核心函数接口:
search_radius_vector_3d
search_knn_vector_3d
# ----------------------------------------------------------------------------
# - Open3D: www.open3d.org -
# ----------------------------------------------------------------------------
# Copyright (c) 2018-2023 www.open3d.org
# SPDX-License-Identifier: MIT
# ----------------------------------------------------------------------------
"""Build a KDTree and use it for neighbour search"""
import open3d as o3d
import numpy as np
def radius_search():
"""
寻找指定范围内的临近点: search_radius_vector_3d
:return:
"""
print("Loading pointcloud ...")
sample_pcd_data = o3d.data.PCDPointCloud()
pcd = o3d.io.read_point_cloud(sample_pcd_data.path) # 1. read
pcd_tree = o3d.geometry.KDTreeFlann(pcd)
print(
"Find the neighbors of 50000th point with distance less than 0.2, and painting them green ..."
)
[k, idx, _] = pcd_tree.search_radius_vector_3d(query=pcd.points[50000], radius=0.2) # 2. search
np.asarray(pcd.colors)[idx[1:], :] = [0, 1, 0] # 3. view
print("Displaying the final point cloud ...\n")
o3d.visualization.draw([pcd])
def knn_search():
"""
寻找指定个数的临近点: search_knn_vector_3d
:return:
"""
print("Loading pointcloud ...")
sample_pcd = o3d.data.PCDPointCloud() # 1. read
pcd = o3d.io.read_point_cloud(sample_pcd.path) # open3d.geometry.PointCloud
pcd_tree = o3d.geometry.KDTreeFlann(pcd)
print(
"Find the 2000 nearest neighbors of 50000th point, and painting them red ..."
)
[k, idx, _] = pcd_tree.search_knn_vector_3d(pcd.points[50000], knn=2000) # 2. search 查询点是第50000个点
np.asarray(pcd.colors)[idx[1:], :] = [1, 0, 0]
print("Displaying the final point cloud ...\n")
o3d.visualization.draw([pcd])
if __name__ == "__main__":
knn_search()
radius_search()
半径查找邻近点:
查找指定个数的邻近点: