使用机器人为无线传感器网络提供服务(Matlab代码实现)

news2025/1/17 3:56:57

    目录

💥1 概述

📚2 运行结果

🎉3 参考文献

👨‍💻4 Matlab代码

💥1 概述

无线传感器网络是一种无线网络,包括大量循环的、自定向的、微小的、低功耗的设备,称为传感器节点(motes)。这些网络当然覆盖了大量的空间分布的、小型的、电池供电的嵌入式设备,这些设备通过网络来收集、处理数据,并将数据传输给运营商,它控制了计算和处理的能力。节点是微型计算机,它们共同工作形成网络。

  传感器节点是一种多功能、节能的无线设备。节点在工业上的应用十分广泛,传感器节点的集合从环境中收集数据,以实现特定的应用目标。在无线传感器网络中,节点的数量可以是成百上千的,与传感器网络相比,Ad Hoc网络在没有任何结构的情况下具有更少的节点。

  关于无线传感器网络体系结构,最常见的WSN架构遵循OSI架构模型。无线传感器网络的体系结构包括五层和三个交叉层。在传感器网络中,我们主要需要五层,即应用层、传输层、网络层、数据链路层和物理层。这三个跨平面分别是电源管理、移动性管理和任务管理。这些层的无线传感器网络被用来完成无线传感器网络,并使传感器协同工作,以提高无线传感器网络的整体效率网络。

复杂工作环境下将移动多机器人控制方法与传感器网络技术相结合是移动多机器人控制研究中的一项前沿技术,这项技术对移动多机器人控制中的定位、路径规划、队形控制等方面具有重要意义。传统方法下移动多机器人与外部导航设备分离时,通常使用惯性导航方式继续跟踪机器人,然而在惯性导航工作方式下,随着时间推移,所积累的导航误差、里程计误差均会限制惯性导航方法在移动多机器人控制中的使用。基于无线传感器网络的多机器人控制方法可以充分利用传感器网络的自组织、智能化、多源等特性,对移动多机器人的工作位置、障碍物进行感知与识别,进而提高移动多机器人系统在封闭、强噪声等复杂工作条件下的鲁棒性、普适性及抗干扰能力。本文基于传统移动多机器人控制理论,对现阶段使用机器人为无线传感器网络提供服务进行研究。

📚2 运行结果

主函数部分代码:

L = 1000;
n= 100;
nSalesmen = 5;
​
myConfig.dmat        = [];
myConfig.nSalesmen   = nSalesmen;
myConfig.minTour     = floor(1/4*(n/myConfig.nSalesmen));
myConfig.popSize     = 80;
myConfig.numIter     = 1e3;
myConfig.showProg    = true;
myConfig.showResult  = true;
myConfig.showWaitbar = true;

%
     USERCONFIG (structure) with zero or more of the following fields:
%     - XY (float) is an Nx2 matrix of city locations, where N is the number of cities
%     - DMAT (float) is an NxN matrix of city-to-city distances or costs
%     - NSALESMEN (scalar integer) is the number of salesmen to visit the cities
%     - MINTOUR (scalar integer) is the minimum tour length for any of the
%         salesmen, NOT including the start/end point
%     - POPSIZE (scalar integer) is the size of the population (should be divisible by 8)
%     - NUMITER (scalar integer) is the number of desired iterations for the algorithm to run
%     - SHOWPROG (scalar logical) shows the GA progress if true
%     - SHOWRESULT (scalar logical) shows the GA results if true
%     - SHOWWAITBAR (scalar logical) shows a waitbar if true
​
nTests = 5;
minDistRand = zeros(1,nTests);
minDistSect = zeros(1,nTests);
​
for j  = 1:nTests
    myConfig.xy          = L*rand(n,2)- repmat(L/2*[1,1],n,1);
    myConfig.xy(1,:) = [0,0];
    resultsStructSect = mtspf_gaSectors(myConfig);
    resultsStructRand = mtspf_ga(myConfig);
   
    minDistRand(j) = resultsStructRand.minDist;
    minDistSect(j) = resultsStructSect.minDist;
    display([num2str(j),') rand Start = ',num2str( minDistRand(j)),', theta start = ',num2str( minDistSect(j))])
    
end
​
display(['MEAN rand Start = ',num2str(mean(minDistRand)),', MEAN theta start = ',num2str(mean(minDistSect))])
​
save(['CompareRandSec',num2str( myConfig.nSalesmen),'Points',num2str(n),'.mat'],'minDistRand','minDistSect');

​
​
%
 Output:
%     RESULTSTRUCT (structure) with the following fields:
%         (in addition to a record of the algorithm configuration)
%     - OPTROUTE (integer array) is the best route found by the algorithm
%     - OPTBREAK (integer array) is the list of route break points (these specify the indices
%         into the route used to obtain the individual salesman routes)
%     - MINDIST (scalar float) is the total distance traveled by the salesmen

🎉3 参考文献

[1]孟清,何志海.基于WSN的自主移动服务机器人定位方法研究[J].信息通信,2020,No.205(01):100-101.

部分理论引用网络文献,若有侵权联系博主删除。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/487708.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MySQL存储引擎对比总结

文章目录 一、存储引擎是什么二、存储引擎有哪些三、常用存储引擎介绍1、InnoDB2、MyISAM3、MEMORY4、MRG_MYISAM (MERGE)5、ARCHIVE6、BLACKHOLE7、FEDERATED8、CSV9、PERFORMANCE_SCHEMA10、NDB 一、存储引擎是什么 存储引擎是数据库的核心&#xff0…

微信小程序实现订阅消息功能(Node服务器篇)

在上一篇内容当中在微信小程序中实现订阅消息功能,都在客户端(小程序)中来实现的,在客户端中模拟了服务器端来进行发送订阅消息的功能,那么本篇就将上一篇内容中仅在客户端中实现发送订阅消息功能进行一个分离,使用 Node.js 搭载后…

吧佬联手抵制奸商,百元级游戏电脑横出江湖

最近小忆闲得在电商平台搜索了下关键词「游戏主机」,不出意外销量榜前列清一色全是「i9 级高端游戏主机」。 这些主机不论配置单介绍还是十万百万级销量宣传标语,都给人一种血赚不亏的「豪华」感。 咱就说时代在变,唯一不变的是奸商们的套路与…

什么样的台灯灯光是好的?推荐中性色温的护眼台灯

台灯的灯光指的是白光和黄光&#xff0c;就是台灯的色温&#xff0c;而色温也是也会影响我们的直观感受的。 低色温&#xff08;>3000K&#xff09;光源偏黄&#xff0c;属于暖色调&#xff0c;适合休息高色温&#xff08;<5000K&#xff09;光源偏白&#xff0c;属于冷…

MWORKS.Sysplorer 2023a前瞻版上线——面向MBD全流程的覆盖

信息物理融合系统&#xff08;CPS&#xff09;的设计、建模与仿真是装备数字化的核心技术。MWORKS.Sysplorer经过多年的发展&#xff0c;已经支持机械、电气、流体、热力学等多个物理域的统一建模和统一仿真求解&#xff0c;解决了物理域统一表达与统一建模问题。为了支持完整的…

嘉立创EDA元件库开发环境及设计介绍

一、元件符号概述 如图1所示&#xff0c;元件符号是元件在原理图中的表现形式&#xff0c;主要由元件边框、管脚&#xff08;包括管脚符号和管脚名称&#xff09;、元件名称及说明组成&#xff0c;通过放置的管脚来建立电气连接关系。元件符号中管脚序号是和电子元件实物的管脚…

Node 11会话控制

会话控制 介绍 所谓会话控制就是 对会话进行控制 HTTP 是一种无状态的协议&#xff0c;它没有办法区分多次的请求是否来自于同一个客户端&#xff0c;无法区分用户 而产品中又大量存在的这样的需求&#xff0c;所以我们需要通过 会话控制 来解决该问题 常见的会话控制技术有…

ChatGPT被淘汰了?Auto-GPT到底有多强

大家好&#xff0c;我是可夫小子&#xff0c;关注AIGC、读书和自媒体。解锁更多ChatGPT、AI绘画玩法。 说Auto-GPT淘汰了ChatGPT了&#xff0c;显然是营销文案里面的标题党。毕竟它还是基于ChatGPT的API&#xff0c;某种意义只是基于ChatGPT能力的应用。但最近&#xff0c;Auto…

大型央企集团财务经营分析框架系列(二)

01集团化的数字化项目为什么会失败深度原因&#xff1a;方向性错误 这几年见过一些央企、国企、大型企业集团尝试过一些数字化的项目&#xff1a;数据中台、大数据分析、BI 分析项目&#xff0c;投入很大、周期也很长&#xff0c;甚至有的在项目开始前也找了专业的咨询公司来规…

按键外部中断

文章目录 运行环境&#xff1a;1.1 按键外部中断1)按键检测2)外部中断的3中触发方式 2.1配置1)原理图2)引脚配置3)中断配置4)RCC和SYS 3.1代码分析3.2添加代码1)中断处理函数IRQ中添加电平转换代码2)launch设置 5.1实验效果 运行环境&#xff1a; ubuntu18.04.melodic 宏基暗影…

如何用ChatGPT做团队绩效管理?根据员工的个人优势、不足、目标来生成更具体的绩效反馈

该场景对应的关键词库&#xff1a;&#xff08;25个&#xff09; 绩效管理、目标设定、绩效评估、员工优势、员工弱点、反馈机制、个人发展计划、职业规划、评估工具、数据分析、绩效考核、评分标准、KPI指标、成果目标、个人任务、团队任务、激励机制、晋升机会、增量奖励、培…

你的个人AI助理Pi来了

还记得之前的文章《不要老盯着ChatGPT&#xff0c;这几家公司的产品同样不容小觑》提到的Inflection AI公司吗&#xff1f;通过其官方推文了解到&#xff0c;前期我们关注的个人AI助理有了新的进展&#xff0c;Pi开始对外发布。 Pi是什么 Pi 是一种 AI&#xff0c;一种旨在提供…

使用crontab定时自动更新DDNS

需求说明&#xff1a; N1盒子的armbian系统配置好了 ipv6 的ddns&#xff0c;实现了域名访问本机&#xff0c;但是本地ipv6可能会发生变化&#xff0c;当发生变化后&#xff0c;需要手动执行指令&#xff0c;将新的ip与域名绑定&#xff0c;现在我们采用定时任务&#xff0c;每…

18 线性表的查找

查找的基本概念 **查找&#xff1a;**在数据集合中寻找满足某种条件数据元素的过程&#xff0c;称之为查找。 查找的结果 分别两种&#xff1a; 查找成功 即在数据集合中找到了满足条件的数据元素。查找结果给出整个记录的信息&#xff0c;或者改记录在查找表中的位置。查找失…

vivo积分任务体系的架构演进-平台产品系列05

作者&#xff1a;vivo 互联网平台产品研发团队- Mu JunFeng 积分体系作为一种常见营销工具&#xff0c;几乎是每一家企业会员营销的必备功能之一&#xff0c;在生活中随处可见&#xff0c;随着vivo互联网业务发展&#xff0c;vivo积分体系的能力也随之得到飞速提升&#xff0c;…

Java字符串的用法、原理、性能分析和总结

本文介绍了Java字符串的创建方式、拼接、比较、查找和替换等常见操作&#xff0c;并解析了Java字符串在内存中的存储方式及常量池的作用。文章还提到了Java字符串的性能问题&#xff0c;建议在进行大量的字符串操作时&#xff0c;应该尽量避免使用""号操作符和concat…

【模拟IC学习笔记】 Widlar电流源

原理分析 M3、M4工作在饱和区&#xff0c;M1、M2可以工作在饱和区也可以工作在亚阈值区。 两边电流相等&#xff0c;M3、M4尺寸相等&#xff0c;Vgs2&#xff1c;Vgs1&#xff0c;所以M2的尺寸应该比M1的尺寸大才能保证两边电流相等。K为M2和M1的尺寸比。 当M1和M2工作在饱和…

springboot集成Validated实现参数检验,分组校验,嵌套检验等

一&#xff0c;开发前工作 引入依赖 <dependency> <!--新版框架没有自动引入需要手动引入--><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-validation</artifactId> </dependency> 二&#xff0c…

spring之ioc初见

maven创建 mvn archetype:generate # 选择7&#xff0c;创建快速启动项目然后idea打开即可 idea创建 点击创建 使用IOC pom.xml添加依赖 <dependency><groupId>org.springframework</groupId><artifactId>spring-context</artifactId><…

pytorch实战9:基于pytorch简单实现u-net

基于pytorch简单实现u-net 前言 ​ 最近在看经典的卷积网络架构&#xff0c;打算自己尝试复现一下&#xff0c;在此系列文章中&#xff0c;会参考很多文章&#xff0c;有些已经忘记了出处&#xff0c;所以就不贴链接了&#xff0c;希望大家理解。 ​ 完整的代码在最后。 本系列…