智能优化算法:基于减法平均的优化算法-附代码

news2025/1/12 13:12:22

智能优化算法:基于减法平均的优化算法

文章目录

  • 智能优化算法:基于减法平均的优化算法
    • 1.基于减法平均优化算法
      • 1.1 初始化
      • 1.2 SABO的数学建模
    • 2.实验结果
    • 3.参考文献
    • 4.Matlab

摘要:基于减法平均的优化算法(Subtraction-Average-Based Optimizer (SABO)),是于2023年提出的一种基于数学行为的优化算法,该算法通过使用个体的减法平均值来更新群体成员在搜索空间中的位置,具有寻优能力强,收敛速度快等特点。

1.基于减法平均优化算法

1.1 初始化

与其他优化算法类似,在寻优空间里随机初始化种群:
x i , j = l b j + r ⋅ ( u b j − l b j ) (2) x_{i, j}=l b_j+r \cdot\left(u b_j-l b_j\right) \tag{2} xi,j=lbj+r(ubjlbj)(2)
其中 x i , j x_{i,j} xi,j为个体, l b j lb_j lbj为寻优下边界, u b j ub_j ubj为寻优上边界, r r r为[0,1]之间的随机数。

1.2 SABO的数学建模

SABO设计的基本灵感来自数学概念,如平均值、搜索代理位置的差异以及目标函数的两个值的差异符号。使用所有搜索代理的算术平均位置(即第t次迭代的总体成员),而不是仅仅使用例如最佳或最差搜索代理的位置来更新所有搜索代理(即第(t+1)次迭代的所有总体成员的构造)的位置,这不是新的想法,但是SABO的算术平均值的计算概念是完全唯一的,因为它是基于一个特殊的操作“-v”,称为搜索代理B从搜索代理A的v减法,其定义如下:
A − v B = sign ⁡ ( F ( A ) − F ( B ) ) ( A − v ⃗ ∗ B ) , (4) A-v B=\operatorname{sign}(F(A)-F(B))(A-\vec{v} * B),\tag{4} AvB=sign(F(A)F(B))(Av B),(4)
其中v是一组从集合{1,2}中随机产生数据的向量。F(A)和F(B)是个体A和B的适应度值。

在所提出的SABO中,任何搜索代理Xi在搜索空间中的位移都是通过每个搜索代理Xj的v减法的算术平均值来计算的,j=1,2,N、 来自搜索代理Xi。因此,使用(5)来计算每个搜索代理的新位置。
X i n e w = X i + r ⃗ i ∗ 1 N ∑ j = 1 N ( X i − v X j ) , i = 1 , 2 , … , N (5) X_i^{n e w}=X_i+\vec{r}_i * \frac{1}{N} \sum_{j=1}^N\left(X_i-v X_j\right), i=1,2, \ldots, N\tag{5} Xinew=Xi+r iN1j=1N(XivXj),i=1,2,,N(5)
其中r 为[0,1]之间的随机数, N为个体总数。 X n e w X^{new} Xnew为更新后新位置, 如果更新后的位置更优则替换原来的位置,否则保持原状:
X i = { X i n e w , F i new  < F i X i ,  else  , (6) X_i= \begin{cases}X_i^{n e w}, & F_i^{\text {new }}<F_i \\ X_i, & \text { else },\end{cases}\tag{6} Xi={Xinew,Xi,Finew <Fi else ,(6)

算法流程图如下:
在这里插入图片描述

2.实验结果

在这里插入图片描述

3.参考文献

[1] Trojovský, P.; Dehghani, M. Subtraction-Average-Based Optimizer: A New Swarm-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics 2023, 8, 149. https://doi.org/10.3390/biomimetics8020149.

4.Matlab

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/498685.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[数据结构] 二叉搜索树的详解实现

文章目录 概念实现架构BSTreeNodea&#xff08;节点&#xff09;BSTree框架 增删查 -- 循环写法insert&#xff08;尾插&#xff09;inOrder&#xff08;遍历&#xff09;Find&#xff08;查找&#xff09;Erase&#xff08;删除&#xff09;默认成员函数构造拷贝构造析构函数赋…

哈夫曼编码文件压缩和解压

哈夫曼编码&文件压缩和解压 文章目录 哈夫曼编码&文件压缩和解压哈夫曼编码基本介绍原理解析代码实现 文件的压缩文件的解压完整代码 哈夫曼编码 基本介绍 赫夫曼编码也翻译为 哈夫曼编码(Huffman Coding)&#xff0c;又称霍夫曼编码&#xff0c;是一种编码方式, 属于…

实现c++轻量级别websocket协议客户端

1 websocket 轻量客户端 因以前发过这个代码&#xff0c;但是一直没有整理&#xff0c;这次整理了一下&#xff0c;持续修改&#xff0c;主要是要使用在arm的linux上&#xff0c;发送接收的数据压缩成图片发送出去。 要达到轻量websocket 使用&#xff0c;必须要达到几个方面…

MySQL:数学函数和字符串函数

目录 前言&#xff1a; 数学函数&#xff1a; 求绝对值&#xff1a; 求PI&#xff1a; 求平方根&#xff1a; 求余数&#xff1a; 取整&#xff1a; 随机数&#xff1a; 四舍五入&#xff1a; 只舍不入&#xff1a; 返回参数符号&#xff1a; 幂运算&#xff1a; …

Illustrator如何编辑图形对象之实例演示?

文章目录 0.引言1.绘制海浪插画2.绘制时尚波浪发型3.绘制一条鲸鱼 0.引言 因科研等多场景需要进行绘图处理&#xff0c;笔者对Illustrator进行了学习&#xff0c;本文通过《Illustrator CC2018基础与实战》及其配套素材结合网上相关资料进行学习笔记总结&#xff0c;本文对图形…

快速上手Pytorch实现BERT,以及BERT后接CNN/LSTM

快速上手Pytorch实现BERT&#xff0c;以及BERT后接CNN/LSTM 本项目采用HuggingFace提供的工具实现BERT模型案例&#xff0c;并在BERT后接CNN、LSTM等 HuggingFace官网 一、实现BERT&#xff08;后接线性层&#xff09; 1.引用案例源码&#xff1a; from transformers impo…

开关电源基础01:电源变换器基础(2)

说在开头&#xff1a;关于德布罗意的电子波&#xff08;3&#xff09; 1923年&#xff0c;德布罗意在求出他的相波之前&#xff0c;康普顿刚好用光子说解释了康普顿效应&#xff08;记性好的胖友们应该还记得&#xff1a;散射波的波长变长问题&#xff09;&#xff0c;从而带领…

开关电源基础02:基本开关电源拓扑(2)-BOOST-BUCKBOOST拓扑

说在开头&#xff1a;关于海森堡的矩阵&#xff08;2&#xff09; 海森堡写完论文就回到了哥廷根大学&#xff0c;他一看见玻恩就把这份论文拿出来请老师把关&#xff0c;还说要趁着假期去趟英国剑桥大学讲课交流。玻恩拿过论文一看&#xff0c;海森堡画的这个表格是啥玩意啊&…

【操作系统】高性能网络模式:Reactor 和 Proactor

【操作系统】高性能网络模式&#xff1a;Reactor 和 Proactor 参考资料&#xff1a; 高性能 RPC 通信的实现- 巧用 reactor 模式 高性能网络模式&#xff1a;Reactor 和 Proactor NIO Reactor模型 Netty「基石」之Reactor模式 高性能IO模型分析-Reactor模式和Proactor模式 【…

【服务器】无公网IP,异地远程连接威联通NAS

Yan-英杰的主页 悟已往之不谏 知来者之可追 C程序员&#xff0c;2024届电子信息研究生 目录 前言 1. 威联通安装cpolar内网穿透 2. 内网穿透 2.1 创建隧道 2.2 测试公网远程访问 3. 配置固定二级子域名 3.1 保留二级子域名 3.2 配置二级子域名 4. 使用固定二级子…

Linux诊断原因:生产环境服务器变慢,诊断思路和性能评估

Linux诊断原因&#xff0c;生产环境服务器变慢&#xff0c;诊断思路和性能评估 1 整机&#xff1a;top&#xff0c;查看整机系统性能 使用top命令的话&#xff0c;重点关注的是 %CPU、%MEM 、load average 三个指标 load average三个指标&#xff1a;分别代表1、5、15时分钟系…

2022年NOC大赛编程马拉松赛道初赛图形化低年级A卷-正式卷,包含答案

目录 选择题: 下载文档打印做题: 2022年NOC大赛编程马拉松赛道【初赛】图形化低年级A卷-正式卷 2022NOC-图形化初赛低年级A卷正式卷 选择题: 1、答案:B 禾木是一个军事迷,他打算利用业余时间制作一款射击游戏。在游戏中,玩家可以通过鼠标控制手枪移动。请问,给手枪…

springboot+vue体质测试数据分析及可视化设计(源码+文档)

风定落花生&#xff0c;歌声逐流水&#xff0c;大家好我是风歌&#xff0c;混迹在java圈的辛苦码农。今天要和大家聊的是一款基于springboot的体质测试数据分析及可视化设计。项目源码以及部署相关请联系风歌&#xff0c;文末附上联系信息 。 &#x1f495;&#x1f495;作者&a…

[svg-icon]引入vue项目后,use标签为0,已解决

这个bug我之前遇到过一次&#xff0c;解决了也就没记录 但是好记性不如烂笔头&#xff0c;这次重新遇到&#xff0c;又重新排查bug花了1个多小时 svg引入vue项目&#xff0c;需要依赖svg-sprite-loader npm install svg-sprite-loader在vue.config.js中 chainWebpack(conf…

NOC大赛·核桃编程马拉松赛道知识点大纲(高年级及初中组)

NOC核桃编程马拉松知识点大纲(高年级及初中组) (一)基础语法 1.掌握运动积木的用法。 包括“移动 10 步”、“左/右转 X 度”、“面向 X 方向/鼠标指针/ 角色”、“移到 XY 坐标/鼠标/角色”、“X/Y 坐标的设定和增加”、 “滑行到 XY/鼠标/角色”等积木用法,详细如下。 1…

【数据结构】链表OJ:力扣160. 相交链表

最近这几篇内容都有关链表&#xff0c;接下来几篇内容会分享一些链表的OJ题&#xff0c;希望对你有所帮助。 今天要分享的内容是力扣160. 相交链表&#xff1a;160. 相交链表 - 力扣&#xff08;LeetCode&#xff09; 目录 题目&#xff1a; 题解 题目&#xff1a; 给你…

数据分析02——numpy模块的在jupyter中的使用

0、numpy&#xff1a; 在计算机中会把数学当中的矩阵叫做数组&#xff0c;在很多应用中的表格也就是通过矩阵表示的&#xff0c;所以numpy广泛用于机器学习&#xff0c;数据分析&#xff0c;和图像处理领域。 1、numpy常用方法和函数&#xff1a; 前言&#xff1a;在使用nump…

腾讯云轻量应用服务器使用限制说明(十大限制)

腾讯云轻量应用服务器和云服务器CVM相比具有一些限制&#xff0c;比如轻量服务器不支持更换内网IP地址&#xff0c;轻量服务器只能套餐整体升级且不支持降配&#xff0c;轻量不支持用户自定义配置私有网络VPC&#xff0c;还有如实例配额、云硬盘配额、备案限制和内网连通性等限…

Ububtu20.04 无法连接外屏(显卡驱动问题导致)

Ububtu20.04 无法显示第二个屏幕&#xff08;显卡驱动问题&#xff09; Ububtu20.04 无法显示第二个屏幕&#xff08;显卡驱动问题&#xff09; Ububtu20.04 无法显示第二个屏幕&#xff08;显卡驱动问题&#xff09; 1. 问题描述2. 解决方案 1. 问题描述 一开始我的ububt…

JavaGuide复习1——常见面试题总结部分

1、关于包装类的缓存机制 两种浮点数类型的包装类 Float,Double 并没有实现缓存机制。 对应源码&#xff1a; 拆装箱 都是调用了包装类的方法&#xff1a;valueOf&#xff08;基本转包装&#xff09;、xxxValue&#xff08;包装转基本&#xff09; 注意char char在Java中占用…