线性表
线性表(linear list)是n个具有相同特性的数据元素的有限序列。线性表是一种实际中广泛使用多个数据结构,常见的线性表:顺序表、链表、栈、队列、字符串...
线性表在逻辑上是线性结构,也就说是连续的一条直线。但是在物理结构上并不一定是连续的,线性表在物理上存储时,通常以链式结构的形式存储。
顺序表
概念及结构
顺序表是一段物理地址连续的存储单元一次存储元素的线性结构,一般情况下采用数据存储。在数组上完成数据的增删查改。
顺序表一般可分为:
- 静态顺序表:使用定长数组存储元素。
//顺序表的静态存储
#define N 7
typedef int SLDataType; //整形数据
typedef struct SeqList
{
SLDataType array[N]; //定长数组,N=7事先定义。
size_t size; //有效数据的个数
}SeqList;
- 动态顺序表:使用动态开辟的数组存储。
//顺序表的动态存储
typedef struct SeqList
{
SLDataType* array; //指向动态开辟的数组
size_t size; //有效数据个数
size_ capicity; //容量空间的大小
}SeqList;
接口实现
静态顺序表只适用于确定和知道需要存储多少数据的场景。静态顺序表的定长数组导致N定大了,空间开多了浪费,开少了不够用,所以现实中基本都是使用动态顺序表,根据需要动态的分配空间大小,所以下面我们实现动态顺序表。
typedef int SLDataType;
// 顺序表的动态存储
typedef struct SeqList
{
SLDataType* array; // 指向动态开辟的数组
size_t size ; // 有效数据个数
size_t capicity ; // 容量空间的大小
}SeqList;
// 基本增删查改接口
// 顺序表初始化
void SeqListInit(SeqList* psl, size_t capacity);
// 检查空间,如果满了,进行增容
void CheckCapacity(SeqList* psl);
// 顺序表尾插
void SeqListPushBack(SeqList* psl, SLDataType x);
// 顺序表尾删
void SeqListPopBack(SeqList* psl);
// 顺序表头插
void SeqListPushFront(SeqList* psl, SLDataType x);
// 顺序表头删
void SeqListPopFront(SeqList* psl);
// 顺序表查找
int SeqListFind(SeqList* psl, SLDataType x);
// 顺序表在pos位置插入x
void SeqListInsert(SeqList* psl, size_t pos, SLDataType x);
// 顺序表删除pos位置的值
void SeqListErase(SeqList* psl, size_t pos);
// 顺序表销毁
void SeqListDestory(SeqList* psl);
// 顺序表打印
void SeqListPrint(SeqList* psl);
函数补全请关注我的博客更新~
链表
链表的概念及结构
概念:链表是一种物理存储结构上非连续,非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的。
- 从上图可以看出,链式结构在逻辑上是连续的,但是在物理上不一定连续;
- 现实中的节点一般都是从堆上申请出来的;
- 从堆上申请的空间,是按照一定的策略分出来的,两次申请的空间可能连续也可能不连续。
链表的分类
实际中链表的结构非常多样,一下情况组合起来就有八种链表结构:
- 单向或双向
- 带头或者不带头
- 循环或者非循环
虽然有这么多种结构,但是最常用的只有两种
- 无头单向非循环链表
- 带头双向循环链表
1.无头单向非循环链表: 结构简单 ,一般不会单独用来存数据。实际中更多是作为 其他数据结构的子结 构 ,如哈希桶、图的邻接表等等。另外这种结构在 笔试面试 中出现很多。2. 带头双向循环链表: 结构最复杂 ,一般用在单独存储数据。实际中使用的链表数据结构,都是带头双向循环链表。另外这个结构虽然结构复杂,但是使用代码实现以后会发现结构会带来很多优势,实现反而简单了,后面我们代码实现了就知道了。
链表的实现
// 1、无头+单向+非循环链表增删查改实现
typedef int SLTDateType;
typedef struct SListNode
{
SLTDateType data;
struct SListNode* next;
}SListNode;
// 动态申请一个节点
SListNode* BuySListNode(SLTDateType x);
// 单链表打印
void SListPrint(SListNode* plist);
// 单链表尾插
void SListPushBack(SListNode** pplist, SLTDateType x);
// 单链表的头插
void SListPushFront(SListNode** pplist, SLTDateType x);
// 单链表的尾删
void SListPopBack(SListNode** pplist);
// 单链表头删
void SListPopFront(SListNode** pplist);
// 单链表查找
SListNode* SListFind(SListNode* plist, SLTDateType x);
// 单链表在pos位置之后插入x
// 分析思考为什么不在pos位置之前插入?
void SListInsertAfter(SListNode* pos, SLTDateType x);
// 单链表删除pos位置之后的值
// 分析思考为什么不删除pos位置?
void SListEraseAfter(SListNode* pos);
// 2、带头+双向+循环链表增删查改实现
typedef int LTDataType;
typedef struct ListNode
{
LTDataType _data;
struct ListNode* next;
struct ListNode* prev;
}ListNode;
// 创建返回链表的头结点.
ListNode* ListCreate();
// 双向链表销毁
void ListDestory(ListNode* plist);
// 双向链表打印
void ListPrint(ListNode* plist);
// 双向链表尾插
void ListPushBack(ListNode* plist, LTDataType x);
// 双向链表尾删
void ListPopBack(ListNode* plist);
// 双向链表头插
void ListPushFront(ListNode* plist, LTDataType x);
// 双向链表头删
void ListPopFront(ListNode* plist);
// 双向链表查找
ListNode* ListFind(ListNode* plist, LTDataType x);
// 双向链表在pos的前面进行插入
void ListInsert(ListNode* pos, LTDataType x);
// 双向链表删除pos位置的节点
void ListErase(ListNode* pos);
顺序表和链表的区别和联系
不同点 | 顺序表 | 链表 |
存储空间上 | 物理上一定连续 | 逻辑上连续,物理上不一定 |
随机访问 | 支持O(1) | 不支持O(n) |
任意位置任意插入或者删除 | 可能需要搬移元素,效率低O(n) | 只需要修改指针指向 |
插入 | 动态顺序表,空间不够时需要扩容 | 没有容量的概念 |
应用场景 | 元素高效存储+频繁访问 | 任意位置插入删除频繁 |
缓存利用率 | 高 | 低 |