Solow模型推导模拟
文章目录
- Solow模型推导模拟
- @[toc]
- 1 Solow模型推导
- 2 Solow模型模拟
文章目录
- Solow模型推导模拟
- @[toc]
- 1 Solow模型推导
- 2 Solow模型模拟
1 Solow模型推导
在存在资本折旧、技术进步和人口增长条件下,有效劳动人均资本为
k
˙
(
t
)
=
K
˙
(
t
)
A
(
t
)
L
(
t
)
−
K
(
t
)
[
A
(
t
)
L
(
t
)
]
2
[
A
(
t
)
L
˙
(
t
)
+
L
(
t
)
A
˙
(
t
)
]
=
K
˙
(
t
)
A
(
t
)
L
(
t
)
−
K
(
t
)
A
(
t
)
L
(
t
)
L
˙
(
t
)
L
(
t
)
−
K
(
t
)
A
(
t
)
L
(
t
)
A
˙
(
t
)
A
(
t
)
\begin{aligned} \dot{k}(t) & =\frac{\dot{K}(t)}{A(t) L(t)}-\frac{K(t)}{[A(t) L(t)]^{2}}[A(t) \dot{L}(t)+L(t) \dot{A}(t)] \\ & =\frac{\dot{K}(t)}{A(t) L(t)}-\frac{K(t)}{A(t) L(t)} \frac{\dot{L}(t)}{L(t)}-\frac{K(t)}{A(t) L(t)} \frac{\dot{A}(t)}{A(t)} \end{aligned}
k˙(t)=A(t)L(t)K˙(t)−[A(t)L(t)]2K(t)[A(t)L˙(t)+L(t)A˙(t)]=A(t)L(t)K˙(t)−A(t)L(t)K(t)L(t)L˙(t)−A(t)L(t)K(t)A(t)A˙(t)
其中
K
˙
(
t
)
=
s
Y
(
t
)
−
δ
K
(
t
)
\dot{K}(t)=sY(t)-\delta K(t)
K˙(t)=sY(t)−δK(t),
k
(
t
)
=
K
(
t
)
/
A
(
t
)
L
(
t
)
k(t)=K(t)/A(t)L(t)
k(t)=K(t)/A(t)L(t)。假设技术进步和人口增长率不变,分别为
g
、
n
g、n
g、n,即
L
˙
(
t
)
/
L
(
t
)
=
n
;
A
˙
(
t
)
/
L
(
t
)
=
g
\dot{L}(t)/L(t)=n;\dot{A}(t)/L(t)=g
L˙(t)/L(t)=n;A˙(t)/L(t)=g
代入上式得到
k
˙
(
t
)
=
s
Y
(
t
)
−
δ
K
(
t
)
A
(
t
)
L
(
t
)
−
k
(
t
)
n
−
k
(
t
)
g
=
s
Y
(
t
)
A
(
t
)
L
(
t
)
−
δ
k
(
t
)
−
n
k
(
t
)
−
g
k
(
t
)
\begin{aligned} \dot{k}(t) & =\frac{s Y(t)-\delta K(t)}{A(t) L(t)}-k(t) n-k(t) g \\ & =s \frac{Y(t)}{A(t) L(t)}-\delta k(t)-n k(t)-g k(t) \end{aligned}
k˙(t)=A(t)L(t)sY(t)−δK(t)−k(t)n−k(t)g=sA(t)L(t)Y(t)−δk(t)−nk(t)−gk(t)
其中
f
(
k
)
=
Y
(
t
)
/
A
(
t
)
L
(
t
)
f(k)=Y(t)/A(t)L(t)
f(k)=Y(t)/A(t)L(t),于是得到
k
˙
(
t
)
=
s
f
(
k
(
t
)
)
−
(
n
+
g
+
δ
)
k
(
t
)
\dot{k}(t)=s f(k(t))-(n+g+\delta) k(t)
k˙(t)=sf(k(t))−(n+g+δ)k(t)
上述方程是solow的关键方程。假设生产函数满足如下形式
Y
=
K
α
(
A
L
)
1
−
α
Y=K^{\alpha}(AL)^{1-\alpha}
Y=Kα(AL)1−α
则有效劳动的平均收入
y
(
t
)
=
Y
/
A
L
=
k
(
t
)
α
y(t)=Y/AL=k(t)^{\alpha}
y(t)=Y/AL=k(t)α,solow方程变为
k
˙
(
t
)
=
s
k
(
t
)
α
−
(
n
+
g
+
δ
)
k
(
t
)
.
\dot{k}(t)=s k(t)^{\alpha}-(n+g+\delta) k(t) .
k˙(t)=sk(t)α−(n+g+δ)k(t).
2 Solow模型模拟
假设一国家(地区)储蓄率 s = 0.4 s=0.4 s=0.4,资本贡献的份额 α = 0.4 \alpha=0.4 α=0.4,技术进步率 g g g和人口增长率 n n n均为0.01,资本折旧率为 δ = 0.03 \delta=0.03 δ=0.03。使用matlab求解微分方程$\dot{k}(t)=s k(t)^{\alpha}-(n+g+\delta) k(t) 的积分曲线。这里令初始 的积分曲线。这里令初始 的积分曲线。这里令初始k(0)$从5到50取值不等。
s=0.4;
alpha=0.4;
n=0.01;
g=0.01;
delta=0.03;
F = @(t,k) s*k(1)^alpha -(n+g+delta)*k(1);
for k0 = 0:5:50
[t,k]=ode45(F,[0 200],k0);
plot(t,k,'k')
grid on;
hold on;
xlabel("t");ylabel("k")
end
可以看出无论初始 k > 0 k>0 k>0为多少,最终都会都会收敛到稳态 k = 31.984 k=31.984 k=31.984,此时稳态 k k k增长率为0。此外,也可以基于储蓄率变化如何影响稳态的有效劳动人均资本 k k k。
% -----------------持平投资曲线------------------
plot(k,(n+g+delta)*k,"-k")
hold on
M1=find(abs(0.4*k.^alpha-(n+g+delta)*k)<0.001);
N1=(n+g+delta)*k(M1(2));
plot([k(M1(2)),k(M1(2))],[0,N1],"--r")
hold on
text(k(M1(2))+0.03,N1-0.03,'A')
M2=find(abs(0.5*k.^alpha-(n+g+delta)*k)<0.001);
N2=(n+g+delta)*k(M2(2));
plot([k(M2(2)),k(M2(2))],[0,N2],"--r")
text(k(M2(2))+0.05,N2-0.05,'B')
grid on;
xlabel('k');ylabel('sf(k),(n+\delta+g)k')
legend("s=0.4","s=0.5")
当储蓄率 s s s提升,稳态 k k k提升但后期也会收敛达到新的稳态。