netty 是一个异步基于事件驱动的高性能网络通信框架&#xff0c;可以看做是对 NIO 和 BIO 的封装&#xff0c;并提供了简单易用的 API、Handler 和工具类等&#xff0c;用以快速开发高性能、高可靠性的网络服务端和客户端程序。 1. 创建服务端 服务端启动需要创建 ServerBoot…

面试官说,Java中的volatile关键字有什么作用?

在Java中&#xff0c;volatile是一个关键字&#xff0c;它用于标记变量&#xff0c;以指示该变量可能随时被多个线程访问并修改。从面试的角度来看&#xff0c;了解volatile关键字的作用和原理对于Java开发人员来说非常重要。在本文中&#xff0c;我将详细讲解volatile关键字的…

springboot+vue班级综合测评管理系统(源码+文档)

风定落花生&#xff0c;歌声逐流水&#xff0c;大家好我是风歌&#xff0c;混迹在java圈的辛苦码农。今天要和大家聊的是一款基于springboot的班级综合测评管理系统。项目源码以及部署相关请联系风歌&#xff0c;文末附上联系信息 。 &#x1f495;&#x1f495;作者&#xff1…

prometheus中通过node-exporter中的--collector.textfile.directory这一选项参数自定义监控指标

简述node-exporter中该选项参数的作用。 --collector.textfile.directory 是 Node Exporter 的一个命令行选项&#xff0c;用于指定从 textfile 收集器中收集数据的目录。 Node Exporter 会通过各种方式收集主机的度量值&#xff0c;并将这些度量值暴露给 Prometheus。其中之…

【嵌入式烧录刷写文件】-2.3-删除/修改Intel Hex文件中指定地址范围内的数据

案例背景&#xff08;共6页精讲&#xff09;&#xff1a; 有如下一段HEX文件&#xff0c;如何“自动”地完成地址范围0x9110-0x9113数据的删除或修改。 :2091000058595A5B5C5D5E5F606162636465666768696A6B6C6D6E6F70717273747576775F :2091200078797A7B7C7D7E7F808182838485…

C++ STL之 list 基础

文章目录 前言STL之list基础知识1. list的介绍2. list的使用2.1 list的构造2.2 list iterator的使用2.3 空间相关2.4 元素访问2.5 相关函数2.6 list的迭代器失效 3. list与vector的对比 后记 前言 本篇将学习 list 的基础知识 &#x1f57a;作者&#xff1a; 迷茫的启明星 专栏…

网络安全从业人员职业发展和规划

1、为什么做这次分享&#xff1f; 2、人生周期三模型 3、职业生涯阶段划分 4、通用职业发展路径 5、当前安全行业前景如何&#xff1f; 6、安全就业行情如何&#xff1f; 7、安全行业就业市场岗位划分 8、什么是相对比较好的履历&#xff1f; 9、选择甲方还是选择乙方&#xf…

Prompt learning 教学[技巧篇]:通过增加示例、引导词、特殊符号指令等方式让chatgpt输出更好的答案

Prompt learning 教学[技巧篇]&#xff1a;通过增加示例、引导词、特殊符号指令等方式让chatgpt输出更好的答案 技巧1&#xff1a;To Do and Not To Do 在问答场景里&#xff0c;为了让 AI 回答更加准确&#xff0c;一般会在问题里加条件。比如让 AI 推荐一部电影给你 Recomme…

【高数+复变函数】傅里叶变换

文章目录 【高数复变函数】傅里叶变换3 傅里叶变换3.1 基本概念3.2 单位脉冲函数及其傅里叶变换3.3 非周期函数的频谱 上一节 【高数复变函数】傅里叶积分 【高数复变函数】傅里叶变换 3 傅里叶变换 3.1 基本概念 回顾&#xff1a;上一节中的Fourier积分公式 f ( t ) 1 2…

前端二进制流的关系

Blob 全称&#xff1a;binary large object&#xff0c;二进制大对象&#xff0c;是一个js对象&#xff0c;可以用来存储大量二进制编码格式的数据&#xff0c;Blob对象是不可修改的&#xff0c;读取内容的唯一方法是FileReader。 创建一个Blob对象&#xff1a; new Blob(ar…

SSM(Vue3+ElementPlus+Axios+SSM前后端分离)--后端实现

目录 SSM(Vue3ElementPlusAxiosSSM前后端分离)--后端实现 技术栈 实现功能04-添加家居信息 需求分析/图解 思路分析 代码实现 创建\service\FurnService.java 和\service\FurnServiceImpl.java, 增加添加方法 修改Furn.java , 当创建Furn 对象imgPath 为null 时, imgPa…

Java14-常用类:字符串,日期类,比较器

一&#xff1a;字符串&#xff1a;String 1.概述&#xff1a; String&#xff1a;字符串&#xff0c;使用一对""引起来表示。 1.String 声明 为final的&#xff0c;不可被继承 2.String 实现了Serializable接口&#xff1a;表示字符串是支持序列化的。 实现了Co…

多线程相关高频面试题

一、线程的基础知识 1、线程和进程的区别&#xff1f; 进程是正在运行程序的实例&#xff0c;进程中包含了线程&#xff0c;每个线程执行不同的任务。不同的进程使用不同的内存空间&#xff0c;在当前进程下的所有线程可以共享内存空间。线程更轻量&#xff0c;线程上下文切换…

GPIO口输出与输入模式的理解

问题&#xff1f;看GPIO的结构图&#xff0c;发现&#xff1a; 上拉输入电流是从引脚流入外部 下来输入电流是从引脚流进芯片内部 推挽输出推模式电流是从引脚流入外部 推挽输出挽模式电流是从外部流入内部 输入输出模式都有电流流入流出&#xff0c;为什么还要分为输入输出模…

K8s排错之浏览器打不开K8s Dashboard

一、问题 10.0.0.10 通常会使用加密技术来保护您的信息。Chrome 此次尝试连接到 10.0.0.10 时&#xff0c;该网站发回了异常的错误凭据。这可能是因为有攻击者在试图冒充 10.0.0.10&#xff0c;或者 Wi-Fi 登录屏幕中断了此次连接。请放心&#xff0c;您的信息仍然是安全的&am…

【饿了么UI】elementUI密码框图标实现睁眼和闭眼效果(阿里巴巴iconfront图标库vue项目本地引用)

elementUI中输入框的密码框属性&#xff0c; 默认是一个始终睁眼的图标&#xff0c;测试今天提bug要有闭眼效果&#xff08;无大语&#xff09;… 因为elementUI中的icon没有闭眼的&#xff0c;所以还要去iconfront下载引入 效果图&#xff1a; 点击后 一、下载图标 http…

【LeetCode】138. 复制带随机指针的链表

题目链接&#xff1a;https://leetcode.cn/problems/copy-list-with-random-pointer/description/ &#x1f4d5;题目要求&#xff1a; 给你一个长度为 n 的链表&#xff0c;每个节点包含一个额外增加的随机指针 random &#xff0c;该指针可以指向链表中的任何节点或空节点。…