K8S基础理论,核心组件,数据流向详解

news2024/11/18 1:23:22

目录

第一章.k8s概述

1.1.什么是云原生

1.2.什么是K8S

1.3.K8S的优势

1.4.K8S的功能

1.5.K8S 的特性:

1.6.Kubernetes 集群架构与组件

第二章.K8S的核心组件

2.1.Master 组件

2.2.配置存储中心

2.3.Node 组件

第三章.Kubernetes 核心概念

3.1.Pod

3.2.Pod 控制器

3.3.Label

3.4.Label 选择器(Label selector)

3.5.Service

3.6.Ingress

3.7.Name

3.8.Namespace

第四章.常见的K8S按照部署方式

4.1.Minikube

4.2.Kubeadmin

4.3.二进制安装部署

总结

1.数据流向

2.核心主键及含义


第一章.k8s概述

1.1.什么是云原生

1.2.什么是K8S

K8S 的全称为 Kubernetes,用于自动部署、扩展和管理“容器化(containerized)应用程序”的开源系统。


可以理解成 K8S 是负责自动化运维管理多个容器化程序(比如 Docker)的集群,是一个生态极其丰富的容器编排框架工具。


K8S由google的Borg系统(博格系统,google内部使用的大规模容器编排工具)作为原型,后经GO语言延用Borg的思路重写并捐献给CNCF基金会开源。
 

官网:
https://kubernetes.io

GitHub:
https://github.com/kubernetes/kubernetes

版本

目前Kubernetes最新版本是v1.24-1.26,但大部分公司一般不会使用最新版本。

目前公司使用比较多的:老版本是v1.15,因为v1.16改变了很多API接口版本,新版本使用比较多的是v1.18、v1.20。1.20版本后不在支持DOCKER

1.3.K8S的优势

K8S 的目标是让部署容器化应用简单高效。自动化运维管理容器化(Docker)程序。

K8S 解决了裸跑Docker 的若干痛点:


●单机使用,无法有效集群


●随着容器数量的上升,管理成本攀升


●没有有效的容灾、自愈机制


●没有预设编排模板,无法实现快速、大规模容器调度


●没有统一的配置管理中心工具


●没有容器生命周期的管理工具


●没有图形化运维管理工具

1.4.K8S的功能

K8S是Google开源的容器集群管理系统,在Docker等容器技术的基础上,为容器化的应用提供部署运行、资源调度、服务发现和动态伸缩等一系列完整功能,提高了大规模容器集群管理的便捷性。 其主要功能如下:


●使用 Docker 等容器技术对应用程序包装(package)、实例化(instantiate)、运行(run)。


●以集群的方式运行、管理跨机器的容器。


●解决 Docker 跨机器容器之间的通讯问题。


●K8S 的自我修复机制使得容器集群总是运行在用户期望的状态

1.5.K8S 的特性:

●弹性伸缩
使用命令、UI或者基于CPU使用情况自动快速扩容和缩容应用程序实例,保证应用业务高峰并发时的高可用性;业务低峰时回收资源,以最小成本运行服务。

●自我修复
在节点故障时重新启动失败的容器,替换和重新部署,保证预期的副本数量;杀死健康检査失败的容器,并且在未准备好之前不会处理客户端请求,确保线上服务不中断。

●服务发现和负载均衡
K8S为多个容器提供一个统一访问入口(内部IP地址和一个DNS名称),并且负载均衡关联的所有容器,使得用户无需考虑容器IP问题。

●自动发布(默认滚动发布模式)和回滚
K8S采用滚动更新策略更新应用,一次更新一个或者部分Pod,而不是同时删除所有Pod,如果更新过程中出现问题,将回滚更改,确保升级不影响业务。

●集中化配置管理和密钥管理
管理机密数据和应用程序配置,而不需要把敏感数据暴露在镜像里,提高敏感数据安全性。并可以将一些常用的配置存储在K8S中,方便应用程序使用。

●存储编排,支持外挂存储并对外挂存储资源进行编排
挂载外部存储系统,无论是来自本地存储,公有云(如AWS),还是网络存储(如NFS、Glusterfs、Ceph)都作为集群资源的一部分使用,极大提高存储使用灵活性。

●任务批处理运行
提供一次性任务,定时任务;满足批量数据处理和分析的场景。

1.6.Kubernetes 集群架构与组件

K8S 是属于主从设备模型(Master-Slave 架构),即有 Master 节点负责集群的调度、管理和运维,Slave 节点是集群中的运算工作负载节点。


在 K8S 中,主节点一般被称为 Master 节点,而从节点则被称为 Worker Node 节点,每个 Node 都会被 Master 分配一些工作负载。

Master 组件可以在群集中的任何计算机上运行,但建议 Master 节点占据一个独立的服务器。因为 Master 是整个集群的大脑,如果 Master 所在节点宕机或不可用,那么所有的控制命令都将失效。除了 Master,在 K8S 集群中的其他机器被称为 Worker Node 节点,当某个 Node 宕机时,其上的工作负载会被 Master 自动转移到其他节点上去。

第二章.K8S的核心组件

2.1.Master 组件

Kube-apiserver


用于暴露 Kubernetes API,任何资源请求或调用操作都是通过 kube-apiserver 提供的接口进行。以 HTTP Restful API 提供接口服务,所有对象资源的增删改查和监听操作都交给 API Server 处理后再提交给 Etcd 存储。

可以理解成 API Server 是 K8S 的唯一请求入口服务。API Server 负责接收 K8S 所有请求(来自 UI 界面或者 CLI 命令行工具), 然后根据用户的具体请求,去通知其他组件干活。可以说 API Server 是 K8S 集群架构的大脑,K8S 中仅 API Server 才具备读写权限,其他组件必须通过 API Server 的接口才能读写数据。

Kube-controller-manager


运行管理控制器,是 K8S 集群中处理常规任务的后台线程,是 K8S 集群里所有资源对象的自动化控制中心。
在 K8S 集群中,一个资源对应一个控制器,而 Controller manager 就是负责管理这些控制器的。

由一系列控制器组成,通过 API Server 监控整个集群的状态,并确保集群处于预期的工作状态,比如当某个 Node 意外宕机时,Controller Manager 会及时发现并执行自动化修复流程,确保集群始终处于预期的工作状态。
 

控制器主要包括:


•Node Controller(节点控制器):负责在节点出现故障时发现和响应。


•Replication Controller(副本控制器):负责保证集群中一个 RC(资源对象 Replication Controller)所关联的 Pod 副本数始终保持预设值。可以理解成确保集群中有且仅有 N 个 Pod 实例,N 是 RC 中定义的 Pod 副本数量。


•Endpoints Controller(端点控制器):填充端点对象(即连接 Services 和 Pods),负责监听 Service 和对应的 Pod 副本的变化。 可以理解端点是一个服务暴露出来的访问点,如果需要访问一个服务,则必须知道它的 endpoint。


•Service Account & Token Controllers(服务帐户和令牌控制器):为新的命名空间创建默认帐户和 API 访问令牌。


•ResourceQuota Controller(资源配额控制器):确保指定的资源对象在任何时候都不会超量占用系统物理资源。


•Namespace Controller(命名空间控制器):管理 namespace 的生命周期。


•Service Controller(服务控制器):属于 K8S 集群与外部的云平台之间的一个接口控制器。
 

Kube-scheduler

是负责资源调度的进程,根据调度算法为新创建的 Pod 选择一个合适的 Node 节点。

可以理解成 K8S 所有 Node 节点的调度器。当用户要部署服务时,Scheduler 会根据调度算法选择最合适的 Node 节点来部署 Pod。


•预选策略(predicate)


•优选策略(priorities)

API Server 接收到请求创建一批 Pod ,API Server 会让 Controller-manager 按照所预设的模板去创建 Pod,Controller-manager 会通过 API Server 去找 Scheduler 为新创建的 Pod 选择最适合的 Node 节点。

比如运行这个 Pod 需要 2C4G 的资源,Scheduler 会通过预选策略过滤掉不满足策略的 Node 节点。Node 节点中还剩多少资源是通过汇报给 API Server 存储在 etcd 里,API Server 会调用一个方法找到 etcd 里所有 Node 节点的剩余资源,再对比 Pod 所需要的资源,如果某个 Node 节点的资源不足或者不满足 预选策略的条件则无法通过预选。预选阶段筛选出的节点,在优选阶段会根据优先策略为通过预选的 Node 节点进行打分排名, 选择得分最高的 Node。例如,资源越富裕、负载越小的 Node 可能具有越高的排名。

2.2.配置存储中心

etcd
K8S 的存储服务。etcd 是分布式键值存储系统存储了 K8S 的关键配置和用户配置,K8S 中仅 API Server 才具备读写权限,其他组件必须通过 API Server 的接口才能读写数据。
 

2.3.Node 组件

Kubelet

Node 节点的监视器,以及与 Master 节点的通讯器。Kubelet 是 Master 节点安插在 Node 节点上的“眼线”,小弟。它会定时向 API Server 汇报自己 Node 节点上运行的服务的状态,并接受来自 Master 节点的指示采取调整措施。

从 Master 节点获取自己节点上 Pod 的期望状态(比如运行什么容器、运行的副本数量、网络或者存储如何配置等), 直接跟容器引擎交互实现容器的生命周期管理,如果自己节点上 Pod 的状态与期望状态不一致,则调用对应的容器平台接口(即 docker 的接口)达到这个状态。

管理镜像和容器的清理工作,保证节点上镜像不会占满磁盘空间,退出的容器不会占用太多资源。

Kube-Proxy

在每个 Node 节点上实现 Pod 网络代理,是 Kubernetes Service 资源的载体,负责维护网络规则和四层负载均衡工作。 负责写入规则至iptables、ipvs实现服务映射访问的。

Kube-Proxy 本身不是直接给 Pod 提供网络,Pod 的网络是由 Kubelet 提供的,Kube-Proxy 实际上维护的是虚拟的 Pod 集群网络。


Kube-apiserver 通过监控 Kube-Proxy 进行对 Kubernetes Service 的更新和端点的维护。

在 K8S 集群中微服务的负载均衡是由 Kube-proxy 实现的。

Kube-proxy 是 K8S 集群内部的负载均衡器。它是一个分布式代理服务器,在 K8S 的每个节点上都会运行一个 Kube-proxy 组件。
 

docker 或 rocket


容器引擎,运行容器,负责本机的容器创建和管理工作。

 

第三章.Kubernetes 核心概念

Kubernetes 包含多种类型的资源对象:Pod、Label、Service、Replication Controller 等。

所有的资源对象都可以通过 Kubernetes 提供的 kubectl 工具进行增、删、改、查等操作,并将其保存在 etcd 中持久化存储。

Kubernets其实是一个高度自动化的资源控制系统,通过跟踪对比etcd存储里保存的资源期望状态与当前环境中的实际资源状态的差异,来实现自动控制和自动纠错等高级功能。
 

3.1.Pod

Pod是 Kubernetes 创建或部署的最小/最简单的基本单位,一个 Pod 代表集群上正在运行的一个进程。
可以把 Pod 理解成豌豆荚,而同一 Pod 内的每个容器是一颗颗豌豆。

一个 Pod 由一个或多个容器组成,Pod 中容器共享网络、存储和计算资源,在同一台 Docker 主机上运行。
一个 Pod 里可以运行多个容器,又叫边车模式(SideCar)。而在生产环境中一般都是单个容器或者具有强关联互补的多个容器组成一个 Pod。

同一个 Pod 之间的容器可以通过 localhost 互相访问,并且可以挂载 Pod 内所有的数据卷;但是不同的 Pod 之间的容器不能用 localhost 访问,也不能挂载其他 Pod 的数据卷。

3.2.Pod 控制器

Pod 控制器是 Pod 启动的一种模版,用来保证在K8S里启动的 Pod 应始终按照用户的预期运行(副本数、生命周期、健康状态检查等)。

K8S 内提供了众多的 Pod 控制器,常用的有以下几种:


•Deployment:无状态应用部署。Deployment 的作用是管理和控制 Pod 和 ReplicaSet,管控它们运行在用户期望的状态中。

•Replicaset:确保预期的 Pod 副本数量。ReplicaSet 的作用就是管理和控制 Pod,管控他们好好干活。但是,ReplicaSet 受控于 Deployment。
 

可以理解成 Deployment 就是总包工头,主要负责监督底下的工人 Pod 干活,确保每时每刻有用户要求数量的 Pod 在工作。如果一旦发现某个工人 Pod 不行了,就赶紧新拉一个 Pod 过来替换它。而ReplicaSet 就是总包工头手下的小包工头。
从 K8S 使用者角度来看,用户会直接操作 Deployment 部署服务,而当 Deployment 被部署的时候,K8S 会自动生成要求的 ReplicaSet 和 Pod。用户只需要关心 Deployment 而不操心 ReplicaSet。
资源对象 Replication Controller 是 ReplicaSet 的前身,官方推荐用 Deployment 取代 Replication Controller 来部署服务。

 

•Daemonset:确保所有节点运行同一类 Pod,保证每个节点上都有一个此类 Pod 运行,通常用于实现系统级后台任务。

•Statefulset:有状态应用部署

•Job:一次性任务。根据用户的设置,Job 管理的 Pod 把任务成功完成就自动退出了。

•Cronjob:周期性计划性任务


 

3.3.Label

标签,是 K8S 特色的管理方式,便于分类管理资源对象。


Label 可以附加到各种资源对象上,例如 Node、Pod、Service、RC 等,用于关联对象、查询和筛选。


一个 Label 是一个 key-value 的键值对,其中 key 与 value 由用户自己指定。


一个资源对象可以定义任意数量的Label,同一个Label 也可以被添加到任意数量的资源对象中,也可以在对象创建后动态添加或者删除。


可以通过给指定的资源对象捆绑一个或多个不同的 Label,来实现多维度的资源分组管理功能。
 

与 Label 类似的,还有 Annotation(注释)。


区别在于有效的标签值必须为63个字符或更少,并且必须为空或以字母数字字符([a-z0-9A-Z])开头和结尾,中间可以包含横杠(-)、下划线(_)、点(.)和字母或数字。注释值则没有字符长度限制。
 

3.4.Label 选择器(Label selector)

给某个资源对象定义一个 Label,就相当于给它打了一个标签;随后可以通过标签选择器(Label selector)查询和筛选拥有某些 Label 的资源对象。
标签选择器目前有两种:基于等值关系(等于、不等于)和基于集合关系(属于、不属于、存在)。
 

3.5.Service

在K8S的集群里,虽然每个Pod会被分配一个单独的IP地址,但由于Pod是有生命周期的(它们可以被创建,而且销毁之后不会再启动),随时可能会因为业务的变更,导致这个 IP 地址也会随着 Pod 的销毁而消失。

Service 就是用来解决这个问题的核心概念。


K8S 中的 Service 并不是我们常说的“服务”的含义,而更像是网关层,可以看作一组提供相同服务的Pod的对外访问接口、流量均衡器。


Service 作用于哪些 Pod 是通过标签选择器来定义的。
在 K8S 集群中,Service 可以看作一组提供相同服务的 Pod 的对外访问接口。客户端需要访问的服务就是 Service 对象。每个 Service 都有一个固定的虚拟 ip(这个 ip 也被称为 Cluster IP),自动并且动态地绑定后端的 Pod,所有的网络请求直接访问 Service 的虚拟 ip,Service 会自动向后端做转发。


Service 除了提供稳定的对外访问方式之外,还能起到负载均衡(Load Balance)的功能,自动把请求流量分布到后端所有的服务上,Service 可以做到对客户透明地进行水平扩展(scale)。


而实现 service 这一功能的关键,就是 kube-proxy。kube-proxy 运行在每个节点上,监听 API Server 中服务对象的变化, 可通过以下三种流量调度模式: userspace(废弃)、iptables(濒临废弃)、ipvs(推荐,性能最好)来实现网络的转发。

Service 是 K8S 服务的核心,屏蔽了服务细节,统一对外暴露服务接口,真正做到了“微服务”。比如我们的一个服务 A,部署了 3 个副本,也就是 3 个 Pod; 对于用户来说,只需要关注一个 Service 的入口就可以,而不需要操心究竟应该请求哪一个 Pod。


优势非常明显:一方面外部用户不需要感知因为 Pod 上服务的意外崩溃、K8S 重新拉起 Pod 而造成的 IP 变更, 外部用户也不需要感知因升级、变更服务带来的 Pod 替换而造成的 IP 变化。
 

3.6.Ingress

Service 主要负责 K8S 集群内部的网络拓扑,那么集群外部怎么访问集群内部呢?这个时候就需要 Ingress 了。Ingress 是整个 K8S 集群的接入层,负责集群内外通讯。


Ingress 是 K8S 集群里工作在 OSI 网络参考模型下,第7层的应用,对外暴露的接囗,典型的访问方式是 http/https。


Service 只能进行第四层的流量调度,表现形式是 ip+port。Ingress 则可以调度不同业务域、不同URL访问路径的业务流量。


比如:客户端请求 http://www.kgc.com:port  ---> Ingress ---> Service ---> Pod
 

3.7.Name

由于 K8S 内部,使用 “资源” 来定义每一种逻辑概念(功能),所以每种 “资源”,都应该有自己的 “名称”。
“资源” 有 api 版本(apiversion)、类别(kind)、元数据(metadata)、定义清单(spec)、状态(status)等配置信息。
“名称” 通常定义在 “资源” 的 “元数据” 信息里。在同一个 namespace 空间中必须是唯一的。
 

3.8.Namespace

随着项目增多、人员增加、集群规模的扩大,需要一种能够逻辑上隔离 K8S 内各种 “资源” 的方法,这就是 Namespace。


Namespace 是为了把一个 K8S 集群划分为若干个资源不可共享的虚拟集群组而诞生的。
不同 Namespace 内的 “资源” 名称可以相同,相同 Namespace 内的同种 “资源”,“名称” 不能相同。


合理的使用 K8S 的 Namespace,可以使得集群管理员能够更好的对交付到 K8S 里的服务进行分类管理和浏览。


K8S 里默认存在的 Namespace 有:default、kube-system、kube-public 等。
查询 K8S 里特定 “资源” 要带上相应的 Namespace。

第四章.常见的K8S按照部署方式

4.1.Minikube

Minikube是一个工具,可以在本地快速运行一个单节点微型K8S,仅用于学习、预览K8S的一些特性使用。


部署地址:https://kubernetes.io/docs/setup/minikube
 

4.2.Kubeadmin

Kubeadmin也是一个工具,提供kubeadm init和kubeadm join,用于快速部署K8S集群,相对简单。


https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm/
 

4.3.二进制安装部署

生产首选,从官方下载发行版的二进制包,手动部署每个组件和自签TLS证书,组成K8S集群,新手推荐。


https://github.com/kubernetes/kubernetes/releases

小结:Kubeadm降低部署门槛,但屏蔽了很多细节,遇到问题很难排查。如果想更容易可控,推荐使用二进制包部署Kubernetes集群,虽然手动部署麻烦点,期间可以学习很多工作原理,也利于后期维护。

总结

1.数据流向

1.进来经过证书认证,来到API(唯一入口,大脑),接收到请求3个副本,存储数据到etcd,调用manager调用创建模板。


2.scheduler根据模板初选节点存储给etcd(分布式键值对存储,存储重要信息,并持久化)


3.kubelet把节点的资源情况反馈给API,再给etcd存储,经过优选,把资源和环境最合适的节点pod推给api


根据manager提供的模板,再相应节点上pod创建副本

4.kubelet跟api通信汇报node节点上资源使用情况,接收指令跟容器引擎交互实现容器生命周期管理


5.proxy在node节点上实现pod网络代理,维护网络规则和四层负载均衡工作,负责写入规则到iptables或者ipvs实现服务的映射访问容器运行时 (容器引擎) docker: 运行容器,负责本机容器创建和管理工作

 

2.核心主键及含义

apiserver:接入的唯一入口,集群的大脑,负责所有操作的读写,增删改查

kube-comtroller-manager:增删改查,创建pod的资源模板,一个资源一个控制器,资源控制器,任务控制

kube-scheduler:调度器,根据模板初选节点pod,以实现最优资源利用

kubelet:API小弟,节点代理,监视 管理 反馈管理节点上容器和资源,接收指令跟容器引擎交互实现容器生命周期管理

kube-proxy:为pod提供网络代理和负载均衡,负责写入规则到iptables或ipvs实现服务映射和访问容器

ETCD:分布式键值对存储重要信息,并持久化

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/503182.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Unity项目实战】手把手教学:飞翔的小鸟(6)添加障碍

承接上一篇:【Unity项目实战】手把手教学:飞翔的小鸟(5)背景滚动,我们已经让主角在停止不动的情况下,移动背景图,使得主角小鸟像是自己往前移动了一样,接下来我们将继续往下&#xf…

【王道·计算机网络】第二章 物理层

一、通信基础 1. 基本概念 1.1 物理层接口特性 物理层解决如何在连接各种计算机的传输媒体上传输比特流,不指定具体的传输媒体主要任务:确定与传输媒体接口有关的一些特性 → 定义标准接口特性: 机械特性:定义物理连接的特性&a…

区间预测 | MATLAB实现QRDNN深度神经网络分位数回归时间序列区间预测

区间预测 | MATLAB实现QRDNN深度神经网络分位数回归时间序列区间预测 目录 区间预测 | MATLAB实现QRDNN深度神经网络分位数回归时间序列区间预测效果一览基本介绍模型描述程序设计参考资料 效果一览 基本介绍 MATLAB实现QRDNN深度神经网络分位数回归时间序列区间预测。QRDNN模型…

linux 超过4个G的文件传不上去的解决办法

服务器是内网的要挂载镜像 哎呀。。。。超过4个G还挂载不上。。。 解决先分卷压缩,然后上传 上传文件 单个上传再把文件合并成一个 cat Kylin-Server-10-SP2-Release-Build09-20210524-x86_64.zip* >ky.zip 再次解压就好了 unzip ky.zip

Opencv+Python图像基本操作

目录 图像的读取、显示和保存 获取图像属性 图像截取 绘图功能 画线 画矩形 画圆圈 画椭圆 画多边形 向图像添加文本 图像的读取、显示和保存 # 导入 OpenCV import cv2 # 读取图片-与python文件相同目录 img cv2.imread("image.png", cv2.NORM_HAMMING) …

Java版本工程项目管理系统源码,助力工程企业实现数字化管理

Java版工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离 功能清单如下: 首页 工作台:待办工作、消息通知、预警信息,点击可进入相应的列表 项目进度图表:选择(总体或单个)项目显示…

实验10 人工神经网络(1)

1. 实验目的 ①理解并掌握误差反向传播算法; ②能够使用单层和多层神经网络,完成多分类任务; ③了解常用的激活函数。 2. 实验内容 ①设计单层和多层神经网络结构,并使用TensorFlow建立模型,完成多分类任务&#xf…

第四范式AIGC的野心,改变软件行业游戏规则

图片AI算法提供:Midjourney 在国内众多发布大模型的科技企业中,第四范式入局的方式与众不同。 “我们并不需要完整地对标OpenAI,也并不需要OpenAI能做什么就一定要做什么……我们不去参与一场全面的竞争,而是专注于其中一场比赛。…

关联分割点云中的实例和语义<论文>

题目:Associatively Segmenting Instances and Semantics in Point Clouds 代码:https://github.com/WXinlong/ASIS 文章讨论: Instances Segmentation 和 Semantics Segmentation 实例Instances Segmentation:分辨出每个单独事…

帮助中心对企业有用吗?要不要做帮助中心页面

对绝大部分企业来说,打造站点帮助中心平台已是当下势不可挡的发展趋势。本文小编将告诉大家企业是否有必要做帮助中心,如何制作帮助中心。 什么是帮助中心: 帮助中心定位:帮助用户更好的解决问题;给新手用户好的第一…

详解c++---模拟实现stack和queue

目录标题 设计模式stack的模拟实现准备工作各种函数的实现 queue的模拟实现准备工作queue的接口实现 deque的介绍为什么会有dequedeque的原理deque的迭代器为什么使用deque 设计模式 设计模式分为两个:迭代器模式和适配器模式 第一个:迭代器模式 迭代器…

vector、deque、list相关知识点

vector erase返回迭代器指向删除元素后的元素insert返回迭代器指插入的元素reserve只给容器底层开指定大小内存空间,并不添加新元素 deque 底层数据结构 动态开辟的二维数组,一维数组从2开始,以2倍方式扩容,每次扩容和&#x…

【STM32CubeMX】F103独立看门狗

前言 本文记录了我学习STM32CubeMX的过程,方便以后回忆。我们使用的开发板是基于STM32F103C6T6的。本章记录了独立看门狗的使用配置。要学习的话,注意流程一说的,省略的内容。 基础 独立看门狗(WWDG)开启后,复位自动开启。独立看…

Linux shell编程 函数

shell函数的定义 function 函数名 {命令序列 } 函数名() {命令序列 } 函数的返回值 return表示退出函数并返回一个退出值,脚本中可以用$?变量显示该值 使用原则 1.函数一退出就取返回值,英文$?变量只会返回执行的最后一条指令的退出状态码 2…

基于Redis的Stream结构作为消息队列,实现异步秒杀下单

文章目录 1 认识消息队列2 基于List实现消息队列3 基于PubSub的消息队列4 基于Stream的消息队列5 基于Stream的消息队列-消费者组6 基于Redis的Stream结构作为消息队列,实现异步秒杀下单 1 认识消息队列 什么是消息队列:字面意思就是存放消息的队列。最…

2.4G无线麦克风无线音频传输模块

模块概述 M01主要是一个2.4G无线音频传输模块,模组RF电路设计配合独有的软件跳频机制,有效提高了RF的抗干扰能力及传输距离。模组内置高性能的音频转换器,支持48K/24bit高品质的音频采样、支持麦克风的主动降噪,实现了无压缩的数字…

设计模式:SOLID原则

单一职责原则 Single Responsibility Principle(SRP) 接口职责应该单一,不要承担过多的职责。 开放封闭原则 Open Closed Principle(OCP) 添加一个新的功能应该是,在已有代码基础上扩展代码(…

mysql——索引,一篇说清!

直观感受——数据准备 建表与插入数据 CREATE TABLE user (uid int(11) NOT NULL AUTO_INCREMENT,name varchar(50) DEFAULT NULL,pwd varchar(50) DEFAULT NULL,create_time datetime DEFAULT NULL,modify_time timestamp NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT…

VSCode For Web 深入浅出 -- 插件加载机制

最近我在浏览 VSCode for web 的 repo,在最近更新的一些 commit 中发现了一个新的 VSCode 插件特性支持,名为 webOpener,它的作用是什么呢?又是如何影响插件加载的呢?在这一篇中我们结合 VSCode For Web 的插件加载机制…

大项目准备(2)

目录 中国十大最具发展潜力城市 docker是什么?能介绍一下吗? 中国十大最具发展潜力城市 按照人随产业走、产业决定城市兴衰、规模经济和交通成本等区位因素决定产业布局的基本逻辑,我们在《中国城市发展潜力排名:2022》研究报告…