SCS【24】单细胞数据量化代谢的计算方法 (scMetabolism)

news2024/12/22 23:56:59

9d405fce1727ad90c2d1808b7d7695cd.gif


桓峰基因公众号推出单细胞生信分析教程并配有视频在线教程,目前整理出来的相关教程目录如下:

Topic 6. 克隆进化之 Canopy

Topic 7. 克隆进化之 Cardelino

Topic 8. 克隆进化之 RobustClone

SCS【1】今天开启单细胞之旅,述说单细胞测序的前世今生

SCS【2】单细胞转录组 之 cellranger

SCS【3】单细胞转录组数据 GEO 下载及读取

SCS【4】单细胞转录组数据可视化分析 (Seurat 4.0)

SCS【5】单细胞转录组数据可视化分析 (scater)

SCS【6】单细胞转录组之细胞类型自动注释 (SingleR)

SCS【7】单细胞转录组之轨迹分析 (Monocle 3) 聚类、分类和计数细胞

SCS【8】单细胞转录组之筛选标记基因 (Monocle 3)

SCS【9】单细胞转录组之构建细胞轨迹 (Monocle 3)

SCS【10】单细胞转录组之差异表达分析 (Monocle 3)

SCS【11】单细胞ATAC-seq 可视化分析 (Cicero)

SCS【12】单细胞转录组之评估不同单细胞亚群的分化潜能 (Cytotrace)

SCS【13】单细胞转录组之识别细胞对“基因集”的响应 (AUCell)

SCS【14】单细胞调节网络推理和聚类 (SCENIC)

SCS【15】细胞交互:受体-配体及其相互作用的细胞通讯数据库 (CellPhoneDB)

SCS【16】从肿瘤单细胞RNA-Seq数据中推断拷贝数变化 (inferCNV)

SCS【17】从单细胞转录组推断肿瘤的CNV和亚克隆 (copyKAT)

SCS【18】细胞交互:受体-配体及其相互作用的细胞通讯数据库 (iTALK)

SCS【19】单细胞自动注释细胞类型 (Symphony)

SCS【20】单细胞数据估计组织中细胞类型(Music)

SCS【21】单细胞空间转录组可视化 (Seurat V5)

SCS【22】单细胞转录组之 RNA 速度估计 (Velocyto.R)

SCS【23】单细胞转录组之数据整合 (Harmony)

这期介绍一下单细胞代谢定量化,从单细胞表达到代谢等的分析,其实是开启了单细胞精度上的基因研究模式,通过高精度的单细胞模式研究具体的代谢通路,势必开启一种疾病治疗的新篇章!!


简介

scMetabolism,这是一种用于量化单细胞代谢的计算方法,并观察到这些巨噬细胞具有增强的代谢活性。

69f661653a03409490594f77b8058619.png

scMetabolism通常支持单细胞分辨率下代谢的量化和可视化。scMetabolism目前支持人类scRNA-seq数据。

软件包安装

这个软件包依赖的包挺多的,安装时还是挺费事的,若以前安装过,那就非常方便了。不过其中几个包我们在公众号上都有分享过:

RNA 11. SCI 文章中基因表达富集之 GSEA

RNA 18. SCI 文章中基因集变异分析 GSVA

SCS【4】单细胞转录组数据可视化分析 (Seurat 4.0)

SCS【13】单细胞转录组之识别细胞对“基因集”的响应 (AUCell)

SCS【21】单细胞空间转录组可视化 (Seurat V5)

install.packages(c("devtools", "data.table", "wesanderson", "Seurat", "devtools", "AUCell", "GSEABase", "GSVA", "ggplot2","rsvd"))
devtools::install_github("YosefLab/VISION@v2.1.0") #Please note that the version would be v2.1.0
devtools::install_github("wu-yc/scMetabolism")

数据读取

数据是来自10X Genomics开放获取数据集的外周血单核细胞(PBMC)数据集(约2700个单细胞),下载不到的可以联系我们。

library(scMetabolism)
library(ggplot2)
## Warning: 程辑包'ggplot2'是用R版本4.2.3 来建造的
library(rsvd)
load(file = "pbmc_demo.rda")

实例操作

定量单细胞代谢(Seurat)

使用Seurat定量单细胞代谢

countexp.Seurat<-sc.metabolism.Seurat(obj = countexp.Seurat, 
                                      method = "AUCell", 
                                      imputation = F, 
                                      ncores = 2, 
                                      metabolism.type = "KEGG")
## Your choice is: KEGG
## Start quantify the metabolism activity...
## Warning in .AUCell_buildRankings(exprMat = exprMat, featureType = featureType,
## : nCores is no longer used. It will be deprecated in the next AUCell version.
## Warning in .AUCell_calcAUC(geneSets = geneSets, rankings = rankings, nCores = nCores, : The following gene sets will be excluded from the analysis(less than 20% of their genes are available):
## D-Arginine and D-ornithine metabolism, Caffeine metabolism
## Genes in the gene sets NOT available in the dataset: 
## 	Glycolysis / Gluconeogenesis: 	25 (37% of 68)
## 	Citrate cycle (TCA cycle): 	3 (10% of 30)
## 	Pentose phosphate pathway: 	5 (17% of 30)
## 	Pentose and glucuronate interconversions: 	21 (62% of 34)
## 	Fructose and mannose metabolism: 	6 (18% of 33)
## 	Galactose metabolism: 	10 (32% of 31)
## 	Ascorbate and aldarate metabolism: 	20 (74% of 27)
## 	Starch and sucrose metabolism: 	16 (44% of 36)
## 	Amino sugar and nucleotide sugar metabolism: 	4 (8% of 48)
## 	Pyruvate metabolism: 	7 (18% of 39)
## 	Glyoxylate and dicarboxylate metabolism: 	5 (18% of 28)
## 	Propanoate metabolism: 	4 (12% of 32)
## 	Butanoate metabolism: 	11 (39% of 28)
## 	Inositol phosphate metabolism: 	11 (15% of 73)
## 	Oxidative phosphorylation: 	47 (35% of 133)
## 	Nitrogen metabolism: 	11 (65% of 17)
## 	Sulfur metabolism: 	1 (11% of 9)
## 	Fatty acid biosynthesis: 	2 (15% of 13)
## 	Fatty acid elongation: 	9 (30% of 30)
## 	Fatty acid degradation: 	11 (25% of 44)
## 	Synthesis and degradation of ketone bodies: 	3 (30% of 10)
## 	Steroid biosynthesis: 	4 (21% of 19)
## 	Primary bile acid biosynthesis: 	9 (53% of 17)
## 	Steroid hormone biosynthesis: 	45 (76% of 59)
## 	Glycerolipid metabolism: 	26 (43% of 61)
## 	Glycerophospholipid metabolism: 	34 (35% of 97)
## 	Ether lipid metabolism: 	21 (45% of 47)
## 	Sphingolipid metabolism: 	11 (23% of 47)
## 	Arachidonic acid metabolism: 	34 (55% of 62)
## 	Linoleic acid metabolism: 	21 (72% of 29)
## 	alpha-Linolenic acid metabolism: 	14 (56% of 25)
## 	Biosynthesis of unsaturated fatty acids: 	7 (30% of 23)
## 	Purine metabolism: 	44 (25% of 174)
## 	Pyrimidine metabolism: 	12 (12% of 101)
## 	Alanine, aspartate and glutamate metabolism: 	13 (37% of 35)
## 	Glycine, serine and threonine metabolism: 	17 (42% of 40)
## 	Cysteine and methionine metabolism: 	12 (27% of 45)
## 	Valine, leucine and isoleucine degradation: 	5 (10% of 48)
## 	Lysine degradation: 	13 (22% of 59)
## 	Arginine biosynthesis: 	9 (43% of 21)
## 	Arginine and proline metabolism: 	19 (38% of 50)
## 	Histidine metabolism: 	12 (52% of 23)
## 	Tyrosine metabolism: 	22 (61% of 36)
## 	Phenylalanine metabolism: 	11 (65% of 17)
## 	Tryptophan metabolism: 	19 (48% of 40)
## 	Phenylalanine, tyrosine and tryptophan biosynthesis: 	2 (40% of 5)
## 	beta-Alanine metabolism: 	11 (35% of 31)
## 	Taurine and hypotaurine metabolism: 	7 (64% of 11)
## 	Phosphonate and phosphinate metabolism: 	2 (33% of 6)
## 	Selenocompound metabolism: 	3 (18% of 17)
## 	D-Glutamine and D-glutamate metabolism: 	2 (40% of 5)
## 	Glutathione metabolism: 	17 (30% of 56)
## 	N-Glycan biosynthesis: 	8 (16% of 49)
## 	Mucin type O-glycan biosynthesis: 	15 (48% of 31)
## 	Mannose type O-glycan biosynthesis: 	8 (35% of 23)
## 	Other types of O-glycan biosynthesis: 	4 (18% of 22)
## 	Glycosaminoglycan biosynthesis - chondroitin sulfate / dermatan sulfate: 	2 (10% of 20)
## 	Glycosaminoglycan biosynthesis - heparan sulfate / heparin: 	8 (33% of 24)
## 	Glycosaminoglycan biosynthesis - keratan sulfate: 	5 (36% of 14)
## 	Glycosaminoglycan degradation: 	4 (21% of 19)
## 	Glycosylphosphatidylinositol (GPI)-anchor biosynthesis: 	2 (8% of 25)
## 	Glycosphingolipid biosynthesis - lacto and neolacto series: 	12 (44% of 27)
## 	Glycosphingolipid biosynthesis - globo and isoglobo series: 	6 (40% of 15)
## 	Glycosphingolipid biosynthesis - ganglio series: 	3 (20% of 15)
## 	Other glycan degradation: 	2 (11% of 18)
## 	Thiamine metabolism: 	5 (31% of 16)
## 	Riboflavin metabolism: 	2 (25% of 8)
## 	Vitamin B6 metabolism: 	2 (33% of 6)
## 	Nicotinate and nicotinamide metabolism: 	11 (37% of 30)
## 	Pantothenate and CoA biosynthesis: 	5 (26% of 19)
## 	Folate biosynthesis: 	10 (38% of 26)
## 	One carbon pool by folate: 	5 (25% of 20)
## 	Retinol metabolism: 	51 (77% of 66)
## 	Porphyrin and chlorophyll metabolism: 	21 (50% of 42)
## 	Ubiquinone and other terpenoid-quinone biosynthesis: 	1 (9% of 11)
## 	Terpenoid backbone biosynthesis: 	2 (9% of 22)
## 	Neomycin, kanamycin and gentamicin biosynthesis: 	1 (20% of 5)
## 	Metabolism of xenobiotics by cytochrome P450: 	49 (65% of 75)
## 	Drug metabolism - cytochrome P450: 	51 (72% of 71)
## 	Drug metabolism - other enzymes: 	33 (42% of 79)

参数说明

obj:是一个包含UMI计数矩阵的Seurat对象;

method:支持VISION、AUCell、ssgsea和gsva,其中VISION为默认方法;

Imputation:允许用户选择是否在新陈代谢评分之前输入他们的数据;

ncores:是并行计算的线程数;

metabolism.type:type支持KEGG和REACTOME,其中KEGG包含85个代谢途径,REACTOME包含82个代谢途径。

要提取新陈代谢得分,只需运行新陈代谢:

metabolism.matrix <- countexp.Seurat@assays$METABOLISM$score

可视化

DimPlot

DimPlot.metabolism(obj = countexp.Seurat, pathway = "Glycolysis / Gluconeogenesis", dimention.reduction.type = "umap", dimention.reduction.run = F, size = 1)

af42f4fea125bb71a4b3950f96bed7ea.png

countexp.Seurat:是一个包含UMI计数矩阵的Seurat对象;

pathway:是我们感兴趣的途径;

dimention.reduction.type:支持 umap and tsne.

dimention.reduction.run:允许用户选择是否重新运行给定的Seurat对象的降维;

size:是图中的点大小。

这个函数返回一个ggplot对象,用户可以自己动手制作。

Dot plot

input.pathway<-c("Glycolysis / Gluconeogenesis", "Oxidative phosphorylation", "Citrate cycle (TCA cycle)")
DotPlot.metabolism(obj = countexp.Seurat, pathway = input.pathway, phenotype = "ident", norm = "y")

047be6938f2c229be6f8a07e31c98414.png

obj:是一个包含UMI计数矩阵的Seurat对象;

pathway:是要可视化的感兴趣的路径;

phenotype:是Seurat对象的元数据中包含的特征之一;

norm:是指按行或列对值进行缩放。用户可以选择“x”、“y”和“na”。

这个函数返回一个ggplot对象,用户可以自己动手制作。

Box plot

绘图参数与Dot plot 差不多,不同的表示方式:

BoxPlot.metabolism(obj = countexp.Seurat, pathway = input.pathway, phenotype = "ident", ncol = 1)

b995ffa149cadd11d70ad88d3ad4975f.png

定量单细胞代谢(not Seurat)

正常读取矩阵数据:

countexp=read.table("pbmc_500.txt",header = T,sep = "\t",row.names = 1)
countexp[1:5,1:5]
##               AAACATACAACCAC.1 AAACATTGAGCTAC.1 AAACATTGATCAGC.1
## AL627309.1                   0                0                0
## AP006222.2                   0                0                0
## RP11-206L10.2                0                0                0
## RP11-206L10.9                0                0                0
## LINC00115                    0                0                0
##               AAACCGTGCTTCCG.1 AAACCGTGTATGCG.1
## AL627309.1                   0                0
## AP006222.2                   0                0
## RP11-206L10.2                0                0
## RP11-206L10.9                0                0
## LINC00115                    0                0

通过sc.metabolism()函数获得注释结果:

metabolism.matrix<-sc.metabolism(countexp = countexp, method = "AUCell", imputation = F, ncores = 2, metabolism.type = "KEGG")
## Your choice is: KEGG
## Start quantify the metabolism activity...
## Warning in .AUCell_buildRankings(exprMat = exprMat, featureType = featureType,
## : nCores is no longer used. It will be deprecated in the next AUCell version.
## Warning in .AUCell_calcAUC(geneSets = geneSets, rankings = rankings, nCores = nCores, : The following gene sets will be excluded from the analysis(less than 20% of their genes are available):
## D-Arginine and D-ornithine metabolism, Caffeine metabolism
## Genes in the gene sets NOT available in the dataset: 
## 	Glycolysis / Gluconeogenesis: 	25 (37% of 68)
## 	Citrate cycle (TCA cycle): 	3 (10% of 30)
## 	Pentose phosphate pathway: 	5 (17% of 30)
## 	Pentose and glucuronate interconversions: 	21 (62% of 34)
## 	Fructose and mannose metabolism: 	6 (18% of 33)
## 	Galactose metabolism: 	10 (32% of 31)
## 	Ascorbate and aldarate metabolism: 	20 (74% of 27)
## 	Starch and sucrose metabolism: 	16 (44% of 36)
## 	Amino sugar and nucleotide sugar metabolism: 	4 (8% of 48)
## 	Pyruvate metabolism: 	7 (18% of 39)
## 	Glyoxylate and dicarboxylate metabolism: 	5 (18% of 28)
## 	Propanoate metabolism: 	4 (12% of 32)
## 	Butanoate metabolism: 	11 (39% of 28)
## 	Inositol phosphate metabolism: 	11 (15% of 73)
## 	Oxidative phosphorylation: 	47 (35% of 133)
## 	Nitrogen metabolism: 	11 (65% of 17)
## 	Sulfur metabolism: 	1 (11% of 9)
## 	Fatty acid biosynthesis: 	2 (15% of 13)
## 	Fatty acid elongation: 	9 (30% of 30)
## 	Fatty acid degradation: 	11 (25% of 44)
## 	Synthesis and degradation of ketone bodies: 	3 (30% of 10)
## 	Steroid biosynthesis: 	4 (21% of 19)
## 	Primary bile acid biosynthesis: 	9 (53% of 17)
## 	Steroid hormone biosynthesis: 	45 (76% of 59)
## 	Glycerolipid metabolism: 	26 (43% of 61)
## 	Glycerophospholipid metabolism: 	34 (35% of 97)
## 	Ether lipid metabolism: 	21 (45% of 47)
## 	Sphingolipid metabolism: 	11 (23% of 47)
## 	Arachidonic acid metabolism: 	34 (55% of 62)
## 	Linoleic acid metabolism: 	21 (72% of 29)
## 	alpha-Linolenic acid metabolism: 	14 (56% of 25)
## 	Biosynthesis of unsaturated fatty acids: 	7 (30% of 23)
## 	Purine metabolism: 	44 (25% of 174)
## 	Pyrimidine metabolism: 	12 (12% of 101)
## 	Alanine, aspartate and glutamate metabolism: 	13 (37% of 35)
## 	Glycine, serine and threonine metabolism: 	17 (42% of 40)
## 	Cysteine and methionine metabolism: 	12 (27% of 45)
## 	Valine, leucine and isoleucine degradation: 	5 (10% of 48)
## 	Lysine degradation: 	13 (22% of 59)
## 	Arginine biosynthesis: 	9 (43% of 21)
## 	Arginine and proline metabolism: 	19 (38% of 50)
## 	Histidine metabolism: 	12 (52% of 23)
## 	Tyrosine metabolism: 	22 (61% of 36)
## 	Phenylalanine metabolism: 	11 (65% of 17)
## 	Tryptophan metabolism: 	19 (48% of 40)
## 	Phenylalanine, tyrosine and tryptophan biosynthesis: 	2 (40% of 5)
## 	beta-Alanine metabolism: 	11 (35% of 31)
## 	Taurine and hypotaurine metabolism: 	7 (64% of 11)
## 	Phosphonate and phosphinate metabolism: 	2 (33% of 6)
## 	Selenocompound metabolism: 	3 (18% of 17)
## 	D-Glutamine and D-glutamate metabolism: 	2 (40% of 5)
## 	Glutathione metabolism: 	17 (30% of 56)
## 	N-Glycan biosynthesis: 	8 (16% of 49)
## 	Mucin type O-glycan biosynthesis: 	15 (48% of 31)
## 	Mannose type O-glycan biosynthesis: 	8 (35% of 23)
## 	Other types of O-glycan biosynthesis: 	4 (18% of 22)
## 	Glycosaminoglycan biosynthesis - chondroitin sulfate / dermatan sulfate: 	2 (10% of 20)
## 	Glycosaminoglycan biosynthesis - heparan sulfate / heparin: 	8 (33% of 24)
## 	Glycosaminoglycan biosynthesis - keratan sulfate: 	5 (36% of 14)
## 	Glycosaminoglycan degradation: 	4 (21% of 19)
## 	Glycosylphosphatidylinositol (GPI)-anchor biosynthesis: 	2 (8% of 25)
## 	Glycosphingolipid biosynthesis - lacto and neolacto series: 	12 (44% of 27)
## 	Glycosphingolipid biosynthesis - globo and isoglobo series: 	6 (40% of 15)
## 	Glycosphingolipid biosynthesis - ganglio series: 	3 (20% of 15)
## 	Other glycan degradation: 	2 (11% of 18)
## 	Thiamine metabolism: 	5 (31% of 16)
## 	Riboflavin metabolism: 	2 (25% of 8)
## 	Vitamin B6 metabolism: 	2 (33% of 6)
## 	Nicotinate and nicotinamide metabolism: 	11 (37% of 30)
## 	Pantothenate and CoA biosynthesis: 	5 (26% of 19)
## 	Folate biosynthesis: 	10 (38% of 26)
## 	One carbon pool by folate: 	5 (25% of 20)
## 	Retinol metabolism: 	51 (77% of 66)
## 	Porphyrin and chlorophyll metabolism: 	21 (50% of 42)
## 	Ubiquinone and other terpenoid-quinone biosynthesis: 	1 (9% of 11)
## 	Terpenoid backbone biosynthesis: 	2 (9% of 22)
## 	Neomycin, kanamycin and gentamicin biosynthesis: 	1 (20% of 5)
## 	Metabolism of xenobiotics by cytochrome P450: 	49 (65% of 75)
## 	Drug metabolism - cytochrome P450: 	51 (72% of 71)
## 	Drug metabolism - other enzymes: 	33 (42% of 79)
metabolism.matrix[1:5,1:3]
##                                          AAACATACAACCAC.1 AAACATTGAGCTAC.1
## Glycolysis / Gluconeogenesis                   0.06423368       0.11372233
## Citrate cycle (TCA cycle)                      0.02849427       0.05665785
## Pentose phosphate pathway                      0.00000000       0.02971768
## Pentose and glucuronate interconversions       0.01676674       0.00000000
## Fructose and mannose metabolism                0.03328924       0.01873898
##                                          AAACATTGATCAGC.1
## Glycolysis / Gluconeogenesis                  0.102479686
## Citrate cycle (TCA cycle)                     0.061452822
## Pentose phosphate pathway                     0.001069837
## Pentose and glucuronate interconversions      0.032627167
## Fructose and mannose metabolism               0.000000000

Reference

  1. Wu Y, Yang S, Ma J, Chen Z, Song G, Rao D, Cheng Y, Huang S, Liu Y, Jiang S, Liu J, Huang X, Wang X, Qiu S, Xu J, Xi R, Bai F, Zhou J, Fan J, Zhang X, Gao Q. Spatiotemporal Immune Landscape of Colorectal Cancer Liver Metastasis at Single-Cell Level. Cancer Discov. 2021 Aug 20.

  2. Detomaso D , Jones M G , Subramaniam M , et al. Functional interpretation of single cell similarity maps[J]. Nature Communications, 2019, 10.

  3. Andrew M D , Greg F , Chattopadyay P K , et al. Data exploration, quality control and testing in single-cell qPCR-based gene expression experiments[J]. Bioinformatics, 2013, 29(4):461-467.

这个软件包代码量还是很多的,需要具有一定 R 语言编程基础,并不是看起来那么简单,所以好多老师想直接自己学习教程来分析,但是实质上没有基础还是很难实现,每步报错都不知道该怎样处理,是最崩溃的,所以有需求的老师可以联系桓峰基因,提供最优质的服务!!!

桓峰基因,铸造成功的您!

未来桓峰基因公众号将不间断的推出单细胞系列生信分析教程,

敬请期待!!

桓峰基因和投必得合作,文章润色优惠85折,需要文章润色的老师可以直接到网站输入领取桓峰基因专属优惠券码:KYOHOGENE,然后上传,付款时选择桓峰基因优惠券即可享受85折优惠哦!https://www.topeditsci.com/

有想进生信交流群的老师可以扫最后一个二维码加微信,备注“单位+姓名+目的”!!!

9e37dcab19082f928078e13ab0d685a5.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/516363.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Oracle Cloud和足球

Oracle除了我们熟知的数据库产品&#xff0c;它还有很多技术和产品栈&#xff0c;而且在实践层面&#xff0c;已经有了很多可借鉴的案例&#xff0c;如果了解英超的朋友&#xff0c;可以发现最近几个赛季&#xff0c;英超的转播画面图标中&#xff0c;会出现Oracle Cloud&#…

操作系统的最强入门科普(Unix/Linux篇)

大家好&#xff0c;我是小枣君。 今天这篇文章&#xff0c;我们来聊聊操作系统&#xff08;Operating System&#xff09;。 说到操作系统&#xff0c;大家都不会陌生。我们天天都在接触操作系统——用台式机或笔记本电脑&#xff0c;使用的是windows和macOS系统&#xff1b;用…

为什么拿低绩效的人从来不反思自己的原因?连公司的前90%都挤不进去,还好意思找别人的理由?...

绩效是关乎打工人切身利益的大事&#xff0c;拿了高绩效欢天喜地&#xff0c;拿了低绩效垂头丧气&#xff0c;这是人之常情&#xff0c;但最近一位字节跳动的程序员却怒斥那些拿低绩效的人&#xff1a; 为什么拿m-&#xff08;低绩效&#xff09;的人从来不反思自己垫底的原因&…

C++三部曲|C++核心思想

| 导语 C 的起源可以追溯到 40 年前&#xff0c;但它仍然是当今使用最广泛的编程语言之一&#xff0c;C发明人Bjarne Stroustrup 一开始没想到 C 会获得如此大的成功&#xff0c;他说&#xff1a;“C 的成功显然令人惊讶。我认为它的成功取决于其最初的设计目标&#xff0c;就是…

前端014_标签模块_修改功能

标签模块_修改功能 1、需求分析2、Mock 添加查询数据3、Mock 添加提交修改数据4、Api 调用接口回显数据5、提交修改后的数据6、验证1、需求分析 当点击 编辑 按钮后,弹出编辑窗口,并查询出标签信息渲染。修改后点击确定 提交修改数据。 2、Mock 添加查询数据 请求URL: /a…

在OpenCV中使用Canny边缘检测

边缘检测是非常常见和广泛使用的图像处理&#xff0c;对于许多不同的计算机视觉应用非常必要&#xff0c;如数据提取&#xff0c;图像分割&#xff0c;在更细粒度的特征提取和模式识别中。它降低了图像中的噪声和细节数量&#xff0c;但保留了图像的结构。 Python中的Canny边缘…

祁宁:社区问答是激荡企业高级智慧的头脑风暴 | 开发者说

在祁宁家里&#xff0c;有一套完整的赛车模拟器&#xff0c;他甚至还请人到国外代购了最新的 VR 设备。作为沉浸式赛车游戏发烧友&#xff0c;除了享受速度与激情带来的愉悦感&#xff0c;祁宁在玩的过程中更多的是思考如何将技术能力进行产品化的问题。 Answer.dev 就是将技术…

Studio Bot - 让 AI 帮我写 Android 代码

Google I/O 2023 不出所料&#xff0c;今年的 I/O 大会只突出了一个关键词 “AI”。Google 旗下的各类产品都成了其展示 AI 实力的舞台。连面向开发者的产品 Android Studio 也新增了 Studio bot 功能&#xff0c;希望通过 AI 帮助开发者更轻松地写代码&#xff1a; Studio Bot…

STM32F4_内部温度传感器

目录 1. 什么是温度传感器 2. 温度传感器简介 3. 库函数配置内部温度传感器 4. 实验程序 4.1 main.c 4.2 ADC.c 4.3 ADC.h 1. 什么是温度传感器 温度传感器是一种测量物体冷热程度的设备&#xff0c;以可读的方式通过电信号提供温度测量。比较常见的如热电偶温度传感器。…

越来越多的单身女性开始买房了

近日&#xff0c;越来越多的单身女性开始购买房产&#xff0c;这一现象引起了社会的广泛关注。 根据中国青年报社会调查中心联合问卷网对2006名受访者进行的一项调查显示&#xff0c;84.2%的受访者认为近几年身边单身女性购房的现象增多了&#xff0c;而93.9%的受访者支持单身女…

无监督域适应 (UDA)(3)

本帖介绍基于 bi-classifier adversarial learning 的改进。 一、动机 模型训练在两个步骤之间交替进行:(I)约束两个分类器的学习&#xff0c;以最大化未标记目标域数据的预测差异;(II)约束特征提取器的学习&#xff0c;以最小化这种差异。 尽管这种方法是一种优雅的表述&am…

Call for Papers丨第一届LLM@IJCAI‘23 Symposium,大会主席陈雷、杨强、唐杰

大规模语言模型&#xff08;LLMs&#xff09;&#xff0c;如ChatGPT和GPT-4&#xff0c;以其在自然语言理解和生成方面的卓越能力&#xff0c;彻底改变了人工智能领域。 LLMs广泛用于各种应用&#xff0c;如语音助手、推荐系统、内容生成模型&#xff08;如ChatGPT&#xff09…

开源进展 |WeBASE更新啦,快来了解新特性!

WeBASE&#xff08;WeBank Blockchain Application Software Extension&#xff09; 是在区块链应用和FISCO BCOS底层之间搭建的一套通用组件&#xff0c;围绕交易、合约、密钥管理、数据、可视化管理来设计各个模块&#xff0c;屏蔽了区块链底层的复杂度&#xff0c;从而极大降…

多模态GPT:国内发布一款可以在线使用的多模态聊天机器人!快来把玩~

论文: MultiModal-GPT: A Vision and Language Model for Dialogue with Humans代码: https://github.com/open-mmlab/Multimodal-GPT &#xff08;包含代码、数据、demo&#xff09;作者&#xff1a;OpenMMLab 深度学习自然语言处理 原创作者: 林哲乐 使用视觉和语言指令训练一…

Linux基础学习---3、时间日期类、用户管理命令、用户组管理命令

1、时间日期类 1、基本语法date [Option] ...[Format]2、选项说明 选项功能-d<时间字符串>显示指定的“时间字符串”表示的时间&#xff0c;而非当前时间-s<日期时间>设置日期时间 3、参数说明 参数功能<日期时间格式>指定显示时使用的日期时间格式 1.1…

一、数据库设计

整个项目的设计包括5个数据库&#xff1a; glkt_activity:优惠券的相关设计 glkt_order:订单的相关设计 glkt_user:得到微信授权的账号信息的相关设计 glkt_vod:课程信息的相关设计 glkt_wechat:微信公众号的相关设计 glkt_activity&#xff1a; coupon_info:优惠券的信息 cou…

java+iClient Openlayers实现土壤墒情旱情灾害模拟预报预警分析

应用及软件实现效果图&#xff1a; 一、应用背景 作为一个农村长大的人&#xff0c;我非常关注自然灾害和气候变化对土地旱情墒情影响。近年来&#xff0c;干旱和洪涝灾害在很多地方频繁发生&#xff0c;给人们的生命财产安全带来了极大的威胁。因此&#xff0c;旱情和墒情模拟…

在计算语义相似度中,我看网上说要加range,我不知道往哪里加?

点击上方“Python爬虫与数据挖掘”&#xff0c;进行关注 回复“书籍”即可获赠Python从入门到进阶共10本电子书 今 日 鸡 汤 行宫见月伤心色&#xff0c;夜雨闻铃肠断声。 大家好&#xff0c;我是皮皮。 一、前言 前几天在Python白银交流群【王王雪饼】问了一个Python处理语义相…

Python学习历程-元组的基本操作回顾

在学习元组之前&#xff0c;我们先再回过头看看之前写过的文章&#xff0c;看看列表的一些基本操作&#xff1a; Python中的列表介绍 记录我的Python学习历程-列表的基本操作&#xff0c; 接下来再快速回顾一下元组的一些重点&#xff1a; 列表属于可变序列&#xff0c;元组、字…

Powerlink协议使用极简入门教程

网上关于powerlink协议的知识太少&#xff0c;而且都太分散太零碎&#xff0c;容易让人一头扎进去摸不着头绪。新手看到demo源码可能都不知道有什么用途&#xff0c;怎么能联动的跑起来看到效果&#xff0c;有种无从下手的感觉。其实Powerlink协议的使用挺简单&#xff0c;特别…