【Java系列】深入解析Java多线程

news2024/9/27 7:55:15

 

序言

你只管努力,其他交给时间,时间会证明一切。

文章标记颜色说明:

  • 黄色:重要标题
  • 红色:用来标记结论
  • 绿色:用来标记一级重要
  • 蓝色:用来标记二级重要

希望这篇文章能让你不仅有一定的收获,而且可以愉快的学习,如果有什么建议,都可以留言和我交流

 问题

思考一下这个问题,我们将围绕这三个问题来开始学习:

  • 什么是多线程
  • Java怎么实现多线程
  • Java多线程示例

1 基础介绍

什么是多线程

多线程

  • 指的是在一个进程中同时运行多个线程,每个线程都可以独立执行不同的任务或操作。
  • 与单线程相比,多线程可以提高程序的并发性和响应能力。

什么是进程

进程:

是指正在运行的程序的实例

每个进程都拥有自己的内存空间、代码、数据和文件等资源,可以独立运行、调度和管理。在操作系统中进程是系统资源分配的最小单位,是实现多任务的基础

在Java中,每个Java虚拟机(JVM)都是一个进程,可以同时运行多个Java程序,每个Java程序都是一个独立的进程

2 Java多线程

Java多线程是指在一个Java程序中同时执行多个线程,它可以提高程序的并发性和响应能力。Java中实现多线程的方式:

  1. 继承Thread类
  2. 实现Runnable接口
  3. Executor框架
  4. Callable
  5. Future
  6. 线程池

1 继承Thread类

继承Thread类是实现多线程的一种方式,只需要继承Thread类并重写run()方法即可。

public class ThreadDemo {
    public static void main(String[] args) {
        // 创建10个线程并启动
        for (int i = 0; i < 10; i++) {
            MyThread thread = new MyThread(i);
            thread.start();
        }
    }
}

class MyThread extends Thread {
    private int id;

    public MyThread(int id) {
        this.id = id;
    }

    public void run() {
        System.out.println("Thread " + id + " is running");
        try {
            Thread.sleep(1000);  // 模拟任务执行时间
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

以上代码中,首先创建了一个ThreadDemo类,在main函数中创建了10个线程,并启动这些线程。

每个线程都是MyThread类的实例,MyThread类继承了Thread类,并重写了run()方法,在方法中模拟了一个需要执行1秒钟的任务。

在main函数中,通过创建MyThread类的实例,并调用start()方法启动线程。start()方法会调用线程的run()方法,在run()方法中执行线程的任务。

2 实现Runnable接口 

另一种实现多线程的方式是实现Runnable接口,需要实现run()方法,并将实现了Runnable接口的对象传递给Thread类的构造函数。

public class RunnableDemo {
    public static void main(String[] args) {
        // 创建10个线程并启动
        for (int i = 0; i < 10; i++) {
            Runnable task = new MyTask(i);
            Thread thread = new Thread(task);
            thread.start();
        }
    }
}

class MyTask implements Runnable {
    private int id;

    public MyTask(int id) {
        this.id = id;
    }

    public void run() {
        System.out.println("Thread " + id + " is running");
        try {
            Thread.sleep(1000);  // 模拟任务执行时间
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

以上代码中,创建了一个RunnableDemo类,在main函数中创建了10个线程,并启动这些线程。

每个线程都是MyTask类的实例,MyTask类实现了Runnable接口,并重写了run()方法,在方法中模拟了一个需要执行1秒钟的任务。

在main函数中,通过创建MyTask类的实例,并创建一个Thread对象,将Runnable对象作为参数传递给Thread构造方法,最后调用start()方法启动线程。start()方法会调用线程的run()方法,在run()方法中执行线程的任务。

在使用实现Runnable接口实现多线程时,可以更好地分离任务和线程,并提高代码的可扩展性和可维护性

如果需要添加更多的线程或任务,只需要创建更多的Runnable实例,并创建对应的Thread对象即可,不需要创建更多的线程类,并且可以更好地重用代码

3 Executor框架 

Executor框架是Java提供的一个线程池框架用于管理和调度多个线程。通过Executor框架,可以更方便地实现多线程,避免手动管理线程带来的复杂性和风险。

Executor框架的核心接口是Executor和ExecutorService

  1. Executor是一个简单的线程池接口,只有一个execute()方法,用于提交一个Runnable任务给线程池执行。
  2. ExecutorService是Executor的扩展接口,提供了更多的管理和调度线程的方法,如submit()、shutdown()、awaitTermination()等。

使用Executor框架实现多线程,通常需要以下步骤:

  1. 创建一个ExecutorService对象,可以使用Executors类提供的静态方法创建线程池,如newFixedThreadPool()、newCachedThreadPool()、newSingleThreadExecutor()等。

  2. 将需要执行的任务封装成一个Runnable或Callable对象,可以使用Java中的匿名内部类或Lambda表达式来创建。

  3. 将任务提交给ExecutorService对象执行,可以使用submit()方法提交Callable对象,或使用execute()方法提交Runnable对象。

  4. 在程序完成时,调用shutdown()方法关闭线程池,或使用awaitTermination()方法等待所有线程执行完毕。

下面是一个使用Executor框架实现多线程的示例:

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class ExecutorDemo {
    public static void main(String[] args) {
        // 创建一个包含10个线程的线程池
        ExecutorService executor = Executors.newFixedThreadPool(10);

        // 提交10个任务给线程池执行
        for (int i = 0; i < 10; i++) {
            executor.execute(new MyTask(i));
        }

        // 关闭线程池
        executor.shutdown();
    }
}

class MyTask implements Runnable {
    private int id;

    public MyTask(int id) {
        this.id = id;
    }

    public void run() {
        System.out.println("Thread " + id + " is running");
        try {
            Thread.sleep(1000);  // 模拟任务执行时间
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

代码讲解: 

先创建了一个ExecutorDemo类,在main函数中创建了一个包含10个线程的线程池。

每个线程池中的线程都可以执行MyTask类的实例,MyTask类实现了Runnable接口,并重写了run()方法,在方法中模拟了一个需要执行1秒钟的任务。

在main函数中,创建MyTask类的实例,并调用ExecutorService的execute()方法提交给线程池执行。

execute()方法会将任务提交给线程池中的一个空闲线程执行。

最后调用ExecutorService的shutdown()方法关闭线程池。

需要注意的是,shutdown()方法会等待所有线程执行完毕后才会关闭线程池,如果需要立即关闭线程池,可以使用shutdownNow()方法。

Callable实现多线程

Callable是Java中的一个接口,与Runnable接口类似,都用于封装一个线程执行的任务。

不同的是,Callable接口的call()方法可以返回一个结果而Runnable接口的run()方法没有返回值。

使用Callable实现多线程,通常需要以下步骤:

  1. 创建一个实现了Callable接口的类,实现call()方法,并在方法中编写线程执行的代码。

  2. 创建一个ExecutorService对象,可以使用Executors类提供的静态方法创建线程池,如newFixedThreadPool()、newCachedThreadPool()、newSingleThreadExecutor()等。

  3. 将Callable对象提交给ExecutorService对象执行,可以使用submit()方法提交。

  4. 调用Future对象的get()方法获取Callable线程执行的结果

  5. 在程序完成时,调用shutdown()方法关闭线程池,或使用awaitTermination()方法等待所有线程执行完毕。

下面是一个使用Callable实现多线程的示例:

import java.util.concurrent.*;

public class CallableDemo {
    public static void main(String[] args) throws Exception {
        // 创建一个线程池
        ExecutorService executor = Executors.newFixedThreadPool(10);

        // 提交10个Callable任务给线程池执行
        Future<Integer>[] results = new Future[10];
        for (int i = 0; i < 10; i++) {
            Callable<Integer> task = new MyTask(i);
            results[i] = executor.submit(task);
        }

        // 输出Callable任务的执行结果
        for (int i = 0; i < 10; i++) {
            Integer result = results[i].get();
            System.out.println("Task " + i + " result is " + result);
        }

        // 关闭线程池
        executor.shutdown();
    }
}

class MyTask implements Callable<Integer> {
    private int id;

    public MyTask(int id) {
        this.id = id;
    }

    public Integer call() throws Exception {
        System.out.println("Task " + id + " is running");
        Thread.sleep(1000);  // 模拟任务执行时间
        return id * 10;
    }
}

首先创建一个线程池,然后提交10个Callable任务给线程池执行。每个Callable任务都是MyTask类的实例,MyTask类实现了Callable接口,并重写了call()方法,在方法中模拟了一个需要执行1秒钟的任务,并返回一个结果。

详细解释如下:

  1. 创建一个线程池,通过调用Executors的静态方法newFixedThreadPool(10),创建了一个固定大小为10的线程池。

  2. 在for循环中,通过创建MyTask类的实例,将其封装为Callable对象,并通过ExecutorService的submit()方法提交给线程池执行。submit()方法会返回一个Future对象,代表了Callable任务的执行结果。

  3. 在for循环中,通过Future数组记录每个Callable任务的执行结果,可以通过调用get()方法获取Callable任务的执行结果。如果Callable任务还没有执行完成,get()方法会阻塞当前线程,直到任务执行完成并返回结果。如果任务执行过程中发生异常,get()方法会抛出ExecutionException异常。

  4. 在任务完成后,可以通过调用Future对象的get()方法获取任务的执行结果,并打印输出。

  5. 最后调用ExecutorService的shutdown()方法关闭线程池,应该在所有任务执行完成后才能关闭线程池。

注意,在使用Callable实现多线程时,要考虑线程安全、同步机制、任务调度和管理等问题,以确保程序的正确性和稳定性

同时,由于Callable任务的执行时间可能会比较长,可以设置超时时间来避免任务执行时间过长导致的程序阻塞。

Future实现多线程

Future是Java中的一个接口用于异步获取任务执行结果

在多线程编程中,可以使用Future来获取异步任务的执行结果,以便在任务完成后进行处理或展示。

使用Future实现多线程,需要以下步骤:

  1. 创建一个实现了Callable接口的类,实现call()方法,并在方法中编写线程执行的代码。

  2. 创建一个ExecutorService对象,可以使用Executors类提供的静态方法创建线程池,如newFixedThreadPool()、newCachedThreadPool()、newSingleThreadExecutor()等。

  3. 将Callable对象提交给ExecutorService对象执行,可以使用submit()方法提交,submit()方法会返回一个Future对象。

  4. 调用Future对象的get()方法获取Callable线程执行的结果。如果任务还没有执行完成,get()方法会阻塞当前线程直到任务执行完成并返回结果。

代码示例:

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.*;

public class FutureDemo {
    public static void main(String[] args) throws Exception {
        // 创建一个线程池
        ExecutorService executor = Executors.newFixedThreadPool(10);

        // 提交10个Callable任务给线程池执行
        List<Future<Integer>> results = new ArrayList<>();
        for (int i = 0; i < 10; i++) {
            Callable<Integer> task = new MyTask(i);
            Future<Integer> result = executor.submit(task);
            results.add(result);
        }

        // 输出Callable任务的执行结果
        for (int i = 0; i < 10; i++) {
            Integer result = results.get(i).get();
            System.out.println("Task " + i + " result is " + result);
        }

        // 关闭线程池
        executor.shutdown();
    }
}

class MyTask implements Callable<Integer> {
    private int id;

    public MyTask(int id) {
        this.id = id;
    }

    public Integer call() throws Exception {
        System.out.println("Task " + id + " is running");
        Thread.sleep(1000);  // 模拟任务执行时间
        return id * 10;
    }
}

示例讲解

在以上示例中:

  1. 首先创建了一个线程池,然后提交10个Callable任务给线程池执行。每个Callable任务都是MyTask类的实例,MyTask类实现了Callable接口,并重写了call()方法,在方法中模拟了一个需要执行1秒钟的任务,并返回一个结果。
  2. 在main函数中,使用List记录每个Callable任务的执行结果的Future对象,并在任务完成后通过调用get()方法获取Callable任务的执行结果。如果任务还没有执行完成,get()方法会阻塞当前线程直到任务执行完成并返回结果。
  3. 最后关闭线程池。

线程池实现多线程

线程池是Java中提供的一个用于管理和复用多个线程的框架,可以有效地提高多线程应用程序的性能和可靠性。

使用线程池实现多线程,通常需要以下步骤:

  1. 创建一个线程池,可以使用Executors类提供的静态方法创建线程池,如newFixedThreadPool()、newCachedThreadPool()、newSingleThreadExecutor()等。

  2. 创建一个实现了Runnable接口或Callable接口的类,实现run()方法或call()方法,并在方法中编写线程执行的代码。

  3. Runnable对象或Callable对象提交给线程池执行,可以使用submit()方法提交,submit()方法会返回一个Future对象。

  4. 关闭线程池,可以调用shutdown()方法或shutdownNow()方法。

代码示例: 

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.*;

public class ThreadPoolDemo {
    public static void main(String[] args) throws Exception {
        // 创建一个包含10个线程的线程池
        ExecutorService executor = Executors.newFixedThreadPool(10);

        // 提交10个任务给线程池执行,并记录每个任务的执行结果
        List<Future<Integer>> results = new ArrayList<>();
        for (int i = 0; i < 10; i++) {
            Callable<Integer> task = new MyTask(i);
            Future<Integer> result = executor.submit(task);
            results.add(result);
        }

        // 等待所有任务执行完成
        executor.shutdown();
        executor.awaitTermination(Long.MAX_VALUE, TimeUnit.SECONDS);

        // 输出所有任务的执行结果
        int total = 0;
        for (int i = 0; i < 10; i++) {
            try {
                Integer result = results.get(i).get();
                System.out.println("Task " + i + " result is " + result);
                total += result;
            } catch (InterruptedException e) {
                e.printStackTrace();
            } catch (ExecutionException e) {
                System.out.println("Task " + i + " execution error: " + e.getCause().getMessage());
            }
        }
        System.out.println("Total result is " + total);
    }
}

class MyTask implements Callable<Integer> {
    private int id;

    public MyTask(int id) {
        this.id = id;
    }

    public Integer call() throws Exception {
        System.out.println("Task " + id + " is running");
        Thread.sleep(2000);  // 模拟任务执行时间
        if (id % 2 == 0) {
            throw new RuntimeException("Task " + id + " execution error");
        }
        return id * 10;
    }
}

示例讲解:

在以上示例中,首先创建了一个包含10个线程的线程池,然后提交10个任务给线程池执行。每个任务都是MyTask类的实例MyTask类实现了Callable接口,并重写了call()方法,在方法中模拟了一个需要执行2秒钟的任务,并返回一个结果。

其中,如果任务的id是偶数,会抛出一个运行时异常。

在main函数中,使用List记录每个任务的执行结果的Future对象,并在任务完成后通过调用get()方法获取任务的执行结果。

如果任务还没有执行完成,get()方法会阻塞当前线程直到任务执行完成并返回结果。

在所有任务提交给线程池后,调用ExecutorService的shutdown()方法关闭线程池,并调用awaitTermination()方法等待所有任务执行完成。

最后输出所有任务的执行结果,并计算所有任务的执行结果的总和。

总结

在多线程编程中,线程安全是一个重要的问题。后面文章会详细讲解:

  1. Java中的同步机制,如synchronized关键字、Lock接口等,
  2. 线程之间的通信机制,如wait()、notify()、notifyAll()等。
  3. 程序如何避免死锁、竞态条件等问题,以确保程序的正确性和稳定性。

总之,Java多线程是提高程序并发性和响应能力的重要手段,需要掌握多线程的实现方式、同步机制、线程之间的通信机制等,以确保多线程程序的正确性和稳定性。

图书推荐

图书介绍 

图书名称:《Java核心技术 卷Ⅱ 最新版》

内容介绍

Java诞生28年来,这本享誉全球的 Java 经典著作《Core Java》一路伴随着 Java 的成长,得到了百万 Java 开发者的青睐,成为一本畅销不衰的Java经典图书,影响了几代技术人。

最新版中文版《Java核心技术(原书第12版)经全面修订,以涵盖Java 17的新特性。新版延续之前版本的优良传统,用数百个实际的工程案例,全面系统地讲解了Java语言的核心概念、语法、 重要特性、 开发方法。

着力让读者在充分理解Java语言和Java类库的基础上,灵活应用Java提供的高级特性,具体包括面向对象程序设计、反射与代理、接口与内部类、异常处理、泛型程序设计、集合框架、事件监听器模型、图形用户界面设计和并发。

Java 之父先前也说,开发者应尽快弃用 JDK 8,可以选择 JDK 17 长期支持版本。针对 Java 17 新特性全面更新的《Core Java》最新版第12版中文版《Java核心技术·卷Ⅰ开发基础(原书第12版)》自去年5月上市以来,一经发布就引起了轰动,得到数万读者的高度关注 ,大家纷纷留言都在盼望卷Ⅱ的上市!

卷Ⅱ针对Java 17的新特性和改进进行了修订。与以往一样,所有的章节都做了全面更新,移除了过时的内容,并且详细讨论了各种新API。

卷| 与 卷|| 的区别

 学完本书,你将成为一个真正的 Java 程序员。本书不仅让你深入了解设计和实现 Java 应用涉及的所有基础知识和 Java 特性,还会帮助你掌握开发 Java 程序所需的全部基本技能。相信在学习Java的道路上有了本书的辅助,你的学习一定可以做到事半功倍。

等不及的小伙伴,也可以点击下方链接,先睹为快:

Java核心技术 卷II:高级特性 原书第12版

参与方式

图书数量:本次送出 3 本   !!!⭐️⭐️⭐️
活动时间:截止到 2023-05-12 12:00:00

抽奖方式:

  • 2本,留言+该留言论赞数的前两名各获得一本!
  • 1本,评论区随机挑选一位小伙伴送书一本!
  • 留言内容:“用心生活,用力向上,微笑前行,就是对生活最好的回馈。


参与方式:关注博主、点赞、收藏,评论区留言 

中奖名单 

🍓🍓 获奖名单🍓🍓

 中奖名单:请关注博主动态

名单公布时间:2023-05-12 下午

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/504449.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

sqli-labs通关(十七)

第十七关 这一关跟前面的关卡都不一样&#xff0c;是全新的关卡&#xff0c;页面是一个密码重置页面&#xff0c;需要输入用户名&#xff0c;然后输入新的密码&#xff0c;就会把我们的旧密码替换掉。所以就会用到数据库的update更新数据&#xff0c;不再是前面的查询数据&…

327页16万字市智慧人社项目建设方案(word可编辑)

本资料来源公开网络&#xff0c;仅供个人学习&#xff0c;请勿商用&#xff0c;如有侵权请联系删除 第 1 章 项目建设总体框架设计 1.1 系统总体架构设计 市智慧人社项目从总体逻辑上可分为信息访问层、门户层、应用服务层、应用支撑层、数据资源层和基础设施层等六个层次&a…

华三(H3C)新服务器安装Windows server系统后插拔网线没有反应,华三R4900 G3服务器安装网卡驱动和芯片驱动

官网&#xff08;根据自己的服务器下载驱动&#xff09;&#xff1a;​​​​​​https://www.h3c.com/cn/BizPortal/DownLoadAccessory/DownLoadAccessoryFilt.aspx 在服务器没有光盘槽和U盘不被服务识别的时候的时候&#xff0c;服务器通过在管理口中的KVM控制&#xff0c;进…

第八章 使用Apache服务部署静态网站

文章目录 第八章 使用Apache服务部署静态网站一、网站服务程序1、网站服务介绍2、Apache程序介绍 二、配置服务文件参数1、Linux系统中的配置文件2、配置httpd服务程序时最常用的参数以及用途描述 三、SELinux安全子系统1、SELinux介绍2、SELinux服务配置模式3、Semanage命令4、…

前端响应超时、API-server 服务内存不足...碰见这类 DolphinScheduler 资源中心相关问题怎么办?...

作者 | 刘森 卡特加特 大数据工程师 Apache DolphinScheduler Contributor 最近&#xff0c;有些用户小伙伴反映在使用 Apache DolphinScheduler 资源中心时会遇到问题&#xff0c;社区小伙伴整理了一些常见问题&#xff0c;希望帮大家解决燃眉之急。 [WARN] 2023-04-25 03:02…

网络工程师网络管理软件SNMPc软件的下载,安装和使用教程说明

⬜⬜⬜ &#x1f430;&#x1f7e7;&#x1f7e8;&#x1f7e9;&#x1f7e6;&#x1f7ea;(*^▽^*)欢迎光临 &#x1f7e7;&#x1f7e8;&#x1f7e9;&#x1f7e6;&#x1f7ea;&#x1f430;⬜⬜⬜ ✏️write in front✏️ &#x1f4dd;个人主页&#xff1a;陈丹宇jmu &am…

2直接连接的网络与VLAN划分【实验】【计算机网络】

2直接连接的网络与VLAN划分【实验】【计算机网络】 前言推荐2直接连接的网络与VLAN划分2.1共享式以太网和交换式以太网实验目的实验内容及实验环境实验原理共享式以太网交换式以太网 实验过程搭建实验环境初始化序训练操作共享式以太网-操作交换式以太网查看共享式以太网冲突查…

QueryStorm Crack

QueryStorm Crack 应用程序现在可以指定“minRuntimeVersion”。 添加了用于节流和API密钥管理的HTTP请求基础结构(请求/尝试/重试循环)。 改进了许可提示的处理(避免在多个单元格中评估许可功能时出现多个提示)。 已添加“IDialogServiceExt”接口&#xff0c;该接口允许应用程…

看完这篇文章你就彻底懂啦{保姆级讲解}-----(I.MX6U驱动GPIO中断《包括时钟讲解》) 2023.5.9

目录 前言整体文件结构源码分析&#xff08;保姆级讲解&#xff09;中断初始化部分初始化GIC控制器初始化中断向量表设置中断向量表偏移 系统时钟初始化部分使能所有的时钟部分led初始化部分beep初始化部分key初始化部分按键中断初始化部分按键中断服务函数部分 while循环部分 …

【shell脚本】函数

函数 一、shell函数1.1函数的定义1.3 函数返回值1.4函数传参1.5递归的使用 二、实验2.1实验一2.2实验二2.3实验三 一、shell函数 使用函数可以避免代码重复使用函数可以将大的过程风为若干个小的功能模块&#xff0c;代码的可读性更强 1.1函数的定义 【1】 function 函数名 …

OJ练习第99题——推箱子

推箱子 力扣链接&#xff1a;1263. 推箱子 题目描述 「推箱子」是一款风靡全球的益智小游戏&#xff0c;玩家需要将箱子推到仓库中的目标位置。 游戏地图用大小为 m x n 的网格 grid 表示&#xff0c;其中每个元素可以是墙、地板或者是箱子。 现在你将作为玩家参与游戏&a…

深度学习—神经网络基础原理

前向传播&#xff08;Forward&#xff09; 为什么要有激活函数 这里用两层来代表多层的神经网络举例&#xff1a;第一层的输出是第二层的输入&#xff0c;其中MM的W*X矩阵乘法&#xff0c;ADD是向量加法即加上偏置&#xff0c;如果每一层都只有线性变换&#xff0c;那么最终无…

Modbus转Profibus网关连接安科瑞ARD3T电机保护器接到300PLC配置案例

案例介绍兴达易控Modbus转profibus网关&#xff08;XD-MDPB100&#xff09;把安科瑞ARD3T电机保护器在博图软件里无需编程实现由profibus转modbus协议之间的互转&#xff0c;用到的设备安科瑞ARD3T电机保护器一台&#xff1b;兴达易控Modbus转profibus网关&#xff08;XD-MDPN1…

解密Diem币:探索Facebook的数字货币计划

大家好&#xff01;我是ClonBrowser小鱼&#xff0c;今天我要和大家一起解密一种备受关注的数字货币——Diem币。 或许你已经猜到了&#xff0c;这个数字货币与社交媒体巨头Facebook有关。是的没错&#xff0c;Facebook正计划推出一种自己的加密货币&#xff0c;名为Diem币。让…

为什么做白平衡?康耐视Visionpro和Basler pylon,海康MVS如何做白平衡-三种软件相同条件下,白平衡效果一样?

为什么会有白平衡这个问题? 因为不同颜色的差异来自于不同波长光线的比例不同。 由于在不同色温下各种波长光纤比例的不同,造成白色在高色温的光线照射下显得较蓝,在低色温度的光线下显得较黄。如下图: 问题:在相同条件下,康耐视Visionpro和Basler pylon,海康MVS做白平…

机器学习决策树、回归树 sklearn-day1

#文章很多内容来自菜菜老师的课件。仅做笔记一、决策树 1、模块 2、sklearn基本建模流程 #分类树对应的代码 from sklearn import tree #导入需要的模块 clf tree.DecisionTreeClassifier() #实例化 clf clf.fit(X_train,y_train) #用训练集数据训练模型 result clf…

JavaWeb 中 Filter过滤器

Filter过滤器 每博一文案 师傅说&#xff1a;人生无坦途&#xff0c;累是必须的背负&#xff0c;看多了&#xff0c;人情人暖&#xff0c;走遍了离合聚散&#xff0c;有时会 在心里对自己说&#xff0c;我想&#xff0c;我是真的累了&#xff0c;小时候有读不完的书&#xff0…

大学生志愿者管理信息系统设计与实现(论文+源码)_kaic

摘 要 在国家的十四五期间&#xff0c;志愿服务成为推动社会文明发展的重要力量。大学生是志愿活动的中坚力量。现有的志愿管理工作不能满足志愿活动的需要&#xff0c;存在活动找不到志愿者&#xff0c;志愿者找不到活动的情况。为服务良好的志愿服务体系&#xff0c;对大学…

Hologres技术揭秘: JSON半结构化数据的极致分析性能

作者&#xff1a;王华峰&#xff08;花名继儒&#xff09;&#xff0c;Hologres研发 近年来&#xff0c;随着移动端应用的普及&#xff0c;应用埋点、用户标签计算等场景开始诞生&#xff0c;为了更好的支撑这类场景&#xff0c;越来越多的大数据系统开始使用半结构化JSON格式…

保姆级教程:OpenAI获取Account详细教程2023/05/09最新

前言 最近OpenAI封的比较严重&#xff0c;建议大家不要批量&#xff0c;容易被封&#xff0c;也不要用公用的IP 一、上网 首先你要学会上网&#xff08;懂&#xff1f;&#xff09;、这一步是必须的。 现在MG等地方的IP已经很难了&#xff0c;可以选择一些小众国家的IP 二、开…