基于transformer的Seq2Seq机器翻译模型训练、预测教程

news2025/1/12 17:58:44

前言

机器翻译(Machine Translation, MT)是一类将某种语言(源语言,source language)的句子 x x x翻译成另一种语言(目标语言,target language)的句子 y y y 的任务。机器翻译的相关研究早在上世纪50年代美苏冷战时期就开始了,当时的机器翻译系统是基于规则的,利用两种语言的单词、短语对应关系将俄语翻译成英语。

在早期的机器翻译主要是依靠统计学模型,使用一种叫统计机器翻译(Statistical Machine Translation, SMT)的方法,在1990年至2010年间是较为主流的方法,也取得了不错的效果。统计机器翻译方法的核心思想是从数据中统计出概率模型。假设需要构建一个将法语翻译成英语的模型,我们可以将任务描述为给定法语句子 x x x ,找到最有可能是 x x x 的翻译的英语句子 y y y,即 a r g m a x y P ( y ∣ x ) = a r g m a x y P ( x ∣ y ) P ( y ) argmax_y P(y|x) = argmax_y P(x|y)P(y) argmaxyP(yx)=argmaxyP(xy)P(y)
上式中的贝叶斯公式可分为两部分,其中 P ( x ∣ y ) P(x|y) P(xy)可以看作翻译模型,保证翻译的正确性; P ( y ) P(y) P(y)则是语言模型,保证翻译结果语言流畅。在当时的技术条件下,这样拆分后两个任务相对独立,分开学习会更容易一些。

在2014年,机器翻译研究迎来了重大的突破——神经机器翻译(Neural Machine Translation, NMT)。最简单的NMT系统使用单个神经网络就可以完成机器翻译任务,这个神经网络结构就是Seq2Seq(sequence-to-sequence,序列到序列),它由两个RNN组成,其中一个作为Encoder(编码器),另一个则是Decoder(解码器),Encoder的输入为源语言的语句,经过RNN处理并在最后一步得到输出,这个输出就可以看作输入句子的向量编码。

本篇文章中用于机器翻译的网络结构仍然是Seq2Seq网络结构,但是与两个RNN或者RNN+attention方法不同,经过简单的修改的transformer会是这个序列模型的主要结构。

transformer这个模型,大家都比较熟悉了,由论文《Attention is All You Need》提出,主要是可以实现并行化的训练,网络结构主要由全连接层、注意力机制和normalization层组成。关于transformer的结构在这里就不详细介绍了,大家感兴趣的可以去看看别的博主的文章,这里主要介绍如何将transformer用于机器翻译的模型训练。

代码

数据处理

数据主要使用的是torchtext中含英语和德语句子对的知名数据集Multi30k dataset,其包含大约30,000个英语和德语的句子对(平均长度约为13)。下面代码是数据处理部分和相关依赖库导入:

import torch
import torch.nn as nn
import torch.optim as optim

import torchtext
from torchtext.datasets import  Multi30k
#from torchtext.legacy.data import Field, BucketIterator   # pytorch1.9+  torchtext==0.10.0
from torchtext.data  import Field, TabularDataset, BucketIterator, Iterator  ## torchtext==0.6.0 torch==1.7

import matplotlib.pyplot as plt
import matplotlib.ticker as ticker

import numpy as np

import random
import math
import time

SEED = 1234

random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.backends.cudnn.deterministic = True


def tokenize_de(text):
    """
    Tokenizes German text from a string into a list of strings
    """
    return [w for w in text.split() if w]

def tokenize_en(text):
    """
    Tokenizes English text from a string into a list of strings
    """
    return [w for w in text.split() if w]


SRC = Field(tokenize=tokenize_de,
            init_token='<sos>',
            eos_token='<eos>',
            lower=True,
            batch_first=True)

TRG = Field(tokenize=tokenize_en,
            init_token='<sos>',
            eos_token='<eos>',
            lower=True,
            batch_first=True)



#train_data, valid_data, test_data = Multi30k()   # pytorch1.9+  torchtext==0.10.0

train_data, valid_data, test_data = Multi30k.splits(exts = ('.de', '.en'),    ## torchtext==0.6.0 torch==1.7
                                                    fields = (SRC, TRG))

SRC.build_vocab(train_data, min_freq = 2)
TRG.build_vocab(train_data, min_freq = 2)


device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('device:', device)


BATCH_SIZE = 64

train_iterator, valid_iterator, test_iterator = BucketIterator.splits(
    (train_data, valid_data, test_data),
    batch_sizes=(BATCH_SIZE, BATCH_SIZE, BATCH_SIZE),
    device=device,
    sort_key=lambda x: len(x.src), # 根据源语句的长度
    sort_within_batch=False,   # 是否需要对批处理的内容进行排序
    repeat=False
)

特别说明一下,数据导入,是直接从torchtext.datasets import的,但是torchtext版本不一样,api接口会有所变化,详细看代码里面注释,笔者这里用的torchtext 0.6.0, torch 1.7。

如果由于网络的原因,下载数据失败,可以在手动下载该数据集并放到与代码同级的.data/目录下即可。

模型定义

class Encoder(nn.Module):
    def __init__(self, 
                 input_dim, 
                 hid_dim, 
                 n_layers, 
                 n_heads, 
                 pf_dim,
                 dropout, 
                 device,
                 max_length = 100):
        super().__init__()

        self.device = device
        
        self.tok_embedding = nn.Embedding(input_dim, hid_dim)
        self.pos_embedding = nn.Embedding(max_length, hid_dim)
        
        self.layers = nn.ModuleList([EncoderLayer(hid_dim, 
                                                  n_heads, 
                                                  pf_dim,
                                                  dropout, 
                                                  device) 
                                     for _ in range(n_layers)])
        
        self.dropout = nn.Dropout(dropout)
        
        self.scale = torch.sqrt(torch.FloatTensor([hid_dim])).to(device)
        
    def forward(self, src, src_mask):
        
        #src = [batch size, src len]
        #src_mask = [batch size, src len]
        
        batch_size = src.shape[0]
        src_len = src.shape[1]
        
        pos = torch.arange(0, src_len).unsqueeze(0).repeat(batch_size, 1).to(self.device)
        
        #pos = [batch size, src len]
        
        src = self.dropout((self.tok_embedding(src) * self.scale) + self.pos_embedding(pos))
        
        #src = [batch size, src len, hid dim]
        
        for layer in self.layers:
            src = layer(src, src_mask)
            
        #src = [batch size, src len, hid dim]
            
        return src



class EncoderLayer(nn.Module):
    def __init__(self, 
                 hid_dim, 
                 n_heads, 
                 pf_dim,  
                 dropout, 
                 device):
        super().__init__()
        
        self.layer_norm = nn.LayerNorm(hid_dim)
        self.self_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout, device)
        self.positionwise_feedforward = PositionwiseFeedforwardLayer(hid_dim, 
                                                                     pf_dim, 
                                                                     dropout)
        self.dropout = nn.Dropout(dropout)
        
    def forward(self, src, src_mask):
        
        #src = [batch size, src len, hid dim]
        #src_mask = [batch size, src len]
                
        #self attention
        _src, _ = self.self_attention(src, src, src, src_mask)
        
        #dropout, residual connection and layer norm
        src = self.layer_norm(src + self.dropout(_src))
        
        #src = [batch size, src len, hid dim]
        
        #positionwise feedforward
        _src = self.positionwise_feedforward(src)
        
        #dropout, residual and layer norm
        src = self.layer_norm(src + self.dropout(_src))
        
        #src = [batch size, src len, hid dim]
        
        return src


class MultiHeadAttentionLayer(nn.Module):
    def __init__(self, hid_dim, n_heads, dropout, device):
        super().__init__()
        
        assert hid_dim % n_heads == 0
        
        self.hid_dim = hid_dim
        self.n_heads = n_heads
        self.head_dim = hid_dim // n_heads
        
        self.fc_q = nn.Linear(hid_dim, hid_dim)
        self.fc_k = nn.Linear(hid_dim, hid_dim)
        self.fc_v = nn.Linear(hid_dim, hid_dim)
        
        self.fc_o = nn.Linear(hid_dim, hid_dim)
        
        self.dropout = nn.Dropout(dropout)
        
        self.scale = torch.sqrt(torch.FloatTensor([self.head_dim])).to(device)
        
    def forward(self, query, key, value, mask = None):
        
        batch_size = query.shape[0]
        
        #query = [batch size, query len, hid dim]
        #key = [batch size, key len, hid dim]
        #value = [batch size, value len, hid dim]
                
        Q = self.fc_q(query)
        K = self.fc_k(key)
        V = self.fc_v(value)
        
        #Q = [batch size, query len, hid dim]
        #K = [batch size, key len, hid dim]
        #V = [batch size, value len, hid dim]
                
        Q = Q.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3)
        K = K.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3)
        V = V.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3)
        
        #Q = [batch size, n heads, query len, head dim]
        #K = [batch size, n heads, key len, head dim]
        #V = [batch size, n heads, value len, head dim]
                
        energy = torch.matmul(Q, K.permute(0, 1, 3, 2)) / self.scale
        
        #energy = [batch size, n heads, query len, key len]
        
        if mask is not None:
            energy = energy.masked_fill(mask == 0, -1e10)
        
        attention = torch.softmax(energy, dim = -1)
                
        #attention = [batch size, n heads, query len, key len]
                
        x = torch.matmul(self.dropout(attention), V)
        
        #x = [batch size, n heads, query len, head dim]
        
        x = x.permute(0, 2, 1, 3).contiguous()
        
        #x = [batch size, query len, n heads, head dim]
        
        x = x.view(batch_size, -1, self.hid_dim)
        
        #x = [batch size, query len, hid dim]
        
        x = self.fc_o(x)
        
        #x = [batch size, query len, hid dim]
        
        return x, attention

class PositionwiseFeedforwardLayer(nn.Module):
    def __init__(self, hid_dim, pf_dim, dropout):
        super().__init__()
        
        self.fc_1 = nn.Linear(hid_dim, pf_dim)
        self.fc_2 = nn.Linear(pf_dim, hid_dim)
        
        self.dropout = nn.Dropout(dropout)
        
    def forward(self, x):
        
        #x = [batch size, seq len, hid dim]
        
        x = self.dropout(torch.relu(self.fc_1(x)))
        
        #x = [batch size, seq len, pf dim]
        
        x = self.fc_2(x)
        
        #x = [batch size, seq len, hid dim]
        
        return x


class Decoder(nn.Module):
    def __init__(self, 
                 output_dim, 
                 hid_dim, 
                 n_layers, 
                 n_heads, 
                 pf_dim, 
                 dropout, 
                 device,
                 max_length = 100):
        super().__init__()
        
        self.device = device
        
        self.tok_embedding = nn.Embedding(output_dim, hid_dim)
        self.pos_embedding = nn.Embedding(max_length, hid_dim)
        
        self.layers = nn.ModuleList([DecoderLayer(hid_dim, 
                                                  n_heads, 
                                                  pf_dim, 
                                                  dropout, 
                                                  device)
                                     for _ in range(n_layers)])
        
        self.fc_out = nn.Linear(hid_dim, output_dim)
        
        self.dropout = nn.Dropout(dropout)
        
        self.scale = torch.sqrt(torch.FloatTensor([hid_dim])).to(device)
        
    def forward(self, trg, enc_src, trg_mask, src_mask):
        
        #trg = [batch size, trg len]
        #enc_src = [batch size, src len, hid dim]
        #trg_mask = [batch size, trg len]
        #src_mask = [batch size, src len]
                
        batch_size = trg.shape[0]
        trg_len = trg.shape[1]
        
        pos = torch.arange(0, trg_len).unsqueeze(0).repeat(batch_size, 1).to(self.device)
                            
        #pos = [batch size, trg len]
            
        trg = self.dropout((self.tok_embedding(trg) * self.scale) + self.pos_embedding(pos))
                
        #trg = [batch size, trg len, hid dim]
        
        for layer in self.layers:
            trg, attention = layer(trg, enc_src, trg_mask, src_mask)
        
        #trg = [batch size, trg len, hid dim]
        #attention = [batch size, n heads, trg len, src len]
        
        output = self.fc_out(trg)
        
        #output = [batch size, trg len, output dim]
            
        return output, attention


class DecoderLayer(nn.Module):
    def __init__(self, 
                 hid_dim, 
                 n_heads, 
                 pf_dim, 
                 dropout, 
                 device):
        super().__init__()
        
        self.layer_norm = nn.LayerNorm(hid_dim)
        self.self_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout, device)
        self.encoder_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout, device)
        self.positionwise_feedforward = PositionwiseFeedforwardLayer(hid_dim, 
                                                                     pf_dim, 
                                                                     dropout)
        self.dropout = nn.Dropout(dropout)
        
    def forward(self, trg, enc_src, trg_mask, src_mask):
        
        #trg = [batch size, trg len, hid dim]
        #enc_src = [batch size, src len, hid dim]
        #trg_mask = [batch size, trg len]
        #src_mask = [batch size, src len]
        
        #self attention
        _trg, _ = self.self_attention(trg, trg, trg, trg_mask)
        
        #dropout, residual connection and layer norm
        trg = self.layer_norm(trg + self.dropout(_trg))
            
        #trg = [batch size, trg len, hid dim]
            
        #encoder attention
        _trg, attention = self.encoder_attention(trg, enc_src, enc_src, src_mask)
        
        #dropout, residual connection and layer norm
        trg = self.layer_norm(trg + self.dropout(_trg))
                    
        #trg = [batch size, trg len, hid dim]
        
        #positionwise feedforward
        _trg = self.positionwise_feedforward(trg)
        
        #dropout, residual and layer norm
        trg = self.layer_norm(trg + self.dropout(_trg))
        
        #trg = [batch size, trg len, hid dim]
        #attention = [batch size, n heads, trg len, src len]
        
        return trg, attention


class Seq2Seq(nn.Module):
    def __init__(self, 
                 encoder, 
                 decoder, 
                 src_pad_idx, 
                 trg_pad_idx, 
                 device):
        super().__init__()
        
        self.encoder = encoder
        self.decoder = decoder
        self.src_pad_idx = src_pad_idx
        self.trg_pad_idx = trg_pad_idx
        self.device = device
        
    def make_src_mask(self, src):
        
        #src = [batch size, src len]
        
        src_mask = (src != self.src_pad_idx).unsqueeze(1).unsqueeze(2)

        #src_mask = [batch size, 1, 1, src len]

        return src_mask
    
    def make_trg_mask(self, trg):
        
        #trg = [batch size, trg len]
        
        trg_pad_mask = (trg != self.trg_pad_idx).unsqueeze(1).unsqueeze(2)
        
        #trg_pad_mask = [batch size, 1, 1, trg len]
        
        trg_len = trg.shape[1]
        
        trg_sub_mask = torch.tril(torch.ones((trg_len, trg_len), device = self.device)).bool()
        
        #trg_sub_mask = [trg len, trg len]
            
        trg_mask = trg_pad_mask & trg_sub_mask
        
        #trg_mask = [batch size, 1, trg len, trg len]
        
        return trg_mask

    def forward(self, src, trg):
        
        #src = [batch size, src len]
        #trg = [batch size, trg len]
                
        src_mask = self.make_src_mask(src)
        trg_mask = self.make_trg_mask(trg)
        
        #src_mask = [batch size, 1, 1, src len]
        #trg_mask = [batch size, 1, trg len, trg len]
        
        enc_src = self.encoder(src, src_mask)
        
        #enc_src = [batch size, src len, hid dim]
                
        output, attention = self.decoder(trg, enc_src, trg_mask, src_mask)
        
        #output = [batch size, trg len, output dim]
        #attention = [batch size, n heads, trg len, src len]
        
        return output, attention

模型训练

INPUT_DIM = len(SRC.vocab)
OUTPUT_DIM = len(TRG.vocab)
HID_DIM = 256
ENC_LAYERS = 3
DEC_LAYERS = 3
ENC_HEADS = 8
DEC_HEADS = 8
ENC_PF_DIM = 512
DEC_PF_DIM = 512
ENC_DROPOUT = 0.1
DEC_DROPOUT = 0.1

enc = Encoder(INPUT_DIM, 
              HID_DIM, 
              ENC_LAYERS, 
              ENC_HEADS, 
              ENC_PF_DIM, 
              ENC_DROPOUT, 
              device)

dec = Decoder(OUTPUT_DIM, 
              HID_DIM, 
              DEC_LAYERS, 
              DEC_HEADS, 
              DEC_PF_DIM, 
              DEC_DROPOUT, 
              device)

SRC_PAD_IDX = SRC.vocab.stoi[SRC.pad_token]
TRG_PAD_IDX = TRG.vocab.stoi[TRG.pad_token]

model = Seq2Seq(enc, dec, SRC_PAD_IDX, TRG_PAD_IDX, device).to(device)

def count_parameters(model):
    return sum(p.numel() for p in model.parameters() if p.requires_grad)

print(f'The model has {count_parameters(model):,} trainable parameters')

def initialize_weights(m):
    if hasattr(m, 'weight') and m.weight.dim() > 1:
        nn.init.xavier_uniform_(m.weight.data)

model.apply(initialize_weights)

LEARNING_RATE = 0.0005

optimizer = torch.optim.Adam(model.parameters(), lr = LEARNING_RATE)

criterion = nn.CrossEntropyLoss(ignore_index = TRG_PAD_IDX)


def train(model, iterator, optimizer, criterion, clip):
    
    model.train()
    
    epoch_loss = 0
    
    for i, batch in enumerate(iterator):
        
        src = batch.src
        trg = batch.trg
        
        optimizer.zero_grad()
        
        output, _ = model(src, trg[:,:-1])
                
        #output = [batch size, trg len - 1, output dim]
        #trg = [batch size, trg len]
            
        output_dim = output.shape[-1]
            
        output = output.contiguous().view(-1, output_dim)
        trg = trg[:,1:].contiguous().view(-1)
                
        #output = [batch size * trg len - 1, output dim]
        #trg = [batch size * trg len - 1]
            
        loss = criterion(output, trg)
        
        loss.backward()
        
        torch.nn.utils.clip_grad_norm_(model.parameters(), clip)
        
        optimizer.step()
        
        epoch_loss += loss.item()
        
    return epoch_loss / len(iterator)

def evaluate(model, iterator, criterion):
    
    model.eval()
    
    epoch_loss = 0
    
    with torch.no_grad():
    
        for i, batch in enumerate(iterator):

            src = batch.src
            trg = batch.trg

            output, _ = model(src, trg[:,:-1])
            
            #output = [batch size, trg len - 1, output dim]
            #trg = [batch size, trg len]
            
            output_dim = output.shape[-1]
            
            output = output.contiguous().view(-1, output_dim)
            trg = trg[:,1:].contiguous().view(-1)
            
            #output = [batch size * trg len - 1, output dim]
            #trg = [batch size * trg len - 1]
            
            loss = criterion(output, trg)

            epoch_loss += loss.item()
        
    return epoch_loss / len(iterator)


def epoch_time(start_time, end_time):
    elapsed_time = end_time - start_time
    elapsed_mins = int(elapsed_time / 60)
    elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
    return elapsed_mins, elapsed_secs

N_EPOCHS = 10
CLIP = 1

best_valid_loss = float('inf')

for epoch in range(N_EPOCHS):
    
    start_time = time.time()
    
    train_loss = train(model, train_iterator, optimizer, criterion, CLIP)
    valid_loss = evaluate(model, valid_iterator, criterion)
    
    end_time = time.time()
    
    epoch_mins, epoch_secs = epoch_time(start_time, end_time)
    
    if valid_loss < best_valid_loss:
        best_valid_loss = valid_loss
        torch.save(model.state_dict(), 'tut6-model.pt')
    
    print(f'Epoch: {epoch+1:02} | Time: {epoch_mins}m {epoch_secs}s')
    print(f'\tTrain Loss: {train_loss:.3f} | Train PPL: {math.exp(train_loss):7.3f}')
    print(f'\t Val. Loss: {valid_loss:.3f} |  Val. PPL: {math.exp(valid_loss):7.3f}')

最后训练输出:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/505404.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

深度学习 - 46.DIN 深度兴趣网络

目录 一.引言 二.摘要 ABSTRACT 三.介绍 INTRODUCTION 1.CTR 在广告系统的作用 2.传统 MLP 存在的问题 3.DIN 的改进 四.近期工作 RELATEDWORK 1.传统推荐算法 2.用户行为抽取 五.背景 BACKGROUD 六.深度兴趣网络 DEEP INTEREST NETWORK 1.特征表示 Feature Repres…

ChatGPT的强化学习部分介绍——PPO算法实战LunarLander-v2

PPO算法 近线策略优化算法&#xff08;Proximal Policy Optimization Algorithms&#xff09; 即属于AC框架下的算法&#xff0c;在采样策略梯度算法训练方法的同时&#xff0c;重复利用历史采样的数据进行网络参数更新&#xff0c;提升了策略梯度方法的学习效率。 PPO重要的突…

Leecode101 ——对称二叉树

对称二叉树:Leecode 101 leecode 101 对称二叉树 根据题目描述&#xff0c;首先想清楚&#xff0c;对称二叉树要比较的是哪两个节点。对于二叉树是否对称&#xff0c;要比较的是根节点的左子树与根节点的右子树是不是相互翻转的&#xff0c;其实也就是比较两个树&#xff0c;…

A+CLUB活动预告 | 2023年5月

五月立夏已至&#xff0c;万物并秀。 ACLUB五月活动预告新鲜出炉&#xff0c;本月我们将会有2场峰会活动&#xff08;深圳&#xff09;、1场沙龙活动&#xff08;深圳&#xff09;和1场管理人支持计划&#xff08;上海&#xff09;&#xff0c;期待您的参与&#xff01; 注&a…

06- 算法解读 Fast R-CNN (目标检测)

要点&#xff1a; Fast R-CNN 属于 Two-stage detector 回归损失参考&#xff1a;https://www.cnblogs.com/wangguchangqing/p/12021638.html 二 Fast R-CNN算法 Fast R-CNN 是作者 Ross Girshick 继 R-CNN 后的又一力作。同样使用 VGG16 作为网络的 backbone &#xff0c; …

您应该使用WhatsApp电子商务的3个理由

随着WhatsApp进军电子商务领域并扩大其为企业提供的服务种类&#xff0c;它正迅速成为客户参与的完美工具和对话式商务的绝佳平台。使用WhatsApp作为主要渠道向客户销售商品和服务的前景产生了WhatsApp电子商务一词。 WhatsApp已被加冕为世界领先的消息传递平台。对于最终用户来…

二十三、SQL 数据分析实战(10个简单的SQL题目)

文章目录 题目1: 比赛名单整理题目2: 热门游戏排行题目3: 社区生鲜App覆盖分析题目4: 社区团购行为分析题目5: 统计字符出现次数题目6: 找出各类别商品销量最高的商品题目7: 找出每个部门薪资第二高的员工题目8: 游戏玩家登录情况分析题目9: 用户首单消费金额题目10: 参与优惠活…

这可能是你读过最透彻的TCC方案讲解|分布式事务系列(三)

本文从两个场景说起&#xff0c;详细描述了TCC的详细过程&#xff0c;以及对比2PC有什么区别&#xff0c;适用什么样的场景。 点击上方“后端开发技术”&#xff0c;选择“设为星标” &#xff0c;优质资源及时送达 在面试前复习 TCC 的时候你是不是这样做的&#xff1a;百度TC…

百度再掀智能手机风云:推出小度AI智能手机

我是卢松松&#xff0c;点点上面的头像&#xff0c;欢迎关注我哦&#xff01; 太突然了!百度进军手机市场&#xff0c;据报百度也要进军手机市场了。5月底发布首款AI智能手机。目前这款新机处于发布前的最后准备阶段。 这款智能手机将采用百度的AI技术&#xff0c;预计会具备…

react如何渲染包含html标签元素的字符串

如何渲染包含html标签元素的字符串 最近有个搜索替换的需求&#xff0c;用户可以输入关键字信息来匹配出对应的数据&#xff0c;然后对其关键字进行标记显示&#xff0c;如下图所示&#xff1a; 实现上面的需求的思路就是前端去判断检索内容&#xff0c;将内容中对应的关键字…

又失眠了!

下班晚&#xff0c;洗漱之后&#xff0c;就这个点了&#xff0c;睡不着&#xff0c;爬上来和大家随意 BB 几句。 一个人成长的过程&#xff0c;也是自我认同感不断增强的过程&#xff0c;在这个过程中&#xff0c;一个稳定的精神内核不断夯实&#xff0c;你不会为谁的贬低而诚惶…

Linux性能监控与调优工具

Linux性能监控与调优工具 文章目录 Linux性能监控与调优工具1.使用top、 vmstat、 iostat、 sysctl等常用工具2.使用高级分析手段&#xff0c; 如OProfile、 gprof4.使用LTP进行压力测试5.使用Benchmark评估系统 除了保证程序的正确性以外&#xff0c; 在项目开发中往往还关心性…

体验讯飞星火认知大模型,据说中文能力超越ChatGPT

&#x1f4cb; 个人简介 &#x1f496; 作者简介&#xff1a;大家好&#xff0c;我是阿牛&#xff0c;全栈领域优质创作者。&#x1f61c;&#x1f4dd; 个人主页&#xff1a;馆主阿牛&#x1f525;&#x1f389; 支持我&#xff1a;点赞&#x1f44d;收藏⭐️留言&#x1f4d…

Nature | 生成式人工智能如何构建更好的抗体

疫情高峰期&#xff0c;研究人员竞相开发一些首批有效的COVID-19治疗方法&#xff1a;从已经康复的人的血液中分离出来的抗体分子。 现在&#xff0c;科学家已经证明&#xff0c;生成式人工智能&#xff08;AI&#xff09;可以通过一些繁琐的过程提供捷径&#xff0c;提出增强抗…

代码随想录算法训练营day29 | 491.递增子序列,46.全排列,47.全排列 II

代码随想录算法训练营day29 | 491.递增子序列&#xff0c;46.全排列&#xff0c;47.全排列 II 491.递增子序列解法一&#xff1a;回溯&#xff08;map进行数层去重&#xff09;解法二&#xff1a;回溯&#xff08;仅针对本题&#xff0c;不具有普适性&#xff09; 46.全排列解法…

有一说一,这是我看到的全网最新最全的SpringBoot后端接口规范了

一、前言 一个后端接口大致分为四个部分组成&#xff1a;接口地址&#xff08;url&#xff09;、接口请求方式&#xff08;get、post等&#xff09;、请求数据&#xff08;request&#xff09;、响应数据&#xff08;response&#xff09;。虽然说后端接口的编写并没有统一规范…

一个.Net功能强大、易于使用、跨平台开源可视化图表

可视化图表运用是非常广泛的&#xff0c;比如BI系统、报表统计等。但是针对桌面应用的应用&#xff0c;很多报表都是收费的&#xff0c;今天给大家推荐一个免费.Net可视化开源的项目&#xff01; 项目简介 基于C#开发的功能强大、易于使用、跨平台高质量的可视化图表库&#…

Shiro 入门概述

目录 是什么 为什么要用 Shiro Shiro 与 SpringSecurity 的对比 基本功能 原理 是什么 Apache Shiro 是一个功能强大且易于使用的 Java 安全(权限)框架。Shiro 可以完 成&#xff1a;认证、授权、加密、会话管理、与 Web 集成、缓存 等。借助 Shiro 您可以快速轻松 地保护…

Linux 中的文件锁定命令:flock、fcntl、lockfile、flockfile

在 Linux 系统中&#xff0c;文件锁定是一种对文件进行保护的方法&#xff0c;可以防止多个进程同时访问同一个文件&#xff0c;从而导致数据损坏或者冲突。文件锁定命令是一组用于在 Linux 系统中实现文件锁定操作的命令&#xff0c;它们可以用于对文件进行加锁或解锁&#xf…

直击中国国际金融展:实在智能携多项科技成果亮相,展现数字金融力量

4月25日-27日&#xff0c;中国国际金融展于北京首钢会展中心成功举办。作为我国规格最高、历史最久的金融科技展&#xff0c;本次展会以“荟萃金融科技成果&#xff0c;展现数字金融力量&#xff0c;谱写金融服务中国式现代化新篇章”为主题&#xff0c;吸引了众多国内金融机构…