Redis 布隆过滤器总结

news2025/1/13 7:47:36

Redis 布隆过滤器总结

适用场景

大数据判断是否存在来实现去重:这就可以实现出上述的去重功能,如果你的服务器内存足够大的话,那么使用 HashMap 可能是一个不错的解决方案,理论上时间复杂度可以达到 O(1) 的级别,但是当数据量起来之后,还是只能考虑布隆过滤器。

解决缓存穿透:我们经常会把一些热点数据放在 Redis 中当作缓存,例如产品详情。通常一个请求过来之后我们会先查询缓存,而不用直接读取数据库,这是提升性能最简单也是最普遍的做法,但是 如果一直请求一个不存在的缓存,那么此时一定不存在缓存,那就会有大量请求直接打到数据库上,造成 缓存穿透,布隆过滤器也可以用来解决此类问题。

在我们使用 Redis 时候,经常会面临这么一个问题,缓存穿透,意思是数据库和 redis 中都没有数据,缓存和db完全形同虚设。
面对这种问题,我们一般解决办法是设置null 的空值缓存,还有优雅点的实现方式就是布隆过滤器。

空值缓存

    String key = stringRedisTemplate.opsForValue().get("key");
        if (StringUtil.isEmpty(key)){
            //查询db
            Object k = "test";
            if (k!=null){
                //存redis
                stringRedisTemplate.opsForValue().set("key",k.toString(),100);
                return k.toString();
            }else {
                stringRedisTemplate.opsForValue().set("key","nullstr",10);
                return "";
            }
        }
        if ("nullstr".equals(key)){
            stringRedisTemplate.opsForValue().set("key","nullstr",10);
            return "";
        }

布隆过滤器

对于恶意攻击,向服务器请求大量不存在的数据造成的缓存穿透,还可以用布隆过滤器先做一次过滤,对于不 存在的数据布隆过滤器一般都能够过滤掉,不让请求再往后端发送。当布隆过滤器说某个值存在时,这个值可 能不存在;当它说不存在时,那就肯定不存在。

在这里插入图片描述
使用布隆过滤器需要把所有数据提前放入布隆过滤器,并且在增加数据时也要往布隆过滤器里放,使用时候不能删除,如果有必须重新初始化

实现原理

布隆过滤器就是一个大型的位数组和几个不一样的无偏 hash 函数。
所谓无偏就是能够把元素的 hash 值算得 比较均匀。

向布隆过滤器中添加 key 时,会使用多个 hash 函数对 key 进行 hash 算得一个整数索引值然后对位数组长度 进行取模运算得到一个位置,每个 hash 函数都会算得一个不同的位置。再把位数组的这几个位置都置为 1 就 完成了 add 操作。

向布隆过滤器询问 key 是否存在时,跟 add 一样,也会把 hash 的几个位置都算出来,看看位数组中这几个位 置是否都为 1,只要有一个位为 0,那么说明布隆过滤器中这个key 不存在。

如果都是 1,这并不能说明这个 key 就一定存在,只是极有可能存在,因为这些位被置为 1 可能是因为其它的 key 存在所致。如果这个位数组 比较稀疏,这个概率就会很大,如果这个位数组比较拥挤,这个概率就会降低。

这种方法适用于数据命中不高、 数据相对固定、 实时性低(通常是数据集较大) 的应用场景, 代码维护较为 复杂, 但是缓存空间占用很少。

布隆过滤器的优点:

  • 时间复杂度低,增加和查询元素的时间复杂为O(N),(N为哈希函数的个数,通常情况比较小)

  • 保密性强,布隆过滤器不存储元素本身

  • 存储空间小,如果允许存在一定的误判,布隆过滤器是非常节省空间的(相比其他数据结构如Set集合)

布隆过滤器的缺点:

  • 有点一定的误判率,但是可以通过调整参数来降低
  • 无法获取元素本身
  • 很难删除元素

数据结构

布隆过滤器它实际上是一个很长的二进制向量和一系列随机映射函数。以Redis中的布隆过滤器实现为例,Redis中的布隆过滤器底层是一个大型位数组(二进制数组)+多个无偏hash函数。
一个大型位数组(二进制数组):
在这里插入图片描述

多个无偏hash函数:
无偏hash函数就是能把元素的hash值计算的比较均匀的hash函数,能使得计算后的元素下标比较均匀的映射到位数组中。

如下就是一个简单的布隆过滤器示意图,其中k1、k2代表增加的元素,a、b、c即为无偏hash函数,最下层则为二进制数组。

在这里插入图片描述

增加元素的步骤:

通过k个无偏hash函数计算得到k个hash值
依次取模数组长度,得到数组索引
将计算得到的数组索引下标位置数据修改为1
查询元素的步骤:
布隆过滤器最大的用处就在于判断某样东西一定不存在或者可能存在,而这个就是查询元素的结果。其查询元素的过程如下:

通过k个无偏hash函数计算得到k个hash值
依次取模数组长度,得到数组索引
判断索引处的值是否全部为1,如果全部为1则存在(这种存在可能是误判),如果存在一个0则必定不存在
误判的情况: hash函数无法完全避免hash冲突,可能会存在多个元素计算的hash值是相同的,那么它们取模数组长度后的到的数组索引也是相同的,这就是误判的原因。例如彭于晏和程序员(莫打我)的hash值取模后得到的数组索引都是1,但实际上存储的只有彭于晏,如果此时判断程序员在不在这里,误判就出现啦!因此布隆过滤器最大的缺点误判只要知道其判断元素是否存在的原理就很容易明白了!

布隆过滤器不支持删除元素。

代码演示

使用redisson

可以用redisson实现布隆过滤器,引入依赖

 <dependency>
			<groupId>org.redisson</groupId>
			<artifactId>redisson</artifactId>
			<version>3.6.5</version>
		</dependency>

实例代码

单Redis节点模式

 Config config = new Config();
        config.useSingleServer().setAddress("redis://localhost:6379");
        //构造Redisson
        RedissonClient redisson = Redisson.create(config);

        RBloomFilter<String> bloomFilter = redisson.getBloomFilter("nameList");
        //初始化布隆过滤器:预计元素为 100000L ,误差率为3%,根据这两个参数会计算出底层的bit数组大小
        bloomFilter.tryInit(100000L,0.03);
        //将 test 插入到布隆过滤器中
        bloomFilter.add("test");
        bloomFilter.add("test2");

        //判断下面号码是否在布隆过滤器中
        System.out.println(bloomFilter.contains("test3"));//false
        System.out.println(bloomFilter.contains("test4"));//false
        System.out.println(bloomFilter.contains("test2"));//true

        System.out.println(bloomFilter.count()); // 2个元素
        System.out.println(bloomFilter.getSize()); // 长度

yaml 配置

---
singleServerConfig:
  idleConnectionTimeout: 10000
  connectTimeout: 10000
  timeout: 3000
  retryAttempts: 3
  retryInterval: 1500
  password: null
  subscriptionsPerConnection: 5
  clientName: null
  address: "redis://127.0.0.1:6379"
  subscriptionConnectionMinimumIdleSize: 1
  subscriptionConnectionPoolSize: 50
  connectionMinimumIdleSize: 32
  connectionPoolSize: 64
  database: 0
  dnsMonitoringInterval: 5000
threads: 0
nettyThreads: 0
codec: !<org.redisson.codec.JsonJacksonCodec> {}
"transportMode":"NIO"

集群配置

Config config = new Config();
config.useClusterServers()
    .setScanInterval(2000) // 集群状态扫描间隔时间,单位是毫秒
    //可以用"rediss://"来启用SSL连接
    .addNodeAddress("redis://127.0.0.1:7000", "redis://127.0.0.1:7001")
    .addNodeAddress("redis://127.0.0.1:7002");

RedissonClient redisson = Redisson.create(config);

yaml配置

配置集群模式可以通过指定一个YAML格式的文件来实现。以下是YAML格式的配置文件样本。文件中的字段名称必须与ClusterServersConfig和Config对象里的字段名称相符。

---
clusterServersConfig:
  idleConnectionTimeout: 10000
  connectTimeout: 10000
  timeout: 3000
  retryAttempts: 3
  retryInterval: 1500
  password: null
  subscriptionsPerConnection: 5
  clientName: null
  loadBalancer: !<org.redisson.connection.balancer.RoundRobinLoadBalancer> {}
  slaveSubscriptionConnectionMinimumIdleSize: 1
  slaveSubscriptionConnectionPoolSize: 50
  slaveConnectionMinimumIdleSize: 32
  slaveConnectionPoolSize: 64
  masterConnectionMinimumIdleSize: 32
  masterConnectionPoolSize: 64
  readMode: "SLAVE"
  nodeAddresses:
  - "redis://127.0.0.1:7004"
  - "redis://127.0.0.1:7001"
  - "redis://127.0.0.1:7000"
  scanInterval: 1000
threads: 0
nettyThreads: 0
codec: !<org.redisson.codec.JsonJacksonCodec> {}
"transportMode":"NIO"

哨兵配置

Config config = new Config();
config.useSentinelServers()
    .setMasterName("mymaster")
    //可以用"rediss://"来启用SSL连接
    .addSentinelAddress("127.0.0.1:26389", "127.0.0.1:26379")
    .addSentinelAddress("127.0.0.1:26319");

RedissonClient redisson = Redisson.create(config);

yaml
配置哨兵模式可以通过指定一个YAML格式的文件来实现。以下是YAML格式的配置文件样本。文件中的字段名称必须与SentinelServersConfig和Config对象里的字段名称相符。

---
sentinelServersConfig:
  idleConnectionTimeout: 10000
  connectTimeout: 10000
  timeout: 3000
  retryAttempts: 3
  retryInterval: 1500
  password: null
  subscriptionsPerConnection: 5
  clientName: null
  loadBalancer: !<org.redisson.connection.balancer.RoundRobinLoadBalancer> {}
  slaveSubscriptionConnectionMinimumIdleSize: 1
  slaveSubscriptionConnectionPoolSize: 50
  slaveConnectionMinimumIdleSize: 32
  slaveConnectionPoolSize: 64
  masterConnectionMinimumIdleSize: 32
  masterConnectionPoolSize: 64
  readMode: "SLAVE"
  sentinelAddresses:
  - "redis://127.0.0.1:26379"
  - "redis://127.0.0.1:26389"
  masterName: "mymaster"
  database: 0
threads: 0
nettyThreads: 0
codec: !<org.redisson.codec.JsonJacksonCodec> {}
"transportMode":"NIO"

主从模式

Config config = new Config();
config.useMasterSlaveServers()
    //可以用"rediss://"来启用SSL连接
    .setMasterAddress("redis://127.0.0.1:6379")
    .addSlaveAddress("redis://127.0.0.1:6389", "redis://127.0.0.1:6332", "redis://127.0.0.1:6419")
    .addSlaveAddress("redis://127.0.0.1:6399");

RedissonClient redisson = Redisson.create(config);

yaml
配置主从模式可以通过指定一个YAML格式的文件来实现。以下是YAML格式的配置文件样本。文件中的字段名称必须与MasterSlaveServersConfig和Config对象里的字段名称相符。

---
masterSlaveServersConfig:
  idleConnectionTimeout: 10000
  connectTimeout: 10000
  timeout: 3000
  retryAttempts: 3
  retryInterval: 1500
  failedAttempts: 3
  password: null
  subscriptionsPerConnection: 5
  clientName: null
  loadBalancer: !<org.redisson.connection.balancer.RoundRobinLoadBalancer> {}
  slaveSubscriptionConnectionMinimumIdleSize: 1
  slaveSubscriptionConnectionPoolSize: 50
  slaveConnectionMinimumIdleSize: 32
  slaveConnectionPoolSize: 64
  masterConnectionMinimumIdleSize: 32
  masterConnectionPoolSize: 64
  readMode: "SLAVE"
  slaveAddresses:
  - "redis://127.0.0.1:6381"
  - "redis://127.0.0.1:6380"
  masterAddress: "redis://127.0.0.1:6379"
  database: 0
threads: 0
nettyThreads: 0
codec: !<org.redisson.codec.JsonJacksonCodec> {}
"transportMode":"NIO"

详细配置 https://github.com/redisson/redisson/wiki/2.-%E9%85%8D%E7%BD%AE%E6%96%B9%E6%B3%95#241-%E9%9B%86%E7%BE%A4%E8%AE%BE%E7%BD%AE

使用Google 开源的 Guava 中自带的布隆过滤器

依赖

	<dependency>
			<groupId>com.google.guava</groupId>
			<artifactId>guava</artifactId>
			<version>28.0-jre</version>
		</dependency>

代码实例

// 创建布隆过滤器对象
        BloomFilter<Integer> filter = BloomFilter.create(Funnels.integerFunnel(),
                1000,
                0.01);
// 判断指定元素是否存在
        System.out.println(filter.mightContain(1));
        System.out.println(filter.mightContain(2));
// 将元素添加进布隆过滤器
        filter.put(1);
        filter.put(2);
        System.out.println(filter.mightContain(1));
        System.out.println(filter.mightContain(2));

在我们的示例中,当 mightContain() 方法返回 true 时,我们可以 99% 确定该元素在过滤器中,当过滤器返回 false 时,我们可以 100% 确定该元素不存在于过滤器中。

Guava 提供的布隆过滤器的实现还是很不错的 ,但是它是单机使用 ,如果是分布式的场景,需要用到 Redis 中的布隆过滤器了

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/498459.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Flutter 开发的那些小细节

Flutter 创建应用的小注意 包名 每当创建一个新的 Flutter 应用时&#xff0c;一些 Flutter IDE 插件会请你输入一个类似 com.example 的包名&#xff0c;包名&#xff08;在 iOS 里叫 Bundle ID&#xff09;一般都是公司域名的反写。如果你的应用打算上架商店&#xff0c;建…

NetApp 7-mode下Autosupport日志的收集

前面介绍过NetApp Cluster mode下autosupport日志的收集方法&#xff0c;最近遇到很多7-mode下客户扔出一个有故障指示灯的照片&#xff0c;然后让你判断问题的case。NetApp没有一个命令能很清晰的把所有的和硬件有关的问题列出来的命令。客户随之就说&#xff0c;要不输入一条…

【操作系统OS】学习笔记第三章 内存管理【哈工大李治军老师】

基于本人观看学习 哈工大李治军老师主讲的操作系统课程 所做的笔记&#xff0c;仅进行交流分享。 特此鸣谢李治军老师&#xff0c;操作系统的神作&#xff01; 如果本篇笔记帮助到了你&#xff0c;还请点赞 关注 支持一下 ♡>&#x16966;<)!! 主页专栏有更多&#xff0…

《机器学习算法竞赛实战》-chapter6模型融合

模型融合 模型融合常常是竞赛取得胜利的关键&#xff01; 具有差异性的模型融合往往能给结果带来很大的提升。虽然并不是每次使用模型融合都能起到很大的作用&#xff0c;但是就平常的竞赛经验而言&#xff0c;尤其是在最终成绩相差不大的情况下&#xff0c;模型融合的方法往往…

法规标准-GB/T 39265标准解读(2020版)

GB/T 39265是做什么的&#xff1f; GB/T 39265全名为道路车辆 盲区检测系统性能要求及试验方法&#xff0c;其中主要是对BSD系统的性能要求及测试步骤进行了介绍。本文仅解读M1、N1类车辆相关内容。 一般要求 系统开启与关闭 1.BSD系统应具备手动开启和关闭的功能 2.手动关…

巧用 exports 和 typeVersions 提升 npm 包用户使用体验

默认导出 对于开发一个 JavaScript 三方库供外部使用而言&#xff0c;package.json是其中不可缺少的一部分 一般而言&#xff0c;对于库开发者来说&#xff0c;我们会在package.json中指定我们的导出入口。一般而言会涉及两个字段main和export&#xff0c;它们会涉及到当前模…

开关电源基础03:正激和反激开关电源拓扑(2)-半桥和全桥拓扑

说在开头&#xff1a;关于薛定谔的波动方程&#xff08;3&#xff09; 波动方程在矩阵派的内部也大受欢迎&#xff0c;首先是海森堡的老师索末菲&#xff0c;然后是建立矩阵力学的核心人物之一的另一位老师&#xff1a;马克思.玻恩。玻恩在薛定谔方程刚出来时就赞扬了他的成就…

宕机了?!DolphinScheduler 高可用和 Failover 机制关键时刻保命

点击蓝字 关注我们 高可用性是 Apache DolphinScheduler 的特性之一。它通过冗余来避免单点问题&#xff0c;所有组件天然支持横向扩容&#xff1b;但仅仅保证了冗余还不够&#xff0c;当系统中有节点宕机时&#xff0c;还需要有故障转移机制能够自动将宕机节点正在处理的工作转…

【react 全家桶】高级指引(上)

本人大二学生一枚&#xff0c;热爱前端&#xff0c;欢迎来交流学习哦&#xff0c;一起来学习吧。 <专栏推荐> &#x1f525;&#xff1a;js专栏 &#x1f525;&#xff1a;vue专栏 &#x1f525;&#xff1a;react专栏 文章目录 12 【react高级指引&#xff08;上&…

I.MX6Q-SDB开发板移植ubuntu

I.MX6Q-SDB开发板移植ubuntu 0.前言一、准备工作二、ubuntu移植1.下载ubuntu发布的根文件系统2.根文件系统的简单修改3.板卡适配设置4.打包根文件系统 三、烧写镜像1.dd命令2.uuu工具3.mfgtool工具4.i.mx6q-sdb的拨码设置&#xff1a; 四、大无语事件 0.前言 这两天收拾杂货堆&…

密码学【java】初探究加密方式之数字签名

文章目录 前言1 数字签名简介2 基本原理3 数字证书4 网页加密5 edge的网站连接图标6 代码实现7 keytool工具使用7.1 常用命令&#xff1a;7.2 生成私钥公钥[未实践成功]7.3 导出公钥 前言 有关keytool的使用部分&#xff0c;未实现&#xff0c;先记录下来&#xff01;&#xf…

『python爬虫』12. 模拟登陆之cookie的使用(保姆级图文)

目录 session1. 模拟登陆取得cookie2. 在登录的情况下继续取得书架上的数据3. 在已经有cookie的情况下直接请求总结 欢迎关注 『python爬虫』 专栏&#xff0c;持续更新中 欢迎关注 『python爬虫』 专栏&#xff0c;持续更新中 session session和我们之前用的request十分相似&…

AWS Lambda - 同步/异步调用,事件源,目标

Hello大家好&#xff0c;我们今天继续讨论AWS Lambda的内容。 同步调用 Lambda函数有三种调用方式。 第一种方式是同步调用。 当我们使用API、CLI以及API网关等调用函数时&#xff0c;就是同步调用。 当您同步调用函数时&#xff0c;Lambda会运行该函数并等待响应&#xff…

微服务---Redis入门篇-Redis的常见命令和客户端使用

Redis快速入门 Redis的常见命令和客户端使用 1.初识Redis Redis是一种键值型的NoSql数据库&#xff0c;这里有两个关键字&#xff1a; 键值型 NoSql 其中键值型&#xff0c;是指Redis中存储的数据都是以key、value对的形式存储&#xff0c;而value的形式多种多样&#xf…

易视腾iS-E5-NGH_3798MV100_MT7601_卡刷固件包_当贝纯净桌面

易视腾iS-E5-NGH_3798MV100_MT7601_卡刷固件包_当贝纯净桌面 特点&#xff1a; 1、适用于对应型号的电视盒子刷机&#xff1b; 2、开放原厂固件屏蔽的市场安装和u盘安装apk&#xff1b; 3、修改dns&#xff0c;三网通用&#xff1b; 4、大量精简内置的没用的软件&#xff0…

单链表OJ题:LeetCode--206.反转链表

朋友们、伙计们&#xff0c;我们又见面了&#xff0c;今天给大家带来的是LeetCode中206题&#xff1a;反转链表 数 据 结 构&#xff1a;数据结构专栏 作 者&#xff1a;stackY、 C 语 言 &#xff1a;C语言专栏 LeetCode &#xff1a;LeetCode刷题训练营 LeetCod…

TiDB实战篇-数据库热点问题

形成热点的原因 主要是因为数据插入进去的时候是按顺序加数据的。 数据分裂以后还是在一个store上面&#xff0c;就会形成读写热点。 没有走索引全表扫描的情况。 定位热点 如果有热点&#xff0c;那么它的查询语句应该是比较多的&#xff0c;容易在这个地方找到对应的热点问…

Leetcode434. 字符串中的单词数

Every day a leetcode 题目来源&#xff1a;434. 字符串中的单词数 解法1&#xff1a;istringstream 我们知道&#xff0c;C默认通过空格&#xff08;或回车&#xff09;来分割字符串输入&#xff0c;即区分不同的字符串输入。 istringstream类用于执行C风格的串流的输入操…

Flowable入门

Flowable初体验 Flowable是什么 Flowable 是一个使用 Java 编写的轻量级业务流程引擎&#xff0c;常用于需要人工审批相关的业务&#xff0c;比如请假、报销、采购等业务。 为什么要使用工作流呢&#xff1f; 对于复杂的业务流程&#xff0c;通过数据库的状态字段难以控制和…

软考信管高级——质量管理

质量管理内容 质量保证QA(过程符合要求/过程改进&#xff09; (1)按项目计划开展质量活动&#xff0c;使项目过程和产品符合质量要求&#xff0c;即按计划做质量&#xff1b; (2)提高项目干系人对项目将要满足质量要求的信心&#xff1b; (3)按过程改进计划进行过程改进&…