1.GiraffeDet介绍 论文:https://arxiv.org/abs/2202.04256 🏆🏆🏆🏆🏆🏆Yolov5/Yolov7魔术师🏆🏆🏆🏆🏆🏆 ✨✨✨魔改网络、复现前沿论文,组合优化创新 🚀🚀🚀小目标、遮挡物、难样本性能提升 🍉🍉🍉定期更新不同数据集涨点情况 本文是阿里巴巴在目标检测领域的工作(已被ICLR2022接收),提出了一种新颖的类“长颈鹿”的GiraffeDet架构,它采用了轻骨干、重Neck的架构设计范式。所提GiraffeDet在COCO数据集上取得了比常规CNN骨干更优异的性能,取得了54.1%mAP指标,具有更优异的处理目标大尺度变化问题的能力。