文章目录
- 线程库
- thread类的简单介绍
- 线程函数参数
- 原子性操作库
- mutex的种类
- std::mutex
- std::recursive_mutex
- std::timed_mutex
- std::recursive_timed_mutex
- lock_guard与unique_lock
- lock_guard
- unique_lock
- condition_variable
线程库
thread类的简单介绍
在C++11之前,涉及到多线程问题,都是和平台相关的,比如windows和linux下各有自己的接口,这使得代码的可移植性比较差。C++11中最重要的特性就是对线程进行支持了,使得C++在并行编程时不需要依赖第三方库,而且在原子操作中还引入了原子类的概念。要使用标准库中的线程,必须包含< thread >头文件。
https://legacy.cplusplus.com/reference/thread/thread/
常用函数
函数名 | 功能 |
---|---|
thread() | 构造一个线程对象,没有关联任何线程函数,即没有启动任何线程 |
thread(fn,args1, args2,…) | 构造一个线程对象,并关联线程函数fn,args1,args2,…为线程函数的参数 |
thread(fn,args1, args2,…) | 构造一个线程对象,并关联线程函数fn,args1,args2,…为线程函数的参数 |
get_id() | 获取线程id |
jionable() | 线程是否还在执行,joinable代表的是一个正在执行中的线程 |
jion()) | 该函数调用后会阻塞住线程,当该线程结束后,主线程继续执行 |
detach() ) | 该函数调用后会阻塞住线程,当该线程结束后,主线程继续执行 |
jion()) | 在创建线程对象后马上调用,用于把被创建线程与线程对象分离开,分离的线程变为后台线程,创建的线程的"死活"就与主线程无关 |
- 线程是操作系统中的一个概念,线程对象可以关联一个线程,用来控制线程以及获取线程的状态。
- 当创建一个线程对象后,没有提供线程函数,该对象实际没有对应任何线程。
- get_id()的返回值类型为id类型,id类型实际为std::thread命名空间下封装的一个类,该类中包含了一个结构体。
- 当创建一个线程对象后,并且给线程关联线程函数,该线程就被启动,与主线程一起运行。线程函数一般情况下可按照以下三种方式提供:函数指针、lambda表达式、函数对象。
#include <iostream>
using namespace std;
#include <thread>
void ThreadFunc(int a)
{
cout << "Thread1" << a << endl;
}
class TF
{
public:
void operator()()
{
cout << "Thread3" << endl;
}
};
int main()
{
// 线程函数为函数指针
thread t1(ThreadFunc, 10);
// 线程函数为lambda表达式
thread t2([] {cout << "Thread2" << endl; });
// 线程函数为函数对象
TF tf;
thread t3(tf);
t1.join();
t2.join();
t3.join();
cout << "Main thread!" << endl;
return 0;
}
- thread类是防拷贝的,不允许拷贝构造以及赋值,但是可以移动构造和移动赋值,即将一个线程对象关联线程的状态转移给其他线程对象,转移期间不意向线程的执行。
- 可以通过jionable()函数判断线程是否是有效的。
- 当采用无参构造函数构造的线程对象、线程对象的状态已经转移给其他线程对象、线程已经调用jion或者detach结束的情况下,线程无效。
#include<iostream>
#include<thread>
using namespace std;
void Print(int n)
{
for (int i = 0; i < n; i++)
{
cout <<this_thread::get_id()<<" :" << i << endl;
}
}
int main()
{
thread t1(Print, 100);
thread t2(Print, 100);
cout << t1.get_id() << endl;
cout << t2.get_id() << endl;
t1.join();
t2.join();
return 0;
}
thread库中除了thread类还有this_thread类,this_thread中的函数可以在线程函数内部使用,例如上面的this_thread::get_id()
。
https://legacy.cplusplus.com/reference/thread/this_thread/
线程函数参数
线程函数的参数是以值拷贝的方式拷贝到线程栈空间中的,即使线程参数为引用类型,在线程中修改后也不能修改外部实参,因为其实际引用的是线程栈中的拷贝,而不是实参。(如果是类成员函数作为线程参数时,必须将this作为线程函数参数)
void ThreadFunc1(int& x)
{
x += 10;
}
void ThreadFunc2(int* x)
{
*x += 10;
}
int main()
{
int a = 10;
// 在线程函数中对a修改,不会影响外部实参,因为:线程函数参数虽然是引用方式,但其实际引用的是线程栈中的拷贝
thread t1(ThreadFunc1, a); //err
t1.join();
cout << a << endl;
//如果想要通过形参改变外部实参时,必须借助std::ref()函数
thread t2(ThreadFunc1, std::ref(a));
t2.join();
cout << a << endl;
// 地址的拷贝,使用指针是没有问题的
thread t3(ThreadFunc2, &a);
t3.join();
cout << a << endl;
return 0;
}
原子性操作库
多线程最主要的问题是共享数据带来的问题,即线程安全问题。如果共享数据都是只读的,那么没问题,因为只读操作不会影响到数据,更不会涉及对数据的修改,所以所有线程都会获得同样的数据。但是当一个或多个线程要修改共享数据时,就会产生很多潜在的麻烦。
#include <iostream>
using namespace std;
#include <thread>
unsigned long sum = 0L;
void fun(size_t num)
{
for (size_t i = 0; i < num; ++i)
sum++;
}
int main()
{
cout << "Before joining,sum = " << sum << std::endl;
thread t1(fun, 10000000);
thread t2(fun, 10000000);
t1.join();
t2.join();
cout << "After joining,sum = " << sum << std::endl;
return 0;
}
观察两次打印的结果并不相同
C++98中传统的解决方式:可以对共享修改的数据可以加锁保护。
虽然加锁可以解决,但是加锁后只要一个线程在对sum++时,其他线程就会被阻塞,会影响程序运行的效率,而且锁如果控制不好,还容易造成死锁。
因此C++11中引入了原子操作,头文件#include <atomic>
。所谓原子操作即不可被中断的一个或一系列操作,C++11引入的原子操作类型,使得线程间数据的同步变得非常高效。
#include <iostream>
using namespace std;
#include <thread>
#include <atomic>
atomic_long sum{ 0 };
void fun(size_t num)
{
for (size_t i = 0; i < num; ++i)
sum++; // 原子操作
}
int main()
{
cout << "Before joining, sum = " << sum << std::endl;
thread t1(fun, 1000000);
thread t2(fun, 1000000);
t1.join();
t2.join();
cout << "After joining, sum = " << sum << std::endl;
return 0;
}
在C++11中,程序员不需要对原子类型变量进行加锁解锁操作,线程能够对原子类型变量互斥的访问。更为普遍的,程序员可以使用atomic类模板,定义出需要的任意原子类型。atmoic<T> t; // 声明一个类型为T的原子类型变量t
原子类型通常属于"资源型"数据,多个线程只能访问单个原子类型的拷贝,因此在C++11中,原子类型只能从其模板参数中进行构造,不允许原子类型进行拷贝构造、移动构造以及operator=等,标准库已经将atmoic模板类中的拷贝构造、移动构造、赋值运算符重载默认删除掉了。
#include <atomic>
int main()
{
atomic<int> a1(0);
//atomic<int> a2(a1); // 编译失败
atomic<int> a2(0);
//a2 = a1; // 编译失败
return 0;
}
mutex的种类
在C++11中,Mutex总共包了四个互斥量的种类:
- std::mutex
- std::recursive_mutex
- std::timed_mutex
- std::recursive_timed_mutex
std::mutex
C++11提供的最基本的互斥量,该类的对象之间不能拷贝,也不能进行移动。mutex最常用的三个函数:
函数名 | 函数功能 |
---|---|
lock() | 上锁:锁住互斥量 |
unlock() | 解锁:释放对互斥量的所有权 |
try_lock() | 尝试锁住互斥量,如果互斥量被其他线程占有,则当前线程也不会被阻塞 |
线程函数调用lock()时,可能会发生以下三种情况:
- 如果该互斥量当前没有被锁住,则调用线程将该互斥量锁住,直到调用 unlock之前,该线程一直拥有该锁
- 如果当前互斥量被其他线程锁住,则当前的调用线程被阻塞住
- 如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)
线程函数调用try_lock()时,可能会发生以下三种情况:
- 如果当前互斥量没有被其他线程占有,则该线程锁住互斥量,直到该线程调用 unlock释放互斥量
- 如果当前互斥量被其他线程锁住,则当前调用线程返回 false,而并不会被阻塞掉
- 如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)
std::recursive_mutex
std::recursive_mutex允许同一个线程对互斥量多次上锁(即递归上锁),来获得对互斥量对象的多层所有权,释放互斥量时需要调用与该锁层次深度相同次数的 unlock(),除此之外,std::recursive_mutex 的特性和 std::mutex 大致相同。
std::timed_mutex
std::timed_mutex比 std::mutex 多了两个成员函数,try_lock_for(),try_lock_until()
- try_lock_for()
接受一个时间范围,表示在这一段时间范围之内线程如果没有获得锁则被阻塞住(与std::mutex 的 try_lock() 不同,try_lock 如果被调用时没有获得锁则直接返回false),如果在此期间其他线程释放了锁,则该线程可以获得对互斥量的锁,如果超时(即在指定时间内还是没有获得锁),则返回 false。 - try_lock_until()
接受一个时间点作为参数,在指定时间点未到来之前线程如果没有获得锁则被阻塞住,如果在此期间其他线程释放了锁,则该线程可以获得对互斥量的锁,如果超时(即在指定时间内还是没有获得锁),则返回 false。
std::recursive_timed_mutex
lock_guard与unique_lock
在多线程环境下,如果想要保证某个变量的安全性,只要将其设置成对应的原子类型即可,即高效又不容易出现死锁问题。但是有些情况下,我们可能需要保证一段代码的安全性,那么就只能通过锁的方式来进行控制。比如:一个线程对变量number进行加一100次,另外一个减一100次,每次操作加一或者减一之后,输出number的结果,要求:number最后的值为1。
#include <thread>
#include <mutex>
int number = 0;
mutex g_lock;
int ThreadProc1()
{
for (int i = 0; i < 100; i++)
{
g_lock.lock();
++number;
cout << "thread 1 :" << number << endl;
g_lock.unlock();
}
return 0;
}
int ThreadProc2()
{
for (int i = 0; i < 100; i++)
{
g_lock.lock();
--number;
cout << "thread 2 :" << number << endl;
g_lock.unlock();
}
return 0;
}
int main()
{
thread t1(ThreadProc1);
thread t2(ThreadProc2);
t1.join();
t2.join();
cout << "number:" << number << endl;
system("pause");
return 0;
}
但是锁控制不好时,可能会造成死锁,最常见的比如在锁中间代码返回,或者在锁的范围内抛异常。因此:C++11采用RAII的方式对锁进行了封装,即lock_guard和unique_lock。
lock_guard
template <class _Mutex>
class lock_guard
{
public:
// 在构造lock_gard时,_Mtx还没有被上锁
explicit lock_guard(_Mutex &_Mtx)
: _MyMutex(_Mtx)
{
_MyMutex.lock();
}
// 在构造lock_gard时,_Mtx已经被上锁,此处不需要再上锁
lock_guard(_Mutex &_Mtx, adopt_lock_t)
: _MyMutex(_Mtx)
{
}
~lock_guard() _NOEXCEPT
{
_MyMutex.unlock();
}
lock_guard(const lock_guard &) = delete;
lock_guard &operator=(const lock_guard &) = delete;
private:
_Mutex &_MyMutex;
};
lock_guard类模板主要是通过RAII的方式,对其管理的互斥量进行了封
装,在需要加锁的地方,只需要用上述介绍的任意互斥体实例化一个lock_guard,调用构造函数成功上锁,出作用域前,lock_guard对象要被销毁,调用析构函数自动解锁,可以有效避免死锁问题。但是lock_guard的缺陷是用户没有办法对该锁进行控制,因此C++11又提供了unique_lock。
unique_lock
与lock_gard类似,unique_lock类模板也是采用RAII的方式对锁进行了封装,并且也是以独占所有权的方式管理mutex对象的上锁和解锁操作,即其对象之间不能发生拷贝。在构造(或移动(move)赋值)时,unique_lock 对象需要传递一个 Mutex 对象作为它的参数,新创建的unique_lock 对象负责传入的 Mutex 对象的上锁和解锁操作。使用以上类型互斥量实例化unique_lock的对象时,自动调用构造函数上锁,unique_lock对象销毁时自动调用析构函数解锁,可以很方便的防止死锁问题。
与lock_guard不同的是,unique_lock更加的灵活,提供了更多的成员函数:
- 上锁/解锁操作:lock、try_lock、try_lock_for、try_lock_until和unlock
- 修改操作:移动赋值、交换(swap:与另一个unique_lock对象互换所管理的互斥量所有权)、释放(release:返回它所管理的互斥量对象的指针,并释放所有权)
- 获取属性:owns_lock(返回当前对象是否上了锁)、operator bool()(与owns_lock()的功能相同)、mutex(返回当前unique_lock所管理的互斥量的指针)。
condition_variable
condition_variable用来进行线程之间的互相通知。condition_variable和Linux posix的条件变量并没有什么大的区别,主要还是面向对象实现的。
案例:支持两个线程交替打印,一个打印奇数,一个打印偶数
#include <thread>
#include <mutex>
#include <condition_variable>
void two_thread_print()
{
std::mutex mtx;
condition_variable c;
// void wait (unique_lock<mutex>& lck, Predicate pred);
// 如果指定了pred,只有当pred返回false时,函数才会阻塞。
// 并且只有当线程为真时,通知才能解除阻止线程。
int n = 100;
bool flag = true;
thread t1([&]()
{
int i = 0;
while (i < n)
{
unique_lock<mutex> lock(mtx);
c.wait(lock, [&]()->bool{return flag; });
cout << i << endl;
flag = false;
i += 2; // 偶数
c.notify_one();
} });
thread t2([&]()
{
int j = 1;
while (j < n)
{
unique_lock<mutex> lock(mtx);
c.wait(lock, [&]()->bool{return !flag; });
cout << j << endl;
j += 2; // 奇数
flag = true;
c.notify_one();
} });
t1.join();
t2.join();
}
int main()
{
two_thread_print();
return 0;
}